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Abstract: In this paper, we propose and investigate a diffusive viral infection model with distributed
delays and cytotoxic T lymphocyte (CTL) immune response. Also, both routes of infection that are
virus-to-cell infection and cell-to-cell transmission are modeled by two general nonlinear incidence
functions. The well-posedness of the proposed model is also proved by establishing the global
existence, uniqueness, nonnegativity and boundedness of solutions. Moreover, the threshold
parameters and the global asymptotic stability of equilibria are obtained. Furthermore, diffusive and
delayed virus dynamics models presented in many previous studies are improved and generalized.
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1. Introduction

During human infections with viruses such as human immunodeficiency virus (HIV), human
T-cell leukemia virus (HTLV), hepatitis B virus (HBV) and hepatitis C virus (HCV), cytotoxic T
lymphocyte (CTL) cells play a crucial role in antiviral defence by attacking and killing infected cells.
So, modeling the role of CTL immune response in viral infection has attracted the attention of many
researchers. In 1996, Nowak and Bangham [1] proposed a basic mathematical model by assuming
that the infection process is bilinear and follows the principle of mass action. However, as a nonlinear
relationship between parasite dose and infection rate has been frequently observed in experiments
in [2,3], this bilinear incidence was replaced by Beddington-DeAngelis functional response in [4] and
by a more general incidence function in [5].

In the above classical models that are formulated by ordinary differential equations (ODEs),
the cell infection is instantaneous and only caused by contact with the free virus. In reality, there are
two routes of infection and also time delays in cell infection and virus production. Motivated by
these biological reasons, Li et al. [6] proposed a mathematical model formulated by delay differential
equations (DDEs) to describe the global dynamics of HIV infection with CTL immune response.
This delayed model is an extension of [1] that considers Holling type-II functional response and two
kinds of discrete delays, one in cell infection and the other in virus production. Also, the authors
of [7] improved the model of Nowak and Bangham [1] by introducing a discrete delay in cell infection
and using a Crowley-Martin type incidence function. In 2016, Wang et al. [8] introduced an infinite
distributed delay in cell infection in order to improve the basic model with CTL immune response [1],
and they also considered both routes of infection, virus-to-cell infection and cell-to-cell transmission.
Furthermore, a recent work presented in [9] studied the dynamical behavior of a viral infection model
with two types of distributed time delays, CTL immune response and saturated incidence rates for
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both routes of infection. In this paper, we generalize all the ODE and DDE models presented in [1,4–9]
by proposing the following nonlinear system:

dT
dt

= λ− dT(t)− f
(
T(t), I(t), V(t)

)
V(t)− g

(
T(t), I(t)

)
I(t),

dI
dt

=
∫ ∞

0 f1(τ)e−α1τ [ f
(
T(t− τ), I(t− τ), V(t− τ)

)
V(t− τ)

+g
(
T(t− τ), I(t− τ)

)
I(t− τ)]dτ − aI(t)− pI(t)Z(t),

dV
dt

= k
∫ ∞

0 f2(τ)e−α2τ I(t− τ)dτ − µV(t),
dZ
dt

= cI(t)Z(t)− bZ(t),

(1)

where T(t), I(t), V(t) and Z(t) denote the densities of susceptible target cells, infected target cells,
free virus particles and CTL cells at time t, respectively. The susceptible target cells are produced at
constant λ, die at rate d and become infected by contact with free virus at rate f (T, I, V)V and by
contact with infected cells at rate g(T, I)I. The parameters a and b are the death rates of infected cells
and CTL cells. The parameter p represents the rate at which infected cells are killed by CTL cells, k is
the production rate of free virus by an infected cell, and µ is the clearance rate of free virus. CTL cells
expand in response to viral antigens derived from infected cells at rate cIZ. Further, we assume that
the virus or infected cell contacts an uninfected cell at time t− τ and the cell becomes infected at time
t, where τ is a random variable taken from a probability distribution f1(τ). The term e−α1τ represents
the probability of surviving from time t− τ to time t, where α1 is the death rate for infected but not
yet virus-producing cells. In the same, we assume that the time necessary for the newly produced
virions to become mature and infectious is a random variable with a probability distribution f2(τ).
The term e−α2τ denotes the probability of the immature virions surviving the delay period, where 1

α2
is

the average life time of an immature virus. Therefore, the integral
∫ ∞

0 f2(τ)e−α2τ I(t− τ)dτ describes
the mature viral particles produced at time t. The probability distribution functions f1(τ) and f2(τ)

are assumed to satisfy fi(τ) ≥ 0 and
∫ ∞

0 fi(τ)dτ = 1 for i = 1, 2.
As in [10,11], the incidence functions f (T, I, V) and g(T, I) for both routes of infection are

continuously differentiable and satisfy the following hypotheses:

(H0) g(0,I) = 0, for all I ≥ 0;
∂g
∂T

(T, I) ≥ 0
(
or g(T, I) is a strictly monotone increasing function with

respect to T when f ≡ 0
)

and
∂g
∂I

(T, I) ≤ 0, for all T ≥ 0 and I ≥ 0.
(H1) f (0, I, V) = 0, for all I ≥ 0 and V ≥ 0,

(H2) f (T, I, V) is a strictly monotone increasing function with respect to T
(
or

∂ f
∂T

(T, I, V) ≥ 0

when g(T, I) is a strictly monotone increasing function with respect to T
)
, for any fixed I ≥ 0

and V ≥ 0,
(H3) f (T, I, V) is a monotone decreasing function with respect to I and V.

