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Abstract: The unsupervised image-to-image translation aims at finding a mapping between the
source (A) and target (B) image domains, where in many applications aligned image pairs are
not available at training. This is an ill-posed learning problem since it requires inferring the joint
probability distribution from marginals. Joint learning of coupled mappings FAB : A → B and FBA :
B → A is commonly used by the state-of-the-art methods, like CycleGAN to learn this translation
by introducing cycle consistency requirement to the learning problem, i.e., FAB(FBA(B)) ≈ B and
FBA(FAB(A)) ≈ A. Cycle consistency enforces the preservation of the mutual information between
input and translated images. However, it does not explicitly enforce FBA to be an inverse operation
to FAB . We propose a new deep architecture that we call invertible autoencoder (InvAuto) to explicitly
enforce this relation. This is done by forcing an encoder to be an inverted version of the decoder,
where corresponding layers perform opposite mappings and share parameters. The mappings are
constrained to be orthonormal. The resulting architecture leads to the reduction of the number of
trainable parameters (up to 2 times). We present image translation results on benchmark datasets
and demonstrate state-of-the art performance of our approach. Finally, we test the proposed domain
adaptation method on the task of road video conversion. We demonstrate that the videos converted
with InvAuto have high quality and show that the NVIDIA neural-network-based end-to-end learning
system for autonomous driving, known as PilotNet, trained on real road videos performs well when
tested on the converted ones.

Keywords: image-to-image translation; autoencoder; invertible autoencoder

1. Introduction

Inter-domain translation problem of converting an instance, e.g., image or video, from one
domain to another is applicable to a wide variety of learning tasks, including object detection and
recognition, image categorization, sentiment analysis, action recognition, speech recognition, and
more. High-quality domain translators ensure that an arbitrary learning model trained on the samples
from the source domain, can perform well when tested on the translated samples (Similarly, an
arbitrary learning model trained on the translated samples should perform well on the samples from
the target domain. Training in this framework is however, much more computationally expensive).
The translation problem can be posed in the supervised learning framework, e.g., [1,2], where the
learner has access to corresponding pairs of instances from both domains, or unsupervised learning
framework, e.g., [3,4], where no such paired instances are available. This paper focuses on the latter
case, which is more difficult but at the same time more realistic as acquiring the dataset of paired
images is often impossible in practice.

The unsupervised domain adaptation is typically solved using generative adversarial networks
(GAN) framework [5]. GANs constitute a family of methods that learn generative models from
complicated real-world data. In order to teach the generator to synthesize semantically meaningful
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data from standard signal distributions, GANs train a discriminator to distinguish real samples
in the training dataset from fake samples synthesized by the generator. The generator aims to
deceive the discriminator by producing increasingly more realistic samples. Thus, the generator
and discriminator play an adversarial game, during which the generator learns to produce samples
from the desired data distribution and the discriminator eventually cannot make a better decision than
randomly guessing whether a particular sample is fake or real. GANs have recently been successfully
applied to image generation [6–9], image editing [1,3,10,11], video prediction [12–14], and many other
tasks [15–17]. In the domain adaptation setting, the generator performs domain translation and is
trained to learn the mapping from the source to the target domain and the discriminator is trained to
discriminate between original images from the target domain and those provided by the generator.
In this setting, the generator usually has the structure of the autoencoder. The two most common
state-of-the-art domain adaptation approaches, CycleGAN [3] and UNIT [4], are built on this basic
approach. CycleGAN addresses the problem of adaptation from domain A to domain B by training
two translation networks, where one realizes the mapping FAB and the other realizes FBA. The
cycle consistency loss ensures the correlation between input image and the corresponding translation.
In particular, to achieve cycle consistency, CycleGAN trains two autoencoders, where each minimizes
its own adversarial loss and they both jointly minimize

‖FAB(FBA(B))−B‖2
2 and ‖FBA(FAB(A))−A‖2

2. (1)

Cycle consistency loss is also incorporated into the recent implementations of UNIT. It is implicitly
assumed that the model will learn the mappings FAB and FBA in such a way that FAB = F−1

