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Abstract: We analyze the theoretical properties of the recently proposed objective function for
efficient online construction and training of multiclass classification trees in the settings where the
label space is very large. We show the important properties of this objective and provide a complete
proof that maximizing it simultaneously encourages balanced trees and improves the purity of the
class distributions at subsequent levels in the tree. We further explore its connection to the three
well-known entropy-based decision tree criteria, i.e., Shannon entropy, Gini-entropy and its modified
variant, for which efficient optimization strategies are largely unknown in the extreme multiclass
setting. We show theoretically that this objective can be viewed as a surrogate function for all of
these entropy criteria and that maximizing it indirectly optimizes them as well. We derive boosting
guarantees and obtain a closed-form expression for the number of iterations needed to reduce the
considered entropy criteria below an arbitrary threshold. The obtained theorem relies on a weak
hypothesis assumption that directly depends on the considered objective function. Finally, we prove
that optimizing the objective directly reduces the multi-class classification error of the decision tree.

Keywords: multiclass classification; decision trees; boosting

1. Introduction

This paper focuses on the multiclass classification setting, where the number of classes is very
large. The recent widespread development of data-acquisition web services and devices has helped
make large data sets, such as multiclass data sets, commonplace. Straightforward extensions of the
binary approaches to the multiclass setting, such as the one-against-all approach [1], which for each
data point computes a score for each class and returns the class with the maximum score, do not often
work in the presence of strict computational constraints as their running time often scales linearly with
the number of labels k. On the other hand, the most computationally efficient approaches for multiclass
classification are given by O(log k) train/test running time [2]. This running time can naturally be
achieved by hierarchical classifiers that build the hierarchy over the labels.

This paper considers a hierarchical multiclass decision tree structure, where each node of the tree
contains a binary classifier h from some hypothesis classH that sends an example reaching that node
to either left (h(x) ≤ 0) or right (h(x) > 0) child node depending on the sign of h(x) (each node has its
own splitting hypothesis). The test example descends from the root to the leaf of such tree guided by
the classifiers lying on its path, and is labeled according to the label with the highest frequency amongst
the training examples that were reaching the leaf that it descended to. The tree is constructed and
trained in a top-down fashion, where splitting the data in every node of the tree is done by maximizing
the following objective function recently introduced in the literature [3] (along with the algorithm
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(we refer the reader to the referenced paper for the algorithm’s details), called LOMtree, optimizing it
in an online fashion):

J(h) := 2
k

∑
i=1
|πiP(h(x) > 0)− P(h(x) > 0, i)︸ ︷︷ ︸

P(h(x)>0|i)πi

|, (1)

where x ∈ X ⊆ Rd are the data points (each with a label from the set {1, 2, . . . , k}), πi denotes the
proportion of label i amongst the examples reaching a node, and probabilities P(h(x) > 0) and
P(h(x) > 0|i) denote the fraction of examples reaching a node for which h(x) > 0, marginally and
conditional on class i respectively. The objective measures the dependence between the split and
the class distribution. Note that it satisfies J(h) ∈ [0, 1] and, as implied by its form, maximizing it
encourages the fraction of examples going to the right from class i to be substantially different from the
background fraction for each class i. Thus for a balanced split (i.e., P(h(x) > 0) = 0.5), the examples of
class i are encouraged to be sent exclusively to the left (P(h(x) > 0|i) = 0) or right (P(h(x) > 0|i) = 1)
refining the purity of the class distributions at subsequent levels in the tree. The LOMtree algorithm
effectively maximizes this objective over hypotheses h ∈ H in an online fashion with stochastic
gradient descent (SGD) and obtains good-quality multiclass tree predictors with logarithmic train and
test running times. Despite that, this objective and its properties (including the relation to the more
standard entropy criteria) remain largely ununderstood. Its exhaustive analysis is instead provided in
this paper.

Our contributions are the following:

• We provide an extensive theoretical analysis of the properties of the considered objective and prove
that maximizing this objective in any tree node simultaneously encourages balanced partition of
the data in that node and improves the purity of the class distributions at its children nodes.

• We show a formal relation of this objective to some more standard entropy-based objectives,
i.e., Shannon entropy, Gini-entropy and its modified variant, for which online optimization
schemes in the context of multiclass classification are largely unknown. In particular we show
that i) the improvement in the value of entropy resulting from performing the node split is
lower-bounded by an expression that increases with the value of the objective and thus ii) the
considered objective can be used as a surrogate function for indirectly optimizing any of the three
considered entropy-based criteria.

• We present three boosting theorems for each of the three entropy criteria, which provide the
number of iterations needed to reduce each of them below an arbitrary threshold. Their weak
hypothesis assumptions rely on the considered objective function.

• We establish the error bound that relates maximizing the objective function with reducing the
multi-class classification error.

• Finally, in the Appendix A we establish an empirical connection between the multiclass
classification error and the entropy criteria and show that Gini-entropy most closely resembles
the behavior of the test error in practice.

The main theoretical analysis of this paper is kept in the boosting framework [4] and relies on
the assumption that the objective function can be weakly optimized in the internal nodes of the tree.
This weak advantage is amplified in the tree leading to hierarchies achieving any desired level of
entropy (either Shannon entropy, Gini-entropy or its modified variant). Our work adds new theoretical
results to the theory of multiclass boosting. Note that the multiclass boosting is largely ununderstood
from the theoretical perspective [5] (we refer the reader to [5] for comprehensive review of the theory
of muticlass boosting).

The paper is organized as follows: related literature is discussed in Section 2, the theoretical
properties of the objective J(h) are shown in Section 3, the main theoretical results are presented in
Section 4, and finally the mathematical properties of the entropy criteria and the proofs of the main
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theoretical results are provided in Section 5. Conclusions (Section 6) end the paper. Appendix A
contains basic numerical experiments (Appendix A.1) and additional proofs (Appendix A.2).