From a biological viewpoint, the above hypotheses are reasonable and consistent with reality.
In fact, the first assumption (H0) on the function g(T, I) means that the incidence rate by direct contact
with infected cells is equal to zero if there are no susceptible cells. This incidence rate is increasing
when the number of infected cells is constant and the number of susceptible cells increases. Also, it is
decreasing when the number of susceptible cells is constant and the number of infected cells increases.
Similarly, the second assumption (H1) on the function f (T, I, V) means that the incidence rate by
contact with free virus is equal to zero if there are no susceptible cells. By (H2) and (H3), this incidence
rate is increasing when the numbers of infected cells and virus are constant and the number of
susceptible cells increases. Also, it is decreasing when the number of susceptible is constant and the
number of infected cells or free virus increases. Consequently, the more susceptible cells are, the more
infectious events will occur. However, the higher the number of infected cells or the concentration of
virus in the host is, the less infectious events will be [10,12,13]. In addition, the functions f (T, I, V)
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and g(T, I) cover several types of incidence rates existing in the literature such as the classical bilinear
incidence, standard incidence, Holling type-II functional response, Beddington-DeAngelis functional
response, Crowley-Martin functional response and Hattaf-Yousfi functional response.

On the other hand, system (1) assumes that cells and viruses are well mixed, and ignores their
mobility. Actually, viral propagation is a localized process [14] due to the fact that the virus is inherently
unstable and the infection occurs mainly in lymphoid tissues. Also, the interaction between virus
and the immune response tends to be local within the body of infected hosts [15]. Further, cells are
distributed in space and typically interact with the physical environment and other organisms in
their spatial neighborhood [16]. Therefore, it is more reasonable to study a reaction-diffusion version
of system (1). So, the organization of this paper is as follows. In the next section, we present the
reaction-diffusion version of (1) and some preliminary results. Section 3 is devoted to the global
dynamics of the reaction-diffusion model. An application and some numerical simulations of our main
results are presented in Section 4. Finally, the paper ends with mathematical and biological conclusions
in the last section.

2. Model Formulation and Preliminaries

We first present a reaction-diffusion version of system (1) by taking into account the mobility of
cells and viruses. Hence, system (1) becomes

∂T
∂t

= dT4T + λ− dT(x, t)− f
(
T(x, t), I(x, t), V(x, t)

)
V(x, t)

−g
(
T(x, t), I(x, t)

)
I(x, t),

∂I
∂t

= dI4I +
∫ ∞

0 f1(τ)e−α1τ [ f
(
T(x, t− τ), I(x, t− τ), V(x, t− τ)

)
V(x, t− τ)

+g
(
T(x, t− τ), I(x, t− τ)

)
I(x, t− τ)]dτ − aI(x, t)− pI(x, t)Z(x, t),

∂V
∂t

= dV4V + k
∫ ∞

0 f2(τ)e−α2τ I(x, t− τ)dτ − µV(x, t),
∂Z
∂t

= dZ4Z + cI(x, t)Z(x, t)− bZ(x, t),

(2)

where T(x, t), I(x, t), V(x, t) and Z(x, t) are the densities of susceptible target cells, infected target
cells, free virus particles and CTL cells at location x and time t, respectively. Here, we assume that the
motion of the above four populations follows Fickian diffusion, meaning that the fluxes of these four
populations are proportional to their concentration gradient and go from regions of high concentration
to regions of low concentration, with the diffusion coefficients dT , dI , dV and dZ, respectively. 4 is the
Laplacian operator. The other parameters have the same biological meanings as those in system (1).

It is very important to note that our model (2) formulated by partial differential equations
(PDEs) extends and generalizes many virus dynamics models existing in the literature. For instance,
we obtain the diffused HBV infection model proposed by Wang et al. [17] when dT = dI = dZ = 0,
f1(τ) = f2(τ) = δ(τ), f (T, I, V) = βTq and g(T, I) = 0, where q > 0, β > 0 is a constant rate
describing the infection process and δ(.) is the Dirac delta function. When dT = dI = dZ = 0,

f1(τ) = δ(τ − τ1), f2(τ) = δ(τ), f (T, I, V) =
βT

1 + ε1T + ε2V
and g(T, I) = 0, where ε1, ε2 ≥ 0

are constants, we get the diffusive and delayed viral infection model with Beddington-DeAngelis
functional response [18]. Also, the diffusive and delayed viral infection model with Crowley-Martin
functional response [19] is a special case of (2), it suffices to take dT = dI = dZ = 0, f1(τ) = δ(τ − τ1),

f2(τ) = δ(τ − τ2), f (T, I, V) =
βT

(1 + ε1T)(1 + ε2V)
and g(T, I) = 0.

Throughout this paper, we consider system (2) with initial conditions

T(x, θ) = φ1(x, θ) ≥ 0, I(x, θ) = φ2(x, θ) ≥ 0,
V(x, θ) = φ3(x, θ) ≥ 0, Z(x, θ) = φ4(x, θ) ≥ 0, (x, θ) ∈ Ω̄× (−∞, 0],

(3)
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and zero-flux boundary conditions

∂T
∂ν

=
∂I
∂ν

=
∂V
∂ν

=
∂Z
∂ν

= 0 on ∂Ω× (0,+∞), (4)

where Ω is a bounded domain in IRn with smooth boundary ∂Ω, and
∂

∂ν
indicates the outward normal

derivative on ∂Ω. From the biological point of view, these conditions mean that the uninfected cells,
infected cells, free virus particles and CTL cells do not move across the boundary ∂Ω.

We now study the well posedness of the PDE model (2) by establishing the global existence,
uniqueness, nonnegativity and boundedness of solutions. To this end, we need some notations.
Let X = C(Ω̄, IR4) be the Banach space of continuous functions from Ω̄ into IR4, and
Cα = Cα((−∞, 0],X) be the Banach space of continuous functions ϕ from (−∞, 0] into X, where
ϕ(θ)eαθ is uniformly continuous on (−∞, 0] and ‖ϕ‖ = sup

θ≤0
‖ϕ(θ)‖Xeαθ < ∞ with α is a positive

constant. For convenience, we identify an element ϕ ∈ Cα as a function from Ω̄× (−∞, 0] into IR4

defined by ϕ(x, θ) = ϕ(θ)(x). For any continuous function ω(.) : (−∞, σ)→ X for σ > 0, we define
ωt ∈ Cα by ωt(θ) = ω(t + θ), θ ∈ (−∞, 0]. It is not hard to prove that t 7→ ωt is a continuous function
from [0, σ) to Cα. Moreover, we need the following lemma.