BA,
however, it is not explicitly imposed. Consider a simple example. Assume the first autonecoder is
a two-layer linear multi-layer perceptron (MLP) where the weight matrix of the first layer (encoder)
is denoted as E1 and the weight matrix of the second layer (decoder) is denoted as D1. Thus, for
an input xA ∈ A it outputs yB(xA) = D1E1xA. The second autoencoder then is a two-layer MLP
with encoder weight matrix E2 and decoder weight matrix D2 that for an input data point xB should
produce output yA(xB)=D2E2xB . To satisfy cycle consistency requirement, the following should hold:
yA(yB(xA))=(xA) and yB(yA(xB))=(xB). These two conditions are equivalent to D2E2D1E1= I and
D1E1D2E2= I. This holds for example when D1=E−1

2 and D2=E−1
1 .

In contrast to this approach, we implicitly require FAB = F−1
BA. Thus, in the context of the

given simple example, we correlate encoders and decoders to satisfy inversion conditions D1 = E−1
2

and D2 = E−1
1 . We avoid performing prohibitive inversions of large matrices and instead guarantee

these conditions to hold through two steps: (i) introducing shared parametrization of encoder E2

and decoder D1 such that D1 = E>2 (E1 and D2 is treated similarly) and (ii) appropriate training
to achieve orthonormality E>2 = E−1

2 and E>1 = E−1
1 , i.e., we train autoencoder (E2, D1) to satisfy

D1E2xB = xB for arbitrary input xB and autoencoder (E1, D2) to satisfy D2E1xA = xA for arbitrary
input xA. Since the encoder and decoder are coupled as given in (i), such training leads to satisfying
inversion conditions. Practical networks contain linear and non-linear transformations. We therefore
propose specific architectures, which are invertible.

Figure 1 (see also its extended version, Figure A4, in the Appendix A) and Figure 2 illustrate
the basic idea behind InvAuto. The plots were obtained by training a single autoencoder (E, D) to
reconstruct its input. InvAuto has shared weights satisfying D = E> and inverted non-linearities
and clearly obtains matrix DE that is the closest to identity compared to other methods, i.e.,
vanilla autoencoder (Auto), autoencoder with cycle consistency (Cycle), and variational autoencoder
(VAE) [18]. Note also that, at the same time, InvAuto requires half of the number of trainable parameters.
This is because the encoder and decoder use the same parameters.

This paper is organized as follows: Section 2 reviews the literature, Section 3 explains InvAuto
in details, Section 4 explains how to apply InvAuto to domain adaptation, Section 5 demonstrates
experimental verification of the proposed approach, and Section 6 provides conclusions.
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InvAuto Auto Cycle VAE

(a) MNIST MLP (b) MNIST MLP (c) MNIST MLP (d) MNIST MLP

(e) CIFAR ResNet (f) CIFAR ResNet (g) CIFAR ResNet (h) CIFAR ResNet

Figure 1. Heatmap of the values of matrix DE for InvAuto (a,e), Auto (b,f), Cycle (c,g), and VAE (d,h)
on MLP and ResNet architectures and MNIST and CIFAR datasets. Matrices E and D are constructed by
multiplying the weight matrices of consecutive layers of multi-layer encoder and decoder, respectively,
e.g., E = EL . . . E2E1 and D = DL . . . D2D1 for a 2L-layer autoencoder. In case of InvAuto, DE is the
closest to the identity matrix.

Figure 2. Comparison of the mean squared error (MSE) MSE(DE− I) for InvAuto, Auto, Cycle, and
VAE on MLP, convolutional, and ResNet architectures and MNIST and CIFAR datasets. Matrices
E and D are constructed by multiplying the weight matrices of consecutive layers of encoder and
decoder, respectively.

2. Related Work

Unsupervised image-to-image translation models were developed to tackle domain adaptation
problem with unpaired datasets. A plethora of existing approaches utilize autoencoders trained in the
GAN framework, where autoencoder serves as a generator, for this learning problem. This includes
approaches based on conditional GAN [2,19] and methods introducing additional components to the
loss function forcing partial cycle consistency [20]. Another approach [21] introduces two coupled
GANs, where each generator is an autoencoder and the coupling is obtained by sharing a subset of
weights between autoencoders as well as between discriminators. This technique was later extended
to utilize variational autoencoders as generators [4]. The resulting approach is commonly known as
UNIT. CycleGAN presents yet another way of addressing the image-to-image translation by specific
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training scheme that preserves the mutual information between input and translated images [22]. Both
UNIT and CycleGAN constitute the most popular choices for performing image-to-image translation.