2. Related Work

The extreme multiclass classification problem has been addressed in the literature in different
ways. We discuss them here, putting emphasis on the ones that build hierarchical predictors as
these techniques are the most relevant to this paper. Only a few authors [2,3,6–8] simultaneously
address logarithmic time training and testing. The methods they propose are either hard to apply in
practical problems [7] or use fixed tree structures [6,8]. Furthermore, an alternative approach based on
using a random tree structure was shown to potentially lead to considerable underperformance [3,9].
At the same time, for massive datasets making multiple passes through the data is computationally
costly, which justifies the need for developing online approaches, where the algorithm streams over a
potentially infinitely large data set (online approaches are also plausible for non-stationary problems).
It is unclear how to optimize standard decision tree objectives, such as Shannon or Gini-entropy,
in this setting (early attempt was recently proposed [2] for Shannon entropy). One of the prior
works to this paper [3] introduces an objective function which enjoys certain advantages over entropy
criteria. In particular, it can be easily and efficiently optimized online. The authors however present an
incomplete theoretical analysis and leave a number of open questions, which this paper instead aims
at addressing. The algorithms for incremental learning of classification with decision trees also include
some older works [10–12], which split any node according to the outcome of the node split-test based
on the values of selected attributes of the data examples reaching that node. These approaches are
different from the one in this paper, where the node split is performed according to the value of the
learned (e.g., with SGD) hypothesis computed for the entire vector of attributes of the data examples
reaching that node.

Other tree-based approaches include conditional probability trees [13] and clustering
methods [9,14,15] ([9] was later improved in [16]), but they allow training time to be linear in the label
complexity. The remaining techniques for multiclass classification include sparse output coding [17],
variants of error correcting output codes [18], variants of iterative least-squares [19], and a method
based on guess-averse loss functions [20].

Finally note that the conditional density estimation problem is also challenging in the large-class
settings and in this respect remains parallel to the extreme multiclass classification problem [21]. In the
context of conditional density estimation problem, there have also been some works that use tree
structured models to accelerate computation of the likelihood and gradients [8,22–24]. They typically
use heuristics based on using ontologies [8], Huffman coding [24], and various other mechanisms.

3. Theoretical Properties of the Objective Function

In this section we describe the objective function introduced in Equation (1) and provide its
theoretical properties. The proofs are deferred to the Appendix. We first introduce the definitions of
the concept of balancedness and purity of the node split.

Definition 1 (Purity and balancedness). The hypothesis h ∈ H induces a pure split if α :=
∑k

i=1 πi min(P(h(x) > 0|i), P(h(x) < 0|i)) ≤ δ, where δ ∈ [0, 0.5), and α is called the purity factor.
The hypothesis h ∈ H induces a balanced split if β := P(h(x) > 0) ∈ [c, 1− c], where c ∈ (0, 0.5], and β

is called the balancing factor.

A partition is perfectly pure if α = 0 (examples of the same class are sent exclusively to the left or
to the right). A partition is called perfectly balanced if β = 0.5 (equal number of examples are sent to the
left and to the right). The notions of balancedness and purity are conveniently illustrated in Figure 1,
where it is shown that the purity criterion helps to refine the choice of the splitting hypothesis from
among well-balanced candidates.
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Next, we show the first theoretical property of the objective function J(h) that characterizes its
behavior at the optimum (J(h) = 1).

Lemma 1. The hypothesis h ∈ H induces a perfectly pure and balanced partition if and only if J(h) = 1.

For some data sets however there exist no hypotheses producing perfectly pure and balanced
splits. We next show that increasing the value of the objective leads to more balanced splits.

Figure 1. Red partition: highly balanced split but impure (the partition cuts through the black and
green classes). Green partition: highly balanced and highly pure split. Figure should be read in color.

Lemma 2. For any hypothesis h and any distribution over data examples the balancing factor β satisfies
β ∈

[
0.5(1−

√
1− J(h)), 0.5(1 +

√
1− J(h))

]
.

We refer to the interval to which β belongs to as β-interval. Thus the larger (closer to 1) the value
of J(h) is, the narrower the β-interval is, leading to more balanced splits at the extremes of this interval
(β closer to 0.5).

This result combined with the next lemma implies that, at the extremes of the β interval, the value
of the upper-bound on the purity factor decreases as the value of J(h) increases (since J(h) gets closer
to 1 and the balancing factor β gets closer to 0.5 at the extremes of the β interval). The recovered splits
therefore have better purity (α closer to 0).

Lemma 3 (Lemma 1 in [3]). For any hypothesis h and any distribution over data examples the purity factor α

and the balancing factor β satisfy α ≤ min {(2− J(h))/4β− β, 0.5}.

Note that the equality condition in Lemma 3 is achieved when P(h(x) > 0|i) = P(h(x) < 0|i) =
0.5 (and thus, α = 0, β = 0.5, and J(h) = 0).

We thus showed that maximizing the objective in Equation (1) in each tree node simultaneously
encourages trees that are balanced and whose purity of the class distributions is gradually improving
when moving from the root to a subsequent tree levels. Lemmas 2 and 3 are illustrated in Figure 2.
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Figure 2. Left: Blue curve captures the behavior of the upper-bound on the balancing factor as a
function of J(h), red curve captures the behavior of the lower-bound on the balancing factor as a
function of J(h), green intervals correspond to the intervals where the balancing factor lies for different
values of J(h). Right: Red line captures the behavior of the upper-bound on the purity factor as a
function of J(h) when the balancing factor is fixed to 1

2 . Figure should be read in color.