Lemma 1. Let A, B and D be three constants with B 6= 0. Consider the following problem
∂u
∂t
− D4u ≤ A− Bu, x ∈ Ω, t > 0,

∂u
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω̄.

(5)

Then u(x, t) ≤ max
x∈Ω̄

u0(x)e−Bt +
A
B
(1− e−Bt). Moreover, if B > 0, we have

u(x, t) ≤ max
{A

B
, max

x∈Ω̄
u0(x)

}
and lim sup

t→+∞
u(x, t) ≤ A

B
.

Proof. Let ũ(t) be a solution to the ordinary differential equation
dũ
dt

= A− Bũ,

ũ(0) = max
x∈Ω̄

u0(x).

Then ũ(t) = ũ(0)e−Bt + A
B (1− e−Bt). It follows from the comparison principle [20] that u(x, t) ≤

ũ(t). Hence,

u(x, t) ≤ max
x∈Ω̄

u0(x)e−Bt +
A
B
(1− e−Bt).

So, if B > 0, we have u(x, t) ≤ max
{ A

B , max
x∈Ω̄

u0(x)
}

and

lim sup
t→+∞

u(x, t) ≤ A
B

.

Theorem 1. For any given initial condition φ ∈ Cα satisfying (3), problem (2)–(4) has a unique nonnegative
solution. When the cells have the same diffusion coefficient (dT = dI = dZ), this solution is defined on [0,+∞)

and remains nonnegative and bounded for all t ≥ 0.
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Proof. Let ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)
T ∈ Cα and x ∈ Ω̄. We define F = (F1, F2, F3, F4) : Cα → X by

F1(ϕ)(x) = λ− dϕ1(x, 0)− f
(

ϕ1(x, 0), ϕ2(x, 0), ϕ3(x, 0)
)

ϕ3(x, 0)
−g
(

ϕ1(x, 0), ϕ2(x, 0)
)

ϕ2(x, 0),
F2(ϕ)(x) =

∫ ∞
0 f1(τ)e−α1τ [ f

(
ϕ1(x,−τ), ϕ2(x,−τ), ϕ3(x,−τ)

)
ϕ3(x,−τ)

+g
(

ϕ1(x,−τ), ϕ2(x,−τ)
)

ϕ2(x,−τ)]dτ − aϕ2(x, 0)− pϕ2(x, 0)ϕ4(x, 0),
F3(ϕ)(x) = k

∫ ∞
0 f2(τ)e−α2τ ϕ2(x,−τ)dτ − µϕ3(x, 0),

F4(ϕ)(x) = cϕ2(x, 0)ϕ4(x, 0)− cϕ4(x, 0).

Then problem (2)–(4) can be rewritten as the following abstract functional differential equation{
ω′(t) = Aω + F(ωt), t > 0,
ω(0) = φ ∈ Cα,

(6)

where ω = (T, I, V, Z)T , φ = (φ1, φ2, φ3, φ4)
T and Aω = (dT4T, dI4I, dV4V, dZ4Z)T . It is obvious

that F is locally Lipschitz in Cα. According to [21–25], we deduce that system (6) admits a unique local
solution on its maximal interval of existence [0, tmax).

Since 0 = (0, 0, 0, 0) is a lower-solution of the problem (2)–(4), we have T(x, t) ≥ 0, I(x, t) ≥ 0,
V(x, t) ≥ 0 and Z(x, t) ≥ 0.

From the first equation of (2), we get
∂T
∂t
− dT4T ≤ λ− dT,

∂T
∂ν

= 0,

T(x, 0) = φ1(x, 0) ≥ 0.

(7)

By Lemma 1, we get

T(x, t) ≤ max
{

λ

d
, max

x∈Ω̄
φ1(x, 0)

}
, ∀(x, t) ∈ Ω̄× [0, tmax).

This implies that T is bounded. Let

G(x, t) = I(x, t) +
p
c

Z(x, t) +
∫ ∞

0
f1(τ)e−α1τT(x, t− τ)dτ.

The integral in G(x, t) is well-defined and differentiable with respect to t, due to T being
bounded. Thus,

∂G
∂t

= dT

∫ ∞

0
f1(τ)e−α1τ4T(x, t− τ)dτ + dI4I(x, t) +

p
c

dZ4Z(x, t)

+λ
∫ ∞

0
f1(τ)e−α1τdτ − d

∫ ∞

0
f1(τ)e−α1τT(x, t− τ)dτ − aI(x, t)− pb

c
Z(x, t)

≤ dT

∫ ∞

0
f1(τ)e−α1τ4T(x, t− τ)dτ + dI4I(x, t) +

p
c

dZ4Z(x, t) + λη1 − δG(x, t),

where δ = min{a, b, d} and

ηi =
∫ ∞

0
fi(τ)e−αiτdτ, i = 1, 2. (8)
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When dT = dI = dZ = D, we have
∂G
∂t
− D4G ≤ λη1 − δG,

∂G
∂ν

= 0,

G(x, 0) = φ2(x, 0) + p
c φ4(x, 0) +

∫ ∞
0 f1(τ)e−α1τφ1(0,−τ)dτ.

(9)

From Lemma 1, we have

G(x, t) ≤ max
{

λη1

δ
, max

x∈Ω̄
G(x, 0)

}
, ∀(x, t) ∈ Ω̄× [0, tmax).

Thus, I and Z are bounded. It remains to prove that V is bounded. From the boundedness of I
and (2)–(4), we deduce that V satisfies the following system

∂V
∂t
− dV4V ≤ kMη2 − µV,

∂V
∂ν

= 0,

V(x, 0) = φ3(x, 0) ≥ 0,

(10)

where M = max
{

λη1

δ
, max

x∈Ω̄
G(x, 0)

}
. According to Lemma 1, we deduce that

V(x, t) ≤ max
{

kMη2

µ
, max

x∈Ω̄
φ3(x, 0)

}
, ∀(x, t) ∈ Ω̄× [0, tmax).