There also exist other learning tasks that can be viewed as instances of image-to-image translation
problem. Among them, notable approaches focus on style transfer [23–26]. They aim at preserving
the content of the input image while altering its style to mimic the style of the images from the target
domain. This goal is achieved by introducing content and style loss functions that are jointly optimized.
Finally, inverse problems, such as super-resolution, also fall into the category of image-to-image
translation problems [27].

3. Invertible Autoencoder

Here we explain the details of the architecture of InvAuto. The architecture needs to be symmetric
to allow invertibility, e.g., the layers should be arranged as (T1, T2, . . . , TM︸ ︷︷ ︸

encoder E

, T−1
M , T−1

M−1, . . . , T−1
1 )︸ ︷︷ ︸

decoder D

, where

T1, T2, . . . , TM denote subsequent transformations of the signal that is being propagated through
the network (M is the total number of those) and T−1

1 , T−1
2 , . . . , T−1

M denote their inversions. Thus,
the architecture is inverted layer by layer, where any layer of the encoder has its mirror inverted
counterpart in the decoder. The autoencoder is trained to reconstruct its input. Below we explain how
to invert different types of layers of the deep model.

3.1. Fully Connected Layer

Consider transformation TE of an input signal performed by an arbitrary fully connected layer
of an encoder E parametrized with weight matrix W. Let x denote layer’s input and y denote its
output. Thus,

TE : y = Wx. (2)

An inverse operation is then defined as

(TE)−1 : x = W−1y, (3)

We parametrize the counterpart layer of the decoder with a transpose of W, Thus, the considered
encoder and decoder layers will share parametrization. Therefore, we enforce the counterpart
decoder’s layer to perform transformation:

TD : x = W>y. (4)

By training the autoencoder to reconstruct its input on its output we will enforce orthonormality
W−1 = W> and Thus, equivalence of transformations (TE)−1 and TD, i.e., (TE)−1 ≡ TD.

3.2. Convolutional Layer

Consider transformation TE of an input image performed by an arbitrary convolutional layer of
an encoder E. Let x denote this layer’s vectorized input image and y denote corresponding output. 2D
convolution can be implemented using matrix multiplication involving a Toeplitz matrix [28]. Toeplitz
matrix is obtained from the set of kernels of the 2D convolutional filters . Thus, transformation TE and
its inverse (TE)−1 can be explained with the same equations as the ones used before, Equations (2)
and (3), however, now W is a Toeplitz matrix. We will again parametrize the counterpart layer of the
decoder with a transpose of a Toeplitz matrix W. The transpose of the Toeplitz matrix is in practice
obtained by copying weights from the considered convolutional layer to the counterpart decoder’s
layer that is implemented as a transposed convolutional layer (also known as a deconvolutional
layer). Therefore, as before, we enforce the counterpart decoder’s layer to perform transformation
TD : x = W>y and by appropriate training ensure (TE)−1 ≡ TD.
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3.3. Activation Function

Invertible activation function should be a bijection. In this paper, we consider a modified
LeakyReLU activation function σ and use only this non-linearity in the model. Consider transformation
TE of an input signal performed by this non-linearity applied in the encoder E. This non-linearity is
defined as

TE : y = σ(x) =

{
1
α x, if x ≥ 0

αx, otherwise.
(5)

An inverse operation is then defined as

(TE)−1 : x = σ−1(y) =

{
αy, if x ≥ 0
1
α y, otherwise.

(6)

The corresponding non-linearity in the decoder will therefore realize the operation of an inverted
modified LeakyReLU given in Equation (6). In the experiments we set α = 2.