In the next section we show that the objective J(h) is related to the more standard decision tree
entropy-based objectives and that maximizing it leads to the reduction of these criteria. We consider
three different entropy criteria in this paper. The theoretical analysis relies on the boosting framework
and depends on the weak learning assumption. Three different entropy-based criteria lead to three
different theoretical statements, where we bound the number of splits required to reduce the value of
the criterion below given level. The bounds we obtain, and their dependences on the number of classes
(k), critically depend on the strong concativity properties of the considered entropy-based objectives.

4. Main Theoretical Results

4.1. Notation

We first introduce notation. Let T denote the tree under consideration. πl,i’s denote the
probabilities that a randomly chosen data point x drawn from P , where P is a fixed target distribution
over X , has label i given that x reaches node l (note that ∑k

i=1 πl,i = 1), t denotes the number of internal
tree nodes, Lt denotes the set of all tree leaves at time t, and wl is the weight of leaf l defined as the
probability a randomly chosen x drawn from P reaches leaf l (note that ∑l∈Lt wl = 1). We study a tree
construction algorithm where we recursively find the leaf node with the highest weight, and choose to
split it into two children. Consider the tree constructed over t steps where in each step we take one leaf
node and split it (thus the number of splits is equal to the number of internal nodes of the tree) (t = 1
corresponds to splitting the root, thus the tree consists of one node (root) and its two children (leaves)
in this step). We measure the quality of the tree at any given time t with three different entropy criteria:

• Shannon entropy Ge
t :

Ge
t = ∑

l∈Lt

wl

k

∑
i=1

πl,i ln
(

1
πl,i

)
• Gini-entropy Gg

t :

Gg
t = ∑

l∈Lt

wl

k

∑
i=1

πl,i(1− πl,i)

• Modified Gini-entropy Gm
t :

Gm
t = ∑

l∈Lt

wl

k

∑
i=1

√
πl,i(C − πl,i),
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where C is a constant such that C > 2.

These criteria are the natural extensions of the criteria used in the context of binary
classification [25] to the multiclass classification setting (note that there is more than one way of
extending the entropy-based criteria from [25] to the multiclass classification setting, e.g., the modified
Gini-entropy could as well be defined as Gm

t = ∑l∈Lt wl ∑k
i=1
√

πl,i(C − πl,i), where C ∈ [1, 2].
This and other extensions will be investigated in future works). We will next present the main
results of this paper, which will be followed by their proofs. We begin with introducing the weak
hypothesis assumption.

4.2. Theorems

Definition 2 (Weak Hypothesis Assumption). Let m denote any internal node of the tree T , and let
βm = P(hm(x) > 0) and Pm,i = P(hm(x) > 0|i). Furthermore, let γ ∈ R+ be such that for all m,
γ ∈ (0, min(βm, 1− βm)]. We say that the weak hypothesis assumption is satisfied when for any distribution
P over X at each node m of the tree T there exists a hypothesis hm ∈ H such that J(hm)/2 = ∑k

i=1 πm,i|Pm,i −
βm| ≥ γ.

The weak hypothesis assumption says that in every node of the tree we are able to recover
a hypothesis from H which corresponds to the value of the objective that is above 0 (thus the
corresponding split is “weakly” pure and “weakly” balanced).

Consider next any time t and let n be the heaviest leaf at time t that we split and its weight wn be
denoted by w for brevity. Similarly, let h denote the regressor at node n (shorthand for hn). We denote
the difference between the contribution of node n to the value of the entropy-based objectives in times
t and t + 1 as

∆e
t := Ge

t − Ge
t+1; ∆g

t := Gg
t − Gg

t+1; ∆m
t := Gm

t − Gm
t+1.

Then the following lemma holds (the proof in provided in Section 5):

Lemma 4. Under the Weak Hypothesis Assumption, the change in entropies occuring due to the node split can
be bounded as

∆e
t ≥

wJ(h)2

8(1− γ)2 ; ∆g
t ≥

wJ(h)2

4k(1− γ)2 ; ∆m
t ≥

(C − 2)2

C3 · wJ(h)2

4k(1− γ)2 .

Clearly, maximizing the objective J(h) improves the entropy reduction. The considered objective
can therefore be viewed as a surrogate function for indirectly optimizing any of the three considered
entropy-based criteria, for which efficient online optimization strategies are largely unknown but
highly desired in the multiclass classification setting. To be more specific, the standard packages for
binary classification trees, such as CART [26] and C4.5 [27], require running a brute force search to
find a partition at every node of the tree from a set of all possible partitions that leads to the biggest
improvement of the entropy-based criterion of interest [25]. This is prohibitive in case of the multiclass
problem. J(h) however can be efficiently optimized with SGD instead.

We next state the three boosting theoretical results captured in Theorems 1–3. They guarantee
that the top-down decision tree algorithm which optimizes J(h) in each node will amplify the weak
advantage, captured in the weak learning assumption, to build a tree achieving any desired level of
entropy (either Shannon entropy, Gini-entropy or its modified variant).

Theorem 1. Under the Weak Hypothesis Assumption, for any α ∈ [0, 2 ln k], to obtain Ge
t ≤ α it suffices to

make t ≥
(

2 ln k
α

) 4(1−γ)2

γ2 log2 e
ln k

splits.
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Theorem 2. Under the Weak Hypothesis Assumption, for any α ∈ [0, 2
(

1− 1
k

)
], to obtain Gg

t ≤ α it suffices

to make t ≥
(

2(1− 1
k )

α

) 2(1−γ)2

γ2 log2 e
(k−1)

splits.

Theorem 3. Under the Weak Hypothesis Assumption, for any α ∈ [
√
C − 1, 2

√
kC − 1], to obtain Gm

t ≤ α it

suffices to make t ≥
(

2
√

kC−1
α

) 2(1−γ)2C3

γ2(C−2)2 log2 e
k
√

kC−1
splits.