This implies that V is bounded. From the above, we have proved that T(x, t), I(x, t), V(x, t) and
Z(x, t) are bounded on Ω̄× [0, tmax). By the standard theory for semilinear parabolic systems [26],
we deduce that tmax = +∞. This completes the proof.

Clearly, system (2) has always one infection-free equilibrium E0(T0, 0, 0, 0), where T0 =
λ

d
, which

represents the healthy state. Hence, we define the basic reproduction number for our PDE model
as follows

R0 =
kη1η2 f ( λ

d , 0, 0) + µη1g( λ
d , 0)

aµ
. (11)

Biologically and as in [11,27], R0 can be divided into parts as R0 = R01 + R02, where

R01 =
kη1η2 f ( λ

d , 0, 0)
aµ

is the basic reproduction number corresponding to virus-to-cell infection mode,

andR02 =
η1g( λ

d , 0)
a

is the basic reproduction number corresponding to cell-to-cell transmission mode.
The other spatially uniform steady states of (2) satisfy the following system

λ− dT − f (T, I, V)V − g(T, I)I = 0,
η1
(

f (T, I, V)V + g(T, I)I
)
− aI − pIZ = 0,

kη2 I − µV = 0,
cIZ− bZ = 0.

(12)

The last equation of (12) implies that Z = 0 or I =
b
c

. Hence, we discuss two cases.
For the case when Z = 0, we get

kη1η2 f
(
T,

η1(λ− dT)
a

,
kη1η2(λ− dT)

aµ

)
+ µη1g

(
T,

η1(λ− dT)
a

)
= aµ. (13)
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Since I =
η1(λ− dT)

a
≥ 0, we have T ≤ λ

d
. Then there is no biological equilibrium whenever

T >
λ

d
. Let us define the function ψ1 on the interval [0, λ

d ] by

ψ1(T) = kη1η2 f
(
T,

η1(λ− dT)
a

,
kη1η2(λ− dT)

aµ

)
+ µη1g

(
T,

η1(λ− dT)
a

)
− aµ.

It follows from (H0)–(H3) that ψ1(0) = −aµ < 0, ψ1(
λ

d
) = aµ(R0 − 1) and

ψ′1(T) = kη1η2

(
∂ f
∂T
− dη1

a
∂ f
∂I
− kdη1η2

aµ

∂ f
∂V

)
+ µη1

(
∂g
∂T
− dη1

a
∂g
∂I

)
> 0,

which implies that there exists a unique T1 ∈ (0,
λ

d
) such as ψ1(T1) = 0 provided that R0 >

1. Thus, E1(T1, I1, V1, 0) is a unique infection equilibrium of (2) with I1 =
η1(λ− dT1)

a
and

V1 =
kη1η2(λ− dT1)

aµ
.

For the case when Z 6= 0, we have I =
b
c

, V =
kbη2

cµ
and

kη2 f
(
T,

b
c

,
kbη2

cµ

)
+ µg

(
T,

b
c
)
=

cµ

b
(λ− dT). (14)

Since Z =
cη1(λ− dT)− ab

pb
≥ 0, we have T ≤ λ

d
− ab

dcη1
. Then there is no positive equilibrium

when T >
λ

d
− ab

dcη1
or

λ

d
− ab

dcη1
≤ 0. Define the function ψ2 on the interval [0, λ

d −
ab

dcη1
] by

ψ2(T) = kη2 f
(
T,

b
c

,
kbη2

cµ

)
+ µg

(
T,

b
c
)
− cµ

b
(λ− dT).

If CTL immune response has not been established, we have cI1 − b ≤ 0. So, we define the
reproduction number for cellular immunity as follows

RZ
1 =

cI1

b
, (15)

where
1
b

denotes the average life expectancy of CTL cells and I1 is the number of infected cells at E1.

Hence,RZ
1 represents the average number of the CTL immune cells activated by infected cells.

IfRZ
1 < 1, then I1 <

c
b

, T1 >
λ

d
− ab

dcη1
and

ψ2(
λ

d
− ab

dcη1
) =

1
η1

ψ1(
λ

d
− ab

dcη1
) <

1
η1

ψ1(T1) = 0.

So, there is no equilibrium whenRZ
1 < 1.

If RZ
1 > 1, then I1 >

c
b

, T1 <
λ

d
− ab

dcη1
and ψ2(

λ

d
− ab

dcη1
) > 0. Hence, if RZ

1 > 1, system (2) has a

CTL-activated infection equilibrium E2(T2, I2, V2, Z2), where T2 ∈ (0,
λ

d
− ab

dcη1
), I2 =

b
c

, V2 =
kbη2

µc

and Z2 =
cη1(λ− dT2)− ab

pb
.

Recapitulating the above discussions in the following theorem.
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Theorem 2.

(i) IfR0 ≤ 1, then system (2) has a unique infection-free equilibrium E0(T0, 0, 0, 0), where T0 =
λ

d
.

(ii) IfR0 > 1, then system (2) has a unique infection equilibrium without cellular immunity E1(T1, I1, V1, 0)

besides E0, where T1 ∈ (0,
λ

d
), I1 =

η1(λ− dT1)

a
and V1 =

kη1η2(λ− dT1)

aµ
.

(iii) IfRZ
1 > 1, then system (2) has a unique infection equilibrium with cellular immunity E2(T2, I2, V2, Z2)

besides E0 and E1, where T2 ∈ (0,
λ

d
− ab

dcη1
), I2 =

b
c

, V2 =
kbη2

µc
and Z2 =

cη1(λ− dT2)− ab
pb

.

3. Global Stability

Regarding the global stability of the infection-free equilibrium E0, we have the following theorem.

Theorem 3. The infection-free equilibrium E0 of system (2) is globally asymptotically stable whenR0 ≤ 1.