3.4. Residual Block

Consider transformation TE of an input signal performed by a residual block [29] of an encoder E.
We modify the residual block to remove the internal non-linearity as given in Figure 3a. The residual
block is parametrized with weight matrices W1 and W2. Those are Toeplitz matrices corresponding to
the convolutional and transposed convolutional layers of the residual block. Let x denote this block’s
vectorized input and y denote its corresponding output. Thus, transformation TE is defined as

TE : y = σ((W2 ·W1 + I) · x) (7)

An inverse operation is then defined as

(TE)−1 : x = (W2 ·W1 + I)−1σ−1(y). (8)

We will parametrize the counterpart residual block of the decoder with a transpose of matrix
W2 ·W1 + I as given in Figure 3b. Therefore we enforce the counterpart decoder’s residual block to
perform transformation:

TD : x = (W>1 W>2 + I)y. (9)

As before, at training will enforce orthonormality (W2 ·W1 + I)−1 = (W2 ·W1 + I)> and Thus,
(TE)−1 ≡ TD.

(a) (b)

Figure 3. (a) Residual block. (b) Inverted residual block.
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3.5. Bias

We consider bias as a separate layer in the network. Then, handling biases is straightforward.
In particular, the layer in the encoder that performs bias addition has its counterpart layer in the
decoder, where the same bias is subtracted.

3.6. Experimental Validation of Orthonormality

In this section, we validate the concept of InvAuto. The goal of this section is to show that
proposed shared parametrization and training enforce orthonormality and that at the same time the
orthonormality property is not organically achieved by standard architectures. We compare InvAuto
with previously mentioned vanilla autoencoder, autoencoder with cycle consistency, and variational
autoencoder. We experimented with various datasets (MNIST and CIFAR-10) and architectures (MLP,
convolutional (Conv), and ResNet). All the networks were designed to have two down-sampling
layers and two up-sampling layers. Encoder’s matrix E and decoder’s matrix D are constructed by
multiplying the weight matrices of consecutive layers of encoder and decoder, respectively.

We test orthonormality by reporting the histograms of the cosine similarity of each pair of rows
of matrix E for all methods (Figure 4) along with their mean and standard deviation (Table 1) as we
expect the cosine similarity to be close to 0 for InvAuto. We then show the `2-norm of the rows of E as
we expect the rows of InvAuto to have close-to-unit norm (Table 2). InvAuto enforces the encoder,
and consequently the decoder, to be orthonormal. Other methods do not explicitly demand that
and Thus, the orthonormality of their encoders is weaker. This observation is further confirmed by
Figures 1 and 2 shown before in the Introduction. In the Appendix A, we provide three more figures
that complement Figure 2 (recall that the latter reports the MSE of DE− I). They show the MSE of
the diagonal (Figure A1) and off-diagonal of DE− I (Figure A2) as well as the ratio of the MSE of the
off-diagonal and diagonal of DE (Figure A3) for various methods. The reconstruction loss obtained for
all methods is also shown in Appendix A (Table A1).

Table 1. Mean and standard deviation of cosine similarity of rows of E. InvAuto achieves cosine
similarity that is the closest to 0. Best performer is in bold.

Dataset and Model InvAuto Auto Cycle VAE

MNIST 0.001 0.008 0.007 0.001
MLP ±0.118 ±0.210 ±0.207 ±0.219

MNIST 0.001 0.001 0.001 −0.001
Conv ±0.148 ±0.179 ±0.176 ±0.190

CIFAR 0.001 0.002 0.004 0.003
Conv ±0.145 ±0.176 ±0.195 ±0.268

CIFAR 0.000 0.000 0.000 0.001
ResNet ±0.134 ±0.203 ±0.232 ±0.298

Table 2. Mean and standard deviation of the `2-norm of the rows of E. InvAuto achieves the `2-norm
of the rows that is the closest to the unit norm. Best performer is in bold.