Finally, we provide the error guarantee in Theorem 4. Denote y(x) to be a fixed target function with
domain X , which assigns the data point x to its label, and let P be a fixed target distribution over X .
Together y and P induce a distribution on labeled pairs (x, y(x)). Let t(x) be the label assigned to data

point x by the tree. We denote as ε(T ) the error of tree T , i.e., ε(T ) :=x∼P
[

∑i=1[t(x) = i, y(x) 6= i]
]

Theorem 4. Under the Weak Hypothesis Assumption, for any α ∈ [0, 1], to obtain ε(T ) ≤ α it suffices to

make t ≥
(

2 ln k log2 e
α

) 4(1−γ)2

γ2 log2 e
ln k

splits.

Remark 1. The main theorems show how fast the entropy criteria or the multi-class classification error drop
as the tree grows and performs node splits. These statements therefore provide a platform for comparing
different entropy criteria and answer two questions: 1) for a fixed α, γ, C, and k, which criterion is reduced
the most with each split? and 2) can the multi-class error match the convergence speed of the best entropic
criterion? Hence, it can be noted that the Shannon entropy has the most advantageous dependence on the
label complexity, since the bound scales only logarithmically with k, and thus achieves the fastest convergence.
Simultaneously, the multi-class classification rate matches this advantageous convergence rate and also scales
favorably (logarithmically) with k. Finally, even though the weak hypothesis requires only slightly favorable γ,
i.e., γ > 0, in practice when constructing the tree one can optimize J in every node of the tree, which effectively
pushes γ to be as high as possible. In that case γ becomes a well-behaving constant in the above theorems, ideally
equal to 1/2, and does not negatively affect the split count.

We next discuss in details the mathematical properties of the entropy-based criteria, which are
important to prove the above theorems.

5. Proofs

5.1. Properties of the Entropy-Based Criteria

Each of the presented entropy-based criteria has a number of useful properties that we give next,
along with their proofs. We first give bounds on the values of the entropy-based functions. As before,
let w be the weight of the heaviest leaf in the tree at time t.

5.1.1. Bounds on the Entropy-Based Criteria

Lemma 5. The Shannon entropy function Ge
t at time t is bounded as 0 ≤ Ge

t ≤ (t + 1)w ln k.

Lemma 6. The Gini-entropy function Gg
t at time t is bounded as 0 ≤ Gg

t ≤ (t + 1)w (1− 1/k).

Lemma 7. The modified Gini-entropy function Gm
t at time t is bounded as

√
C − 1 ≤ Gm

t ≤ (t+ 1)w
√

kC − 1.

The upper-bounds in Lemmas 5–7 are tight, where the equalities hold for the special case when
∀i∈{1,...,k}, l∈Lt

πl,i = 1/k, e.g., when each internal node of the tree produce a perfectly pure and
balanced split.
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5.1.2. Strong Concativity Properties of the Entropy-Based Criteria

So far we have been focusing on the time step t. Recall that n is the heaviest leaf at time t and its
weight wn is denoted by w for brevity. Consider splitting this leaf to two children n0 and n1. For ease
of notation let w0 = wn0 and w1 = wn1 , β = P(hn(x) > 0) and Pi = P(hn(x) > 0|i), and furthermore
let πi and h be the shorthands for πn,i and hn, respectively. Recall that β = ∑k

i=1 πiPi and ∑k
i=1 πi = 1.

Notice that w0 = w(1 − β) and w1 = wβ. Let π be the k-element vector with ith entry equal to
πi. Finally, let G̃e(π) = ∑k

i=1 πi ln
(

1
πi

)
, G̃g(π) = ∑k

i=1 πi(1− πi), and G̃m(π) = ∑k
i=1

√
πi(1− πi).

Before the split the contribution of node n to resp. Ge
t , Gg

t , and Gm
t was resp. wG̃e(π), wG̃g(π),

and wG̃m(π). Note that πn0,i = πi(1−Pi)
1−β and πn1,i = πi Pi

β are the probabilities that a randomly
chosen x drawn from P has label i given that x reaches nodes n0 and n1 respectively. For brevity,
let πn0,i and πn1,i be denoted respectively as π0,i and π1,i. Let π0 be the k-element vector with
ith entry equal to π0,i and let π1 be the k-element vector with ith entry equal to π1,i. Notice that
π = (1− β)π0 + βπ1. After the split the contribution of the same, now internal, node n changes to
resp. w((1− β)G̃e(π0)+ βG̃e(π1)), w((1− β)G̃g(π0)+ βG̃g(π1)), and w((1− β)G̃m(π0)+ βG̃m(π1)).
We can compute the difference between the contribution of node n to the value of the entropy-based
objectives in times t and t + 1 as

∆e
t = Ge

t − Ge
t+1 = w

[
G̃e(π)− (1− β)G̃e(π0)− βG̃e(π1)

]
, (2)

∆g
t = Gg

t − Gg
t+1 = w

[
G̃g(π)− (1− β)G̃g(π0)− βG̃g(π1)

]
, (3)

∆m
t = Gm

t − Gm
t+1 = w

[
G̃m(π)− (1− β)G̃m(π0)− βG̃m(π1)

]
. (4)

The next three lemmas, Lemmas 8–10, describe the strong concativity properties of the
entropy, Gini-entropy and modified Gini-entropy, which can be used to lower-bound ∆e

t , ∆g
t ,

and ∆m
t (Equations (2)–(4) correspond to a gap in the Jensen’s inequality applied to the strongly

concave function).

Lemma 8. The Shannon entropy function G̃e is strongly concave with respect to l1-norm with modulus 1, and
thus the following holds G̃e(π)− (1− β)G̃e(π0)− βG̃e(π1) ≥ 1

2 β(1− β)‖π0 −π1‖2
1.

Lemma 9. The Gini-entropy function G̃g is strongly concave with respect to l2-norm with modulus 2, and thus
the following holds G̃g(π)− (1− β)G̃g(π0)− βG̃g(π1) ≥ β(1− β)‖π0 −π1‖2

2.