Proof. Based on the method proposed in [28], we construct the Lyapunov functional for system (2) at
E0 as follows

L0 =
∫

Ω

{
1
η1

I(x, t) +
f (T0, 0, 0)

µ
V(x, t) +

p
cη1

Z(x, t)

+
1
η1

∫ ∞

0
f1(τ)e−α1τ

∫ t

t−τ

[
f
(
T(x, s), I(x, s), V(x, s)

)
V(x, s)

+g
(
T(x, s), I(x, s)

)
I(x, s)

]
dsdτ +

k f (T0, 0, 0)
µ

∫ ∞

0
h2(τ)e−α2τ

∫ t

t−τ
I(x, s)dsdτ

}
dx.

For convenience, we let ϕ = ϕ(x, t) and ϕτ = ϕ(x, t − τ) for any ϕ ∈ {u, w, v, z}. The time
derivative of L0 along the solution of system (2) satisfies

dL0

dt
=

∫
Ω

{(
f (T, I, V)− f (T0, 0, 0)

)
V +

a
η1

I
(

kη1η2 f (T0, 0, 0) + µη1g(T, I)
aµ

− 1
)

− pb
cη1

Z
}

dx.

From (7) and by applying Lemma 1, we get lim sup
t→∞

T(x, t) ≤ T0. This implies that all omega limit

points satisfy T(x, t) ≤ T0. Hence, it is sufficient to consider solutions for which T(x, t) ≤ T0. From the
explicit formula ofR0 given in (11) and (H0)-(H3), we get

dL0

dt
≤
∫

Ω

{(
f (T, I, V)− f (T0, 0, 0)

)
V +

a
η1

(
R0 − 1

)
I − pb

cη1
Z
}

dx

≤
∫

Ω

{
a

η1

(
R0 − 1

)
I − pb

cη1
Z
}

dx.

Hence,R0 ≤ 1 ensures
dL0

dt
≤ 0. In addition, it can be shown that the largest compact invariant

set in {(T, I, V, Z)|dL0

dt
= 0} is the singleton {E0}. Therefore, it follows from LaSalle’s invariance

principle [29] that E0 is globally asymptotically stable whenR0 ≤ 1.
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For the global stability of the two infection steady states Ei of system (2), we suppose that
R0 > 1 and the incidence functions f and g satisfy for each infection equilibrium Ei the following
further hypothesis (

1− f (T, I, V)

f (T, Ii, Vi)

)(
f (T, Ii, Vi)

f (T, I, V)
− V

Vi

)
≤ 0,(

1− f (Ti, Ii, Vi)g(T, I)
f (T, Ii, Vi)g(Ti, Ii)

)(
f (T, Ii, Vi)g(Ti, Ii)

f (Ti, Ii, Vi)g(T, I)
− I

Ii

)
≤ 0.

(H4)

Therefore, we have the following result.

Theorem 4. AssumeR0 > 1 and (H4) holds for each Ei.

(i) The infection equilibrium without cellular immunity E1 of system (2) is globally asymptotically stable
ifRz

1 ≤ 1.
(ii) The infection equilibrium with cellular immunity E2 of system (2) is globally asymptotically stable ifRz

1 >

1.

Proof. For (i), we construct the Lyapunov functional as follows

L1 =
∫

Ω

{
T − T1 −

∫ T

T1

f (T1, I1, V1)

f (X, I1, V1)
dX +

1
η1

I1Φ
(

I
I1

)
+

f (T1, I1, V1)V1

kη2 I1
V1Φ

(
V
V1

)
+

p
cη1

Z

+
1
η1

f (T1, I1, V1)V1

∫ ∞

0
f1(τ)e−α1τ

∫ t

t−τ
Φ
(

f
(
T(x, s), I(x, s), V(x, s)

)
V(x, s)

f (T1, I1, V1)V1

)
dsdτ

+
1
η1

g(T1, I1)I1

∫ ∞

0
f1(τ)e−α1τ

∫ t

t−τ
Φ
(

g
(
T(x, s), I(x, s)

)
I(x, s)

g(T1, I1)I1

)
dsdτ

+
1
η2

f (T1, I1, V1)V1

∫ ∞

0
f2(τ)e−α2τ

∫ t

t−τ
Φ
(

I(x, s)
I1

)
dsdτ

}
dx,

where Φ(ξ) = ξ − 1− ln ξ, ξ > 0. Clearly, Φ : (0,+∞)→ [0,+∞) attains its strict global minimum at
ξ = 1 and Φ(1) = 0. Then Φ(ξ) ≥ 0 and so the functional L1 is non-negative.
Calculating the time derivative of L1 along the solution of system (2), we obtain

dL1

dt
=

∫
Ω

{(
1− f (T1, I1, V1)

f (T, I1, V1)

)∂T
∂t

+
1
η1

(
1− I1

I
)∂I

∂t

+
f (T1, I1, V1)V1

kη2 I1

(
1− V1

V
)∂V

∂t
+

p
cη1

∂Z
∂t

+
1
η1

f (T1, I1, V1)V1

∫ ∞

0
f1(τ)e−α1τ

(
Φ
( f (T, I, V)V

f (T1, I1, V1)V1

)
−Φ

( f
(
Tτ , Iτ , Vτ

)
Vτ

f (T1, I1, V1)V1

))
dτ

+
1
η1

g(T1, I1)I1

∫ ∞

0
f1(τ)e−α1τ

(
Φ
( g(T, I)I

g(T1, I1)I1

)
−Φ

( g(Tτ , Iτ)Iτ

g(T1, I1)I1

))
dτ

+
1
η2

f (T1, I1, V1)V1

∫ ∞

0
f2(τ)e−α2τ

(
Φ
( I

I1

)
−Φ

( Iτ

I1

))
dτ

}
dx.
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Using λ = dT1 + f (T1, I1, V1)V1 + g(T1, I1)I1 = dT1 +
a

η1
I1 and kη2 I1 = µV1, we get

dL1

dt
=

∫
Ω

{
dT1

(
1− T

T1

)(
1− f (T1, I1, V1)

f (T, I1, V1)