Dataset and Model InvAuto Auto Cycle VAE

MNIST 0.976 1.326 1.268 1.832
MLP ±0.190 ±0.095 ±0.095 ±0.501

MNIST 0.905 1.699 1.780 1.971
Conv ±0.321 ±0.732 ±0.779 ±0.794

CIFAR 0.908 3.027 2.463 1.176
Conv ±0.219 ±0.816 ±0.688 ±0.356

CIFAR 0.868 2.890 2.650 1.728
ResNet ±0.078 ±0.895 ±0.937 ±0.311
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InvAuto Auto Cycle VAE

(a) MNIST MLP (b) MNIST MLP (c) MNIST MLP (d) MNIST MLP

(e) CIFAR ResNet (f) CIFAR ResNet (g) CIFAR ResNet (h) CIFAR ResNet

Figure 4. The histograms of cosine similarity of the rows of E for InvAuto (a,e), Auto (b,f), Cycle (c,g),
and VAE (d,h) on MLP and ResNet architectures and MNIST and CIFAR datasets.

Next we describe how InvAuto is applied to the problem of domain adaptation.

4. Invertible Autoencoder for Domain Adaptation

For the purpose of performing domain adaptation, we construct the dedicated architecture that
is similar to CycleGAN, but we use InvAuto at the feature level of the generators. This InvAuto
contains encoder E and decoder D that themselves have the form of autoencoders. Each of these
internal autoencoders is used to do the conversion between the features corresponding to two different
domains, and thus, the encoder E performs the conversion from the features corresponding to domain
A into the features corresponding to domain B. The decoder D, on the other hand, performs the
conversion from the features corresponding to domain B into the features corresponding to domain
A. Since E and D form InvAuto, E realizes an inversion of D (and vice versa) and shares parameters
with D. This introduces strong correlations between two generators and reduces the number of
trainable parameters, which distinguishes our approach from CycleGAN. The proposed architecture is
illustrated in Figure 5. The details of the architecture and training are provided in Appendix A.

E

D

Dis T/F

T/Fx

InvAuto

Enc
Feat. x

Feat. y

yDecx Enc
Feat. x

Feat. y
Dec y Dis

Figure 5. The architecture of the domain translator with InvAuto (E, D). xA ∈ A and xB ∈ B are
the inputs of the translator. yB is a converted image xA into the B domain and yA is a converted
image xB into the A domain. Invertible autoencoder (E, D) is built of encoder E and decoder D,
where each of those itself is an autoencoder. EncA, EncB are feature extractors, and DecA, DecB are the
final layers of the generators GenB , i.e., (EncA, E, DecB), and GenA, i.e., (EncB , D, DecA), respectively.
Discriminators DisA and DisB discriminate whether their input comes from the generator (True) or
original dataset (False).
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Next we describe the cost function that we use to train our deep model. The first component of
the cost function is the adversarial loss [5], i.e.,

Ladv(GenA, DisA) =ExA∼pd(A)[log DisA(xA)]+

ExB∼pd(B)[log(1−DisA(GenA(xB)))]

Ladv(GenB , DisB) =ExB∼pd(B)[log DisB(xB)]+

ExA∼pd(A)[log(1−DisB(GenB(xA)))],

(10)

where pd(A) and pd(B) denote the distribution of data from A and B, respectively.
The second component of the loss function is the cycle consistency loss defined as

Lcc(GenA, GenB) = ExA∼pd(A)[‖xA −GenA(GenB(xA))‖1]

+ExB∼pd(B)[‖xB −GenB(GenA(xB))‖1].
(11)

The objective function that we minimize therefore becomes

L(GenA, GenB , DisA, DisB) = λLcc(GenA, GenB)

+ Ladv(GenA, DisA)

+ Ladv(GenB , DisB),

(12)

where λ controls the balance between the adversarial loss and cycle consistency loss. The cycle
consistency loss enforces the orthonormality property of InvAuto.

5. Experiments

We next demonstrate experiments on domain adaptation problems. We compare our model
against UNIT [4] and CycleGAN [3]. We used publicly available implementations of both methods
available from https://github.com/mingyuliutw/UNIT/ and https://github.com/junyanz/pytorch-
CycleGAN-and-pix2pix/. The details of our architecture and the training process are summarized in
Appendix A.

5.1. Experiments with Benchmark Datasets

We considered the following domain adaptation tasks:

(i) Day-to-night and night-to-day image conversion: we used unpaired road pictures recorded
during the day and at night obtained from KAIST dataset [30].

(ii) Day-to-thermal and thermal-to-day image conversion: we used road pictures recorded during the
day with a regular camera and a thermal camera obtained from KAIST dataset [30].