Lemma 10. The modified Gini-entropy function G̃m is strongly concave with respect to l2-norm with modulus
2(C−2)2

C3 , and thus the following holds G̃m(π)− (1− β)G̃m(π0)− βG̃m(π1) ≥ (C−2)2

C3 β(1− β)‖π0 −π1‖2
2.

Figure 3 illustrates different entropy criteria normalized to the [0, 1] interval.
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√
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√
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√
2 ∗ C − 1 −

√
C − 1) (functions

G̃e(π1), G̃g(π1), and G̃m(π1) were re-scaled to have values in [0, 1]) as a function of π1 (pi1). Figure
should be read in color.

5.2. Proof of Lemma 4 and Theorems 1–3

We finally proceed to proving all three boosting theorems, Theorems 1–3. Lemma 4 is a by-product
of these proofs.

Proof. For the Shannon entropy it follows from Equation (2), Lemmas 5 and 8 that

∆e
t ≥

1
2

wβ(1− β)‖π0 −π1‖2
1

=
1
2

w
β(1− β)

(
k

∑
i=1
|πi(Pi − β)|

)2

=
wJ(h)2

8β(1− β)

≥ J(h)2Ge
t

8β(1− β)(t + 1) ln k

≥ γ2Ge
t

2(1− γ)2(t + 1) ln k
,

(5)

where the last inequality comes from the fact that 1− γ ≥ β ≥ γ (see the definition of γ in the weak
hypothesis assumption) and J(h) ≥ 2γ (see weak hypothesis assumption). For the Gini-entropy
criterion notice that from Equation (3), Lemmas 6, 9, and A4 it follows that

∆g
t ≥ wβ(1− β)‖π0 −π1‖2

2

≥ 1
k

wβ(1− β)‖π0 −π1‖2
1

≥ γ2Gg
t

(1− γ)2(t + 1)(k− 1)
,

(6)
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where the last inequality is obtained similarly as the last inequality in Equation (5). And finally for the
modified Gini-entropy it follows from Equation (4), Lemmas 7, 10, and A4 that

∆m
t ≥ w

(C − 2)2

C3 β(1− β)‖π0 −π1‖2
2

≥ 1
k

w
(C − 2)2

C3 β(1− β)‖π0 −π1‖2
1

≥ γ2Gm
t

C3

(C−2)2 (1− γ)2(t + 1)k
√

kC − 1
,

(7)

where the last inequality is obtained as before.
Clearly the larger the objective J(h) is at time t, the larger the entropy reduction ends up being. Let

ηe =
2
√

2γ

(1− γ)
√

ln k
, ηg =

4γ

(1− γ)
√

k− 1
,

ηm =
4γ

(1− γ)
√

C3

(C−2)2 k
√

kC − 1
.

(8)

For simplicity of notation assume ∆t corresponds to either ∆e
t , or ∆g

t , or ∆m
t , and Gt stands for Ge

t ,

or Gg
t , or Gm

t . Thus ∆t >
η2Gt

16(t+1) , and we obtain

Gt+1 ≤ Gt − ∆t < Gt −
η2Gt

16(t + 1)
= Gt

(
1− η2

16(t + 1)

)
.

One can now compute the minimum number of splits required to reduce Gt below α, where α ∈ [0, 1],
from this recurrence inequality. Assume log2(t + 1) ∈ Z+.

Gt+1 ≤ Gt

(
1− η2

16(t + 1)

)
= G1

(
1− η2

16 · 2

)(
1− η2

16 · 3

)
. . . (1− η2

16 · (t + 1)
)

= G1

(
1− η2

16 · 2

) 4

∏
t′=3

(
1− η2

16 · t′
)

. . .

2r

∏
t′=(2r/2)+1

(
1− η2

16 · t′
)

. . .
2log2(t+1)

∏
t′=(2log2(t+1)/2)+1

(
1− η2

16 · t′
)

,

where r = {2, 3, . . . , log2(t + 1)}. Recall that

2r

∏
t′=(2r/2)+1

(
1− η2

16 · t′
)
≤

2r

∏
t′=(2r/2)+1

(
1− η2

16 · 2r

)

=

(
1− η2

16 · 2r

)2r/2

≤ e−η2/32,

where the last step follows from Lemma A5. Also note that by the same lemma
(

1− η2

16·2

)
≤

e−η2/32. Thus,
Gt+1 ≤ G1e−η2 log2(t+1)/32. (9)
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Therefore to reduce Gt+1 ≤ α (where α’s are defined in Theorems 1–3) it suffices to make

t + 1 splits such that log2(t + 1) ≥ ln
(

G1
α

) 32
η2 splits. Since log2(t + 1) = ln(t + 1) · log2(e), where

e = exp(1). Thus,

ln(t + 1) ≥ ln
(

G1

α

) 32
η2 log2(e) ⇔ t + 1 ≥

(
G1

α

) 32
η2 log2(e) . (10)

Recall that by resp. Lemmas 5–7 we have resp. Ge
1 ≤ 2 ln k, Gg

1 ≤ 2(1− 1
k ), Gg

1 ≤ 2
√

kC − 1. We
consider the worst case setting (giving the largest possible number of split) thus we assume Ge

1 = 2 ln k,
Gg

1 = 2(1− 1
k ), and Gg

1 ≤ 2
√

kC − 1. Combining that with Equations (8) and (10) yields statements of
the main theorems.