)
+ f (T1, I1, V1)V1

(
− 1− V

V1
+

f (T, I1, V1)

f (T, I, V)
+

f (T, I, V)V
f (T, I1, V1)V1

)
+g(T1, I1)I1

(
− 1− I

I1
+

f (T, I1, V1)g(T1, I1)

f (T1, I1, V1)g(T, I)
+

f (T1, I1, V1)g(T, I)I
f (T, I1, V1)g(T1, I1)I1

)
− 1

η1
f (T1, I1, V1)V1

∫ ∞

0
f1(τ)e−α1τ

[
Φ
(

f (T1, I1, V1)

f (T, I1, V1)

)
+ Φ

(
f (Tτ , Iτ , Vτ)Vτ I1

f (T1, I1, V1)V1 I

)
+Φ

(
f (T, I1, V1)

f (T, I, V)

)]
dτ − 1

η1
g(T1, I1)I1

∫ ∞

0
f1(τ)e−α1τ

[
Φ
(

f (T1, I1, V1)

f (T, I1, V1)

)
+Φ

(
g(Tτ , Iτ)Iτ

g(T1, I1)I

)
+ Φ

(
f (T, I1, V1)g(T1, I1)

f (T1, I1, V1)g(T, I)

)]
dτ

− 1
η2

f (T1, I1, V1)V1

∫ ∞

0
f2(τ)e−α2τΦ

(
V1 Iτ

VI1

)
dτ +

pb
cη1

(RZ
1 − 1)Z

}
dx

− f (T1, I1, V1)dT

∫
Ω

∂ f
∂T

(T, I1, V1)
|∇T|2

[ f (T, I1, V1)]2
dx

− I1dI
η1

∫
Ω

|∇I|2
I2 dx− f (T1, I1, V1)V1

µ
dV

∫
Ω

|∇I|2
I2 dx.

Since the function f (T, I, V) is strictly monotonically increasing with respect to T, we have for
i = 1, 2 that

∂ f
∂T

(T, Ii, Vi) > 0 and
(

1− T
Ti

)(
1− f (Ti, Ii, Vi)

f (T, Ii, Vi)

)
≤ 0. (16)

It follows from (H4) that

−1− V
Vi

+
f (T, Ii, Vi)

f (T, I, V)
+

f (T, I, V)V
f (T, Ii, Vi)Vi

=

(
1− f (T, I, V)

f (T, Ii, Vi)

)(
f (T, Ii, Vi)

f (T, I, V)
− V

Vi

)
≤ 0, (17)

and

−1− I
I1

+
f (T, Ii, Vi)g(Ti, Ii)

f (Ti, Ii, Vi)g(T, I)
+

f (Ti, Ii, Vi)g(T, I)I
f (T, Ii, Vi)g(Ti, Ii)Ii

=

(
1− f (Ti, Ii, Vi)g(T, I)

f (T, Ii, Vi)g(Ti, Ii)

)(
f (T, Ii, Vi)g(Ti, Ii)

f (Ti, Ii, Vi)g(T, I)
− I

Ii

)
≤ 0.

(18)

Since H(ξ) ≥ 0 andRZ
1 ≤ 1, we have

dL1

dt
≤ 0 with equality if and only if T = T1, I = I1, V = V1

and Z = 0. It follows from LaSalle’s invariance principle that E1 is globally asymptotically stable.
For (ii), we construct the Lyapunov functional as follows

L2 =
∫

Ω

{
T − T2 −

∫ T

T2

f (T2, I2, V2)

f (X, I2, V2)
dX +

1
η1

I2Φ
(

I
I2

)
+

f (T2, I2, V2)V2

kη2 I2
V2Φ

(
V
V2

)
+

p
cη1

Z2Φ
(

Z
Z2

)
+

1
η1

f (T2, I2, V2)V2

∫ ∞

0
f1(τ)e−α1τ

∫ t

t−τ
Φ
(

f
(
T(x, s), I(x, s), V(x, s)

)
V(x, s)

f (T2, I2, V2)V2

)
dsdτ

+
1
η1

g(T2, I2)I2

∫ ∞

0
f1(τ)e−α1τ

∫ t

t−τ
Φ
(

g
(
T(x, s), I(x, s)

)
I(x, s)

g(T2, I2)I2

)
dsdτ

+
1
η2

f (T2, I2, V2)V2

∫ ∞

0
f2(τ)e−α2τ

∫ t

t−τ
Φ
(

I(x, s)
I2

)
dsdτ

}
dx.
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Calculating the time derivative of L2 along the solution of system (2) and using λ = dT2 +

f (T2, I2, V2)V2 + g(T2, I2)I2 = dT2 +
a

η1
I2 +

p
η1

I2Z2, I2 =
b
c

and kη2 I2 = µV2, we have

dL2

dt
=

∫
Ω

{
dT2

(
1− T

T2

)(
1− f (T2, I2, V2)

f (T, I2, V2)

)
+ f (T2, I2, V2)V2

(
− 1− V

V2
+

f (T, I2, V2)

f (T, I, V)
+

f (T, I, V)V
f (T, I2, V2)V2

)
+g(T2, I2)I2

(
− 1− I

I2
+

f (T, I2, V2)g(T2, I2)

f (T2, I2, V2)g(T, I)
+

f (T2, I2, V2)g(T, I)I
f (T, I2, V2)g(T2, I2)I2

)
− 1

η1
f (T2, I2, V2)V2

∫ ∞

0
f1(τ)e−α1τ

[
Φ
(

f (T2, I2, V2)

f (T, I2, V2)

)
+ Φ

(
f (Tτ , Iτ , Vτ)Vτ I2

f (T2, I2, V2)V2 I

)
+Φ

(
f (T, I2, V2)

f (T, I, V)

)]
dτ − 1

η1
g(T2, I2)I2

∫ ∞

0
f1(τ)e−α1τ

[
Φ
(

f (T2, I2, V2)

f (T, I2, V2)

)
+Φ

(
g(Tτ , Iτ)Iτ

g(T1, I1)I

)
+ Φ

(
f (T, I2, V2)g(T2, I2)

f (T2, I2, V2)g(T, I)

)]
dτ

− 1
η2

f (T2, I2, V2)V2

∫ ∞

0
f2(τ)e−α2τΦ

(
V2 Iτ

VI2

)
dτ

}
dx

− f (T2, I2, V2)dT

∫
Ω

∂ f
∂T

(T, I2, V2)
|∇T|2

[ f (T, I2, V2)]2
dx

− I2dI
η1

∫
Ω

|∇I|2
I2 dx− f (T2, I2, V2)V2

µ
dV

∫
Ω

|∇I|2
I2 dx.