(iii) Maps-to-satellite and satellite-to-maps: we used satellite images and maps obtained from Google
Maps [1].

The datasets for the last two tasks, i.e., (ii) and (iii), are originally paired, however, we randomly
permuted them and train the model in an unsupervised fashion. The training and testing images were
furthermore resized to 128× 128 resolution.

The visual results of image conversion are presented in Figures 6–8 (Appendix A contains the
same figures in higher resolution). We see that InvAuto visually performs comparably to other
state-of-the-art methods.

To evaluate the performance of the methods numerically we use the following approach:

• For the tasks (ii) and (iii), we directly calculated the `1 loss between the converted images and the
ground truth.

• For the task (i), we trained two autoencoders ΩA and ΩB on both domains, i.e., we trained each of
them to perform high-quality reconstruction of the images from its own domain and low-quality

https://github.com/mingyuliutw/UNIT/
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/
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reconstruction of the images from the other domain. Then we use these two autoencoders to
evaluate the quality of the converted images, where high `1 reconstruction loss of the autoencoder
for the images converted to resemble those from its corresponding domain implies low-quality
image translation.

Original CycleGAN UNIT InvAuto Original CycleGAN UNIT InvAuto

Figure 6. (Left) Day-to-night image conversion. Zoomed image is shown in Figure A5 in Appendix A.
(Right) Night-to-day image conversion. Zoomed image is shown in Figure A6 in Appendix A.

Original CycleGAN UNIT InvAuto Reference Original CycleGAN UNIT InvAuto Reference

Figure 7. (Left) Day-to-thermal image conversion. Zoomed image is shown in Figure A7 in Appendix A.
(Right) Thermal-to-day image conversion. Zoomed image is shown in Figure A8 in Appendix A.

Original CycleGAN UNIT InvAuto Reference Original CycleGAN UNIT InvAuto Reference

Figure 8. (Left) Maps-to-satellite image conversion. Zoomed image is shown in Figure A9 in
Appendix A. (Right) Satellite-to-maps image conversion. Zoomed image is shown in Figure A10
in Appendix A.
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Table 3 contains the results of the numerical evaluation and shows that the performance of
InvAuto is similar to the state-of-the-art techniques that we compare InvAuto with and is furthermore
contained within the performance range established by the CycleGAN (best performer) and UNIT
(consistently slightly worst from CycleGAN).

Table 3. Numerical evaluation of CycleGAN, UNIT, and InvAuto with `1 reconstruction loss.

Methods

Tasks CycleGAN UNIT InvAuto

Night-to-day 0.033 0.227 0.062
Day-to-nigth 0.041 0.114 0.067

Thermal-to-day 0.287 0.339 0.299
Day-to-thermal 0.179 0.194 0.205

Maps-to-satellite 0.261 0.331 0.272
Satellite-to-maps 0.069 0.104 0.080

5.2. Experiments with Autonomous Driving System

To test the quality of the image-to-image translations obtained by InvAuto, we use the NVIDIA
evaluation system for autonomous driving described in detail in [31]. The system evaluates the
performance of an already trained NVIDIA neural-network-based end-to-end learning platform for
autonomous driving (PilotNet) on a test video using a simulator for autonomous driving. The system
uses the following performance metrics for evaluation: autonomy, position precision, and comfort.
We do not describe these metrics as they are described well in the mentioned paper. We only emphasize
that these metrics are expressed as a percentage, where 100% corresponds to the best performance.
We collected the high-resolution videos of the same road during the day and night from the camera
inside the car. Each video had ∼45 K frames. The pictures were resized to 512× 512 resolution for the
conversion and then resized back to the original size of 1920× 1208. We used our domain translator as
well as CycleGAN to convert the collected day video to a night video and also the collected night video
to a day video (Figure 9). To evaluate our model, we used the aforementioned NVIDIA evaluation
system, where the converted videos where used as testing sets for this system. We report results in
Table 4.

Table 4. Experimental results with autonomous driving system: autonomy, position precision,
and comfort.