5.3. Proof of Theorem 4

We next proceed to directly proving the error bound. Recall that πl,i is the probability that the
data point x corresponds to label i given that x reached l, i.e., πl,i = P(y(x) = i|x reached l). Let the
label assigned to the leaf be the majority label and thus lets assume that the leaf is assigned to label i if
and only if the following is true ∀z={1,2,...,k}

z 6=i
πl,i ≥ πl,z. Therefore we can write that

ε(T ) = P(t(x) 6= y(x))
= ∑l∈Lt wl P(t(x) 6= y(x)|x reached l)

(11)

Let il be the majority label in leaf l, thus ∀z={1,2,...,k}
z 6=il

πl,il ≥ πl,z. We can continue as follows

ε(T ) = ∑
l∈Lt

wl P(t(x) 6= il |x reached l)

= ∑
l∈Lt

wl(1− πl,il )

= ∑
l∈Lt

wl(1−max(πl,1, πl,2, . . . , πl,k)

(12)

Consider again the Shannon entropy G(T ) of the leaves of tree T that is defined as

Ge
t = ∑

l∈Lt

wl

k

∑
i=1

πl,i ln
1

πl,i

Ge
t =

1
log2e ∑

l∈Lt

wl

k

∑
i=1

πl,i log2
1

πl,i

Note that
Ge

t =
1

log2e ∑
l∈Lt

wl ∑
i=1

πl,i log2
1

πl,i

≥ 1
log2e ∑

l∈Lt

wl ∑
i=1
i 6=il

πl,i log2
1

πl,i

≥ 1
log2e ∑

l∈Lt

wl ∑
i=1
i 6=il

πl,i

=
1

log2e ∑
l∈Lt

wl(1−max(πl,1, πl,2, . . . , πl,k))

=
1

log2e
ε(T ),

(13)
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where the last inequality comes from the fact that ∀i={1,2,...,}
i 6=il

πl,i ≤ 0.5 and thus ∀i={1,2,...,}
i 6=il

1
πl,i
∈ [2;+∞]

and consequently ∀i={1,2,...,}
i 6=il

log2
1

πl,i
∈ [1;+∞].

6. Conclusions

This paper aims at introducing theoretical tools, encapsulated in the boosting framework, that
enable the comparison of different multi-class classification objective functions. The multi-class
boosting is largely ununderstood from the theoretical perspective [5]. We provide an exhaustive
theoretical analysis of the objective function underlying the recently proposed LOMtree algorithm for
extreme multi-class classification and explore the connection of this objective to entropy-based criteria.
We show that optimizing this objective simultaneously optimizes Shannon entropy, Gini-entropy and
its modified variant, as well as the multi-class classification error. We expect that discussed tools can
be used to obtain theoretical guarantees in the multi-label [28–30] and memory-constrained settings
(we will explore this research direction in the future). We also consider extensions to different variants
of the multi-class classification problem [31,32] and multi-output learning tasks [33,34]. We thus plan
to build a unified theoretical framework for understanding extreme classification trees.

Author Contributions: A.C. derived the theoretical results and did the empirical evaluation. I.K.J. was working
on improving the write-up of the paper and checking mathematical correctness.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Extreme Multiclass Classification Criteria

Appendix A.1. Numerical Experiments

We run the LOMtree algorithm, which is implemented in the open source learning system Vowpal
Wabbit [35], on four benchmark multiclass data sets: Mnist (10 classes, downloaded from http://
yann.lecun.com/exdb/mnist/), Isolet (26 classes, downloaded from http://www.cs.huji.ac.il/~shais/
datasets/ClassificationDatasets.html), Sector (105 classes, downloaded from http://www.csie.ntu.
edu.tw/~cjlin/libsvmtools/datasets/multiclass.html), and Aloi (1000 classes, downloaded from http:
//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html). The data sets were divided
into training (90%) and testing (10%), where 10% of the training data set was used as a validation
set. The regressors in the tree nodes are linear and were trained by SGD [36] with 20 epochs and the
learning rate chosen from the set {0.25, 0.5, 0.75, 1, 2, 4, 8}. We investigated different swap resistances
chosen from the set {4, 8, 16, 32, 64, 128, 256}. We selected the learning rate and the swap resistance as
the one minimizing the validation error, where the number of splits in all experiments was set to 10 k.

Figure A1 shows the Shannon entropy, Gini-entropy, modified Gini-entropy (all normalized to
the interval [0, 1]), and the multiclass classification error computed on the test data set as the function
of the number of splits. The behavior of the Shannon entropy and Gini-entropy match the theoretical
findings. However, the modified Gini-entropy instead drops the fastest with the number of splits,
which in particular suggests that in this case perhaps tighter bounds could possibly be proved (for the
binary case tighter analysis was shown in [25], but it is highly non-trivial to generalize this analysis to
the multiclass classification setting). Furthermore, it can be observed that the behavior of the error
closely mimics the behavior of the Gini-entropy. The Gini-entropy in all cases well-approximates the
upper-bound on the error.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.cs.huji.ac.il/~shais/datasets/ClassificationDatasets.html
http://www.cs.huji.ac.il/~shais/datasets/ClassificationDatasets.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
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Figure A1. Functions Ge
t , Gg

t , and Gm
t , and the test error, all normalized to the interval [0, 1], versus the

number of splits. Figure is recommended to be read in color.

Appendix A.2. Additional Proofs

Proof of Lemma 1. The proof that if h induces a maximally pure and balanced partition then J(h) = 1
was done in [3] (Lemma 2) and is very basic. We focus here on the remaining part of statement, which
is harder to show, and prove that if J(h) = 1 then h induces a maximally pure and balanced partition.