From (16)–(18), we have
dL2

dt
≤ 0. Further, it is not hard to see that the largest invariant set

in {(T, I, V, Z)|dL2

dt
= 0} is {E2}. By LaSalle’s invariance principle, we deduce that E2 is globally

asymptotically stable. This ends the proof of Theorem 4.

Remark 1. The hypothesis (H4) comes from (17) and (18). This hypothesis is a sufficient condition for that the
time derivatives of the Lyapunov functionals L1 and L2 to be non-negative. When cell-to-cell mode is ignored
(i.e., g ≡ 0), the assumption (H4) can be reduced to(

1− f (T, I, V)

f (T, Ii, Vi)

)(
f (T, Ii, Vi)

f (T, I, V)
− V

Vi

)
≤ 0, (H′4)

which is verified by many types of the incidence rate including the bilinear incidence, the saturation incidence,
the Beddington-DeAnglis functional response, the Crowley-Martin functional response and the Hattaf-Yousfi
functional response.

In 2017, Xu et al. [30] proposed a PDE model with two discrete delays, cell-to-cell transmission
and CTL immune response. They considered the spatial diffusion only in virus. This model is given by

∂T
∂t

= λ− dT(x, t)− β1T(x, t) f̃ (V(x, t))− β2T(x, t)g̃(I(x, t)),
∂I
∂t

= β1T(x, t− τ1) f̃ (V(x, t− τ1)) + β2T(x, t− τ1)g̃(I(x, t− τ1))

−aI(x, t)− pI(x, t)Z(x, t),
∂V
∂t

= dV4V + kI(x, t− τ2)− µV(x, t),
∂Z
∂t

= cI(x, t)Z(x, t)− bZ(x, t),

(19)
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where the functions f̃ and g̃ satisfy the following properties:

f̃ (0) = g̃(0) = 0, f̃ ′(V) > 0, g̃′(I) > 0, f̃ ′′(V) ≤ 0, g̃′′(I) ≤ 0. (20)

Choose the functions f (T, I, V) and g(T, I) as follows

f (T, I, V) =

{
β1T f̃ (V)

V , V 6= 0,
β1T f̃ ′(0), V = 0,

and g(T, I) =

{
β2Tg̃(I)

I , I 6= 0,
β2Tg̃′(0), I = 0.

Clearly, f (T, I, V)V = β1T f̃ (V) and g(T, I)I = β2Tg̃(I) for all T, I, V ≥ 0. Based on
( f̃ (V)

V
)′ ≤ 0,( g̃(I)

I
)′ ≤ 0 and the last inequality of Lemma 3.1 in [30], it is not hard to prove that the above incidence

functions f (T, I, V) and g(T, I) satisfy the five hypotheses (H0)− (H4). Therefore, the model and
results investigated in [30] are extended and generalized.

4. Application and Numerical Simulations

In this section, we first apply our main results obtained in this study to the following model:

∂T
∂t

= dT4T + λ− dT(x, t)− β1T(x, t)V(x, t)
1 + ε1V(x, t)

− β2T(x, t)I(x, t)
1 + ε2 I(x, t)

,

∂I
∂t

= dI4I +
∫ ∞

0 f1(τ)e−α1τ [
β1T(x, t− τ)V(x, t− τ)

1 + ε1V(x, t− τ)
+

β2T(x, t− τ)I(x, t− τ)

1 + ε2 I(x, t− τ)
]dτ

−aI(x, t)− pI(x, t)Z(x, t),
∂V
∂t

= dV4V + k
∫ ∞

0 f2(τ)e−α2τ I(x, t− τ)dτ − µV(x, t),
∂Z
∂t

= dZ4Z + cI(x, t)Z(x, t)− bZ(x, t),

(21)

where β1 and β2 denote, respectively, the virus-to-cell infection rate and the cell-to-cell transmission
rate. The non-negative constants ε1 and ε2 measure the saturation effect. The other state variables
and parameters have the same biological meanings as in models (1) and (2). Notice that system (21)
extends the DDE model presented in [9] by introducing the spacial diffusion in both cells and viruses.

Also, this system is a particular case of (2) with f (T, I, V) =
β1T

1 + ε1V
and g(I, I) =

β2T
1 + ε2 I

. As before,

we consider system (21) with initial conditions

T(x, θ) = φ1(x, θ) ≥ 0, I(x, θ) = φ2(x, θ) ≥ 0,
V(x, θ) = φ3(x, θ) ≥ 0, Z(x, θ) = φ4(x, θ) ≥ 0, (x, θ) ∈ Ω̄× (−∞, 0],

(22)

and Neumann boundary conditions

∂T
∂ν

=
∂I
∂ν

=
∂V
∂ν

=
∂Z
∂ν

= 0 on ∂Ω× (0,+∞). (23)

It is easy to check the first four hypotheses (H0)-(H3). For the fifth hypothesis, we have(
1− f (T, I, V)

f (T, Ii, Vi)

)(
f (T, Ii, Vi)

f (T, I, V)
− V

Vi

)
=

−ε1(V −Vi)
2

Vi(1 + ε1Vi)(1 + ε1V)
≤ 0,

(
1− f (Ti, Ii, Vi)g(T, I)

f (T, Ii, Vi)g(Ti, Ii)

)(
f (T, Ii, Vi)g(Ti, Ii)

f (Ti, Ii, Vi)g(T, I)
− I

Ii

)
=

−ε2(I − Ii)
2

Ii(1 + ε2 Ii)(1 + ε2 I)
≤ 0.