Video Type Autonomy Position Precision Comfort

Original day 99.6% 73.3% 89.7%

Original night 98.6% 63.1% 86.3%

Day-to-night 99.0% 69.6% 83.2%
InvAuto

Night-to-day 99.3% 68.0% 84.7%
InvAuto

Day-to-night 99.0% 68.4% 84.7%
CycleGAN

Night-to-day 98.8% 64.0% 87.3%

The PilotNet model used for testing was trained mostly on day videos. Thus, it is expected to
perform worse on night videos. Therefore, the performance for original night video is worse than for
the same video converted to a day video in terms of autonomy and position precision. The comfort
deteriorates due to the inconsistency of consecutive frames in the converted video, i.e., the videos
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are converted frame-by-frame and we do not apply any post-processing to ensure smooth transition
between frames. The results for InvAuto and CycleGAN are comparable.

Original CycleGAN InvAuto Original CycleGAN InvAuto

Figure 9. (Left) Experimental results with autonomous driving system: day-to-night conversion.
Zoomed image is shown in Figure A11 in Appendix A. (Right) Experimental results with autonomous
driving system: night-to-day conversion. Zoomed image is shown in Figure A12 in Appendix A.

6. Conclusions

We proposed a novel architecture that we call invertible autoencoder, which, as opposed to the
common deep learning architectures, allows the layers of the model performing opposite operations
(like encoder and decoder) to share weights. This is achieved by enforcing orthonormal mappings
in the layers of the model. We demonstrate the applicability of the proposed architecture to the
problem of domain adaptation and evaluate it on benchmark datasets and an autonomous driving
task. The performance of the proposed approach matches state-of-the-art methods and requires less
trainable parameters.

Author Contributions: Y.T. is the lead author of this work. A.C. provided project supervision.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Appendix A. Invertible Autoencoder for Domain Adaptation

• Additional Plots and Tables for Section 3.6

Figure A1. Comparison of the MSE of the diagonal of DE− I for InvAuto, Auto, Cycle, and VAE on
MLP, convolutional (Conv), and ResNet architectures and MNIST and CIFAR datasets.

Figure A2. Comparison of the MSE of the off-diagonal of DE− I for InvAuto, Auto, Cycle, and VAE
on MLP, convolutional (Conv), and ResNet architectures and MNIST and CIFAR dataset.

Figure A3. Comparison of the ratio of MSE of the off-diagonal and diagonal of DE for InvAuto,
Auto, Cycle, and VAE on MLP, convolutional (Conv), and ResNet architectures and MNIST and
CIFAR datasets.

Table A1. Test reconstruction loss (MSE) for InvAuto, Auto, Cycle, and VAE on MLP, convolutional
(Conv), and ResNet architectures and MNIST and CIFAR datasets. VAE has significantly higher
reconstruction loss by construction.

Dataset and Model InvAuto Auto Cycle VAE

MNIST MLP 0.189 0.100 0.112 1.245
MNIST Conv 0.168 0.051 0.057 1.412
CIFAR Conv 0.236 0.126 0.195 1.457

CIFAR ResNet 0.032 0.127 0.217 0.964
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InvAuto Auto Cycle VAE

(a) MNIST MLP (b) MNIST MLP (c) MNIST MLP (d) MNIST MLP

(e) MNIST Conv (f) MNIST Conv (g) MNIST Conv (h) MNIST Conv

(i) CIFAR Conv (j) CIFAR Conv (k) CIFAR Conv (l) CIFAR Conv

(m) CIFAR ResNet (n) CIFAR ResNet (o) CIFAR ResNet (p) CIFAR ResNet

Figure A4. Heatmap of the values of matrix DE for InvAuto, (a,e,i,m) Auto (b,f,j,n), Cycle (c,g,k,o),
and VAE (d,h,l,p) on MLP, convolutional (Conv), and ResNet architectures and MNIST and CIFAR
datasets. Matrices E and D are constructed by multiplying the weight matrices of consecutive layers of
encoder and decoder, respectively. In case of InvAuto, DE is the closest to the identity matrix.
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• Additional Experimental Results for Section 5

Original CycleGAN UNIT InvAuto

Figure A5. Day-to-night image conversion.