Without loss of generality assume each πi ∈ (0, 1). Recall that β = P(h(x) > 0), and let
Pi = P(h(x) > 0|i). Also recall that β = ∑k

i=1 πiPi. Thus J(h) = 2 ∑k
i=1 πi

∣∣∣∑k
j=1 πjPj − Pi

∣∣∣.
The objective is certainly maximized in the extremes of the interval [0, 1], where each Pi is either
0 or 1 (also note that at maximum, where J(h) = 1, it cannot be that all Pi’s are 0 or all Pi’s are 1). The
function J(h) is differentiable in these extremes (J(h) is non-differentiable only when ∑k

j=1 πjPj = Pi,
but at considered extremes the left-hand side of this equality is in (0, 1), whereas the right-hand side is
either 0 or 1). We then write

J(h) = 2 ∑
i∈P

πi

(
k

∑
j=1

πjPj−Pi

)
+ 2 ∑

i∈N
πi

(
Pi−

k

∑
j=1

πjPj

)
,

where P = {i : ∑k
j=1 πjPj ≥ Pi} and N = {i : ∑k

j=1 πjPj < Pi}. Also let P+ = {i : ∑k
j=1 πjPj > Pi}

(clearly ∑i∈P+ πi 6= 1 and ∑i∈N πi 6= 1 in the extremes of the interval [0, 1] where J(h) is maximized).
We then can compute the derivatives of J(h) with respect to Pr, where r = {1, 2, . . . , k}, everywhere
where the function is differentiable as follows

∂J
∂Pr

=

{
2πr(∑i∈P+ πi − 1) if r ∈ P+

2πr(1−∑i∈N πi) if r ∈ N
,

and note that in the extremes of the interval [0, 1] where J(h) is maximized ∂J
∂Pr
6= 0, since ∑i∈P+ πi 6= 1,

∑i∈N πi 6= 1, and each πi ∈ (0, 1). Since J(h) is convex, and by the fact that in particular the derivative
of J(h) with respect to any Pr cannot be 0 in the extremes of the interval [0, 1] where J(h) is maximized,
it follows that the J(h) can only be maximized (J(h) = 1) at the extremes of the [0, 1] interval. Thus we
already proved that if J(h) = 1 then h induces a maximally pure partition. We are left with showing
that if J(h) = 1 then h induces also a maximally balanced partition. We prove it by contradiction.
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Assume β 6= 0.5. Denote as before I0 = {i : P(h(x) > 0|i) = 0} and I1 = {i : P(h(x) > 0|i) = 1}.
Recall β = ∑k

i=1 πiPi = ∑i∈I0
πi · 0 + ∑i∈I1

πi · 1 = ∑i∈I1
πi. Thus,

J(h) = 1 = 2 ∑
i∈I0

πi |β|+ 2 ∑
i∈I1

πi |β− 1|

= 2β ∑
i∈I0

πi + 2(1− β) ∑
i∈I1

πi

= 2β(1− ∑
i∈I1

πi) + 2(1− β) ∑
i∈I1

πi

= 2β(1− β) + 2(1− β)β

= −4β2 + 4β < 1,

where the last inequality comes from the fact that the quadratic form−4β2 + 4β is equal to 1 only when
β = 0.5, and otherwise it is smaller than 1. Thus we obtain the contradiction which ends the proof.

Proof of Lemma 2. We use the following notation: β = P(h(x) > 0), and Pi = P(h(x) > 0|i). Also let
P = {i : β ≥ Pi} and N = {i : β < Pi}. Recall that β = ∑i∈{P∪N} πiPi, and ∑i∈{P∪N} πi = 1. We
split the proof into two cases.

• Let ∑i∈P πi ≤ 1− β. Then

J(h) = 2
k

∑
i=1

πi |β− Pi|

= 2 ∑
i∈P

πi(β− Pi) + 2 ∑
i∈N

πi(Pi − β)

= 2 ∑
i∈P

πiβ− 2 ∑
i∈P

πiPi + 2(β− ∑
i∈P

πiPi)

− 2β(1− ∑
i∈P

πi)

= 4β ∑
i∈P

πi − 4 ∑
i∈P

πiPi

≤ 4β ∑
i∈P

πi ≤ 4β(1− β)

Thus −4β2 + 4β− J(h) ≥ 0 which, when solved, yields the lemma.
• Let ∑i∈P πi ≥ 1− β (thus ∑i∈N πi ≤ β). Note that J(h) can be written as

J(h) = 2
k

∑
i=1

πi |P(h(x) ≤ 0)− P(h(x) ≤ 0|i)| ,

since P(h(x) ≤ 0) = 1− P(h(x) > 0) and P(h(x) ≤ 0|i) = 1− P(h(x) > 0|i). Let β
′
= P(h(x) ≤

0) = 1− β, and P
′
i = P(h(x) ≤ 0|i) = 1− Pi. Note that P = {i : β ≥ Pi} = {i : β

′
< P

′
i } and

N = {i : β < Pi} = {i : β
′ ≥ P

′
i }. Also note that β

′
= ∑i∈{P∪N} πiP

′
i . Thus
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J(h) = 2
k

∑
i=1

πi

∣∣∣β′ − P
′
i

∣∣∣
= 2 ∑

i∈P
πi(P

′
i − β

′
) + 2 ∑

i∈N
πi(β

′ − P
′
i )

= 2(β
′ − ∑

i∈N
πiP

′
i )− 2β

′
(1− ∑

i∈N
πi)

+ 2 ∑
i∈N

πiβ
′ − 2 ∑

i∈N
πiP

′
i

= 4β
′
∑

i∈N
πi − 4 ∑

i∈N
πiP

′
i ≤ 4β

′
∑

i∈N
πi

= 4(1− β) ∑
i∈N

πi ≤ 4β(1− β).

Thus as before we obtain −4β2 + 4β− J(h) ≥ 0 which, when solved, yields the lemma.

Proof of Lemma 5. The lower-bound follows from the fact that the entropy of each leaf ∑k
i=1 πl,i ln

(
1

πl,i

)
is non-negative. We next prove the upper-bound.

Ge
t = ∑

l∈Lt

wl

k

∑
i=1

πl,i ln
(

1
πl,i

)
≤ ∑

l∈Lt

wl ln k ≤ w ln k ∑
l∈Lt

1

= (t + 1)w ln k,

where the first inequality comes from the fact that uniform distribution maximizes the entropy, and
the last equality comes from the fact that a tree with t internal nodes has t + 1 leaves (also recall
that w is the weight of the heaviest node in the tree at time t which is what we will also use in the
next lemmas).