Thus, the last hypothesis (H4) is verified. By applying Theorems 3 and 4, we obtain the
following result.
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Corollary 1.

1. IfR0 ≤ 1, then the infection-free equilibrium E0 of system (21) is globally asymptotically stable.
2. IfR0 > 1, then system (21) has two infection equilibria that are:

(i) the infection equilibrium without cellular immunity E1 that is globally asymptotically stable if
RZ

1 ≤ 1;
(ii) the infection equilibrium with cellular immunity E2 that is globally asymptotically stable ifRZ

1 > 1.

For the numerical simulations, we choose fi(τ) = γie−γiτ for i = 1, 2. Clearly,
∫ ∞

0 γie−γiτdτ = 1.
Also, we consider the following new variables: Y(x, t) =

∫ ∞
0 e−(α1+γ1)τ [

β1T(x, t− τ)V(x, t− τ)

1 + ε1V(x, t− τ)
+

β2T(x, t− τ)I(x, t− τ)

1 + ε2 I(x, t− τ)
]dτ,

U(x, t) =
∫ ∞

0 e−(α2+γ2)τ I(x, t− τ)dτ.

Then the variables T, Y, I, U, V and Z satisfy the following system:

∂T
∂t

= dT4T + λ− dT(x, t)− β1T(x, t)V(x, t)
1 + ε1V(x, t)

− β2T(x, t)I(x, t)
1 + ε2 I(x, t)

,

∂Y
∂t

=
β1T(x, t)V(x, t)

1 + ε1V(x, t)
+

β2T(x, t)I(x, t)
1 + ε2 I(x, t)

− (α1 + γ1)Y(x, t),

∂I
∂t

= dI4I + γ1Y(x, t)− aI(x, t)− pI(x, t)Z(x, t),
∂U
∂t

= I(x, t)− (α2 + γ2)U(x, t),
∂V
∂t

= dV4V + kγ2U(x, t)− µV(x, t),
∂Z
∂t

= dZ4Z + cI(x, t)Z(x, t)− bZ(x, t).

(24)

The threshold parametersR0 andRZ
1 for (24) are given by (11) and (15) with η1 =

γ1

α1 + γ1
and

η2 =
γ2

α2 + γ2
. For the simplicity of numerical illustrations, we consider one-dimensional bounded

spatial domain Ω = [0, 10] with dT = dI = dZ = 0.01 and dV = 0.02. Also, we consider β2 and c as
free parameters. All other parameter values are mentioned in Table 1.

Table 1. List of parameters and their values used in numerical simulations.

Parameter Value Parameter Value

λ 10 α2 0.01
d 0.0139 γ2 0.1
β1 2.4× 10−5 k 50
a 0.29 b 0.1
ε1 0.05 p 0.01
ε2 0.07 µ 3
γ1 0.1 β2 Varied
α1 0.01 c Varied

When β2 = 1.5× 10−5 and c = 0.02, we haveR0 = 0.8539. By the first result given in Corollary 1,
the infection-free equilibrium E0(719.4245, 0, 0, 0) is globally asymptotically stable. This means that the
virus is cleared, the infection dies out and the patient will be completely cured (see Figure 1).

When β2 = 5.6 × 10−4 and c = 0.02, we obtained R0 = 2.0830 and RZ
1 = 0.8441.

From Corollary 1 2(i), we know that E1(620.0592, 4.2205, 65.6663, 0) is globally asymptotically stable
(see Figure 2).
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When β2 = 5.6× 10−4 and c = 0.03, we obtained R0 = 2.0830 and RZ
1 = 1.2662. It follows

from Corollary 1 2(ii) that E2(634.6036, 3.3333; 50.5051, 31.3883) is globally asymptotically stable
(see Figure 3).

Figure 1. Spatiotemporal dynamics of the model (21) when R0 = 0.8539 ≤ 1.

Figure 2. Spatiotemporal dynamics of the model (21) whenR0 = 2.0830 > 1 andRZ
1 = 0.8441 ≤ 1.

Figure 3. Spatiotemporal dynamics of the model (21) whenR0 = 2.0830 > 1 andRZ
1 = 1.2662 > 1.
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5. Conclusions

In this article, we have proposed and investigated a generalized viral infection model with
two infinite distributed delays, CTL immune response and spatial diffusion in both cells and virus.
Also, the proposed model incorporated the classical virus-to-cell infection and the direct cell-to-cell
transmission. Both routes of infection are modeled by two general incidence functions. Under some
assumptions on these incidence functions, we have shown that the global dynamics of the model
is completely determined by two threshold parameters that are the basic reproduction number R0

and the reproduction numbers for cellular immunity RZ
1 . From the viewpoint of biology, we have

proved that whenR0 ≤ 1 the infection-free equilibrium is globally asymptotically stable, which means
that the virus is cleared and the infection dies out. Whereas, the virus persists in the host if R0 > 1
and two steady states appear, one without cellular immunity which is globally asymptotically stable
if RZ

1 ≤ 1 and the other with cellular immunity which is globally asymptotically stable if RZ
1 > 1.

Hence, the activation of the CTL immune response is unable to eliminate the virus in vivo, but plays a
fundamental role in the reduction of virus particles and infected cells. This last biological result can
be easily deduced by comparing the components of virus particles and infected cells before and after
the activation of cellular immunity. SinceR0 andRZ

1 have no relation to the diffusion coefficients dT ,
dI , dV and dZ, we conclude that the diffusion of cells and virus has no effect on the global stability of
the three steady states of our PDE model with Neumann homogeneous boundary conditions. On the
other hand, we have extended the models with ODEs [1,4,5], with DDEs [6–9] and with PDEs [17–19].
Moreover, the more recent works presented in [30,31] are improved and generalized.
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