Original CycleGAN UNIT InvAuto

Figure A6. Night-to-day image conversion.
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Original CycleGAN UNIT InvAuto Reference

Figure A7. Day-to-thermal image conversion.

Original CycleGAN UNIT InvAuto Reference

Figure A8. Thermal-to-day image conversion.
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Original CycleGAN UNIT InvAuto Reference

Figure A9. Maps-to-satellite image conversion.

Original CycleGAN UNIT InvAuto Reference

Figure A10. Satellite-to-maps image conversion.
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Original CycleGAN InvAuto

Figure A11. Experimental results with autonomous driving system: day-to-night conversion.
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Original CycleGAN InvAuto

Figure A12. Experimental results with autonomous driving system: night-to-day conversion.

• Invertible Autoencoder for Domain Adaptation: Architecture and Training

Generator architecture Our implementation of InvAuto contains 18 invertible residual blocks for
both 128× 128 and 512× 512 images, where 9 blocks are used in the encoder and the remaining in the
decoder. All layers in the decoder are the inverted versions of encoder’s layers. We furthermore add
two down-sampling layers and two up-sampling layers for the model trained on 128× 128 images, and
three down-sampling layers and three up-sampling layers for the model trained on 512× 512 images.
The details of the generator’s architecture are listed in Tables A3 and A4. For convenience, we use Conv
to denote convolutional layer, ConvNormReLU to denote Convolutional-InstanceNorm-LeakyReLU
layer, InvRes to denote invertible residual block, and Tanh to denote hyperbolic tangent activation
function. The negative slope of LeakyReLU function is set to 0.2. All filters are square and we have the
following notations: K represents filter size and F represents the number of output feature maps. The
paddings are added correspondingly.

Discriminator architecture We use similar discriminator architecture as PatchGAN [1]. It is
described in Table A2. We use this architecture for training both on 128× 128 and 512× 512 images.
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Criterion and Optimization At training, we set λ = 10 and use l1 loss for the cycle consistency
in Equation (12). We use Adam optimizer [32] with learning rate lr = 0.0002, β1 = 0.5 and β2 = 0.999.
We also add l2 penalty with weight 10−6.

Table A2. Discriminator for both 128 × 128 and 512 × 512 images.

Name Stride Filter

ConvNormReLU 2 × 2 K4-F64
ConvNormReLU 2 × 2 K4-F128
ConvNormReLU 2 × 2 K4-F256
ConvNormReLU 1 × 1 K4-F512

Conv 1 × 1 K4-F1

Table A3. Generator for 128 × 128 images.

Name Stride Filter

ConvNormReLU 1 × 1 K7-F64
ConvNormReLU 2 × 2 K3-F128
ConvNormReLU 2 × 2 K3-F256

InvRes 1 × 1 K3-F256
InvRes 1 × 1 K3-F256
InvRes 1 × 1 K3-F256
InvRes 1 × 1 K3-F256
InvRes 1 × 1 K3-F256
InvRes 1 × 1 K3-F256
InvRes 1 × 1 K3-F256
InvRes 1 × 1 K3-F256
InvRes 1 × 1 K3-F256

ConvNormReLU 1/2 × 1/2 K3-F128
ConvNormReLU 1/2 × 1/2 K3-F64

Conv 1 × 1 K7-F3
Tanh

Table A4. Generator for 512 × 512 images.

Name Stride Filter

ConvNormReLU 1 × 1 K7-F64
ConvNormReLU 2 × 2 K3-F128
ConvNormReLU 2 × 2 K3-F256
ConvNormReLU 2 × 2 K3-F512

InvRes 1 × 1 K3-F512
InvRes 1 × 1 K3-F512
InvRes 1 × 1 K3-F512
InvRes 1 × 1 K3-F512
InvRes 1 × 1 K3-F512
InvRes 1 × 1 K3-F512
InvRes 1 × 1 K3-F512
InvRes 1 × 1 K3-F512
InvRes 1 × 1 K3-F512

ConvNormReLU 1/2 × 1/2 K3-F256
ConvNormReLU 1/2 × 1/2 K3-F128
ConvNormReLU 1/2 × 1/2 K3-F64

Conv 1 × 1 K7-F3
Tanh
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