Before proceeding to the actual proof of Lemma 6 we first introduce the helpful result captured in
Lemma A1 and Corollary A1.

Lemma A1 (The inequality between Euclidean and arithmetic mean). Let x1, . . . , xk be a set of

non-negative numbers. Then Euclidean mean upper-bounds the arithmetic mean as follows

√
∑k

i=1 x2
i

k ≥ ∑k
i=1 xi

k .

Corollary A1. Let {x1, . . . , xk} be non-negative. Then ∑k
i=1 x2

i ≥
1
k

(
∑k

i=1 xi

)2
.

Proof. By Lemma A1 we have

√
∑k

i=1 x2
i

k ≥ ∑k
i=1 xi

k ⇔ ∑k
i=1 x2

i ≥
1
k

(
∑k

i=1 xi

)2
.
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Proof of Lemma 6. The lower-bound is straightforward since all πl,i’s are non-negative.
The upper-bound can be shown as follows (the last inequality results from Corollary A1):

Gg
t = ∑

l∈Lt

wl

k

∑
i=1

πl,i(1− πl,i)

≤ w ∑
l∈Lt

k

∑
i=1

(πl,i − π2
l,i) = w ∑

l∈Lt

(
1−

k

∑
i=1

π2
l,i

)

≤ w ∑
l∈Lt

1− 1
k

(
k

∑
i=1

πl,i

)2
 = w ∑

l∈Lt

(
1− 1

k

)

= (t + 1)w
(

1− 1
k

)
.

Proof of Lemma 7. The lower-bound can be shown as follows. Recall that the function
∑k

i=1
√

πl,i(C − πl,i) is concave and therefore it is certainly minimized on the extremes of the [0, 1]
interval, meaning where each πl,i is either 0 or 1. Let I0 = {i : πl,i = 0} and let I1 = {i : πl,i = 1}.
Thus ∑k

i=1
√

πl,i(C − πl,i) = ∑i∈I1

√
C − 1 ≥

√
C − 1. Combining this result with the fact that

∑l∈Lt wl = 1 gives the lower-bound. We next prove the upper-bound. Recall that Lemma A1 implies

that (∑k
i=1
√

πl,i(C − πl,i))/k ≤
√
(∑k

i=1 πl,i(C − πl,i))/k, thus

Gm
t = ∑

l∈Lt

wl

k

∑
i=1

√
πl,i(C − πl,i)

≤ ∑
l∈Lt

wl

√√√√k
k

∑
i=1

πl,i(C − πl,i)

= ∑
l∈Lt

wl

√√√√kC − k2
k

∑
i=1

1
k

π2
l,i.

By Jensen’s inequality ∑k
i=1

1
k π2

l,i ≥ (∑k
i=1

1
k πl,i)

2 = 1
k2 . Thus

Gm
t ≤ ∑

l∈Lt

wl
√

kC − 1 ≤ (t + 1)w
√

kC − 1.

Proof of Lemma 8. Lemma 8 is proven in [37] (Example 2.5).

Lemma A2 (Lemma 14 in [38]). If the function Φ(π) is twice differentiable, then the sufficient condition for
strong concativity of Φ is that for all π, x,

〈
∇2Φ(π)x, x

〉
≤ −σ‖x‖2, where ∇2Φ(π) is the Hessian matrix

of Φ at π, and σ > 0 is the strong concativity modulus.

Proof of Lemma 9. Note that
〈
∇2G̃g(π)x, x

〉
≤ −2‖x‖2

2, and apply Lemma A2.

Lemma A3 (Remark 2.2.4. in [39]). The sum of strongly concave functions on Rn with modulus σ is strongly
concave with the same modulus.
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Proof of Lemma 10. Consider functions g(πi) =
√

f (πi), where f (πi) = πi(C − πi), C ≥ 2, and
πi ∈ [0, 1]. Also let h(x) =

√
x, where x ∈ [0, C

2

4 ]. It is easy to see, using Lemma A2, that function f is
strongly concave with respect to l2-norm with modulus 2, thus

f (θπ
′
i + (1− θ)π

′′
i ) ≥ θ f (π

′
i) + (1− θ) f (π

′′
i ) + θ(1− θ)‖π′i − π

′′
i ‖2

2, (A1)

where π
′
i , π

′′
i ∈ [0, 1] and θ ∈ [0, 1]. Also note that h is strongly concave with modulus 2

C3 in its domain

[0, C
2

4 ] (the second derivative of h is h
′′
(x) = − 1

4
√

x3 ≤ −
2
C3 ). The strong concativity of h implies that

√
θx1 + (1− θ)x2 ≥ θ

√
x1 + (1− θ)

√
x2

+
1
C3 θ(1− θ)‖x1 − x2‖2

2,

where x1, x2 ∈ [0, C
2

4 ]. Let x1 = f (π
′
i) and x2 = f (π

′′
i ). Then we obtain√

θ f (π′i) + (1− θ) f (π′′i ) ≥ θ
√

f (π′i) + (1− θ)
√

f (π′′i )

+
1
C3 θ(1− θ)‖ f (π

′
i)− f (π

′′
i )‖2

2.
(A2)

Note that √
f (θπ

′
i + (1− θ)π

′′
i )

≥
√

f (θπ
′
i + (1− θ)π

′′
i )− θ(1− θ)‖π′i − π

′′
i ‖2

2

≥
√

θ f (π′i) + (1− θ) f (π′′i )

≥ θ
√

f (π′i) + (1− θ)
√

f (π′′i )

+
1
C3 θ(1− θ)‖ f (π

′
i)− f (π

′′
i )‖2

2,

where the second inequality results from Equation (A1) and the last (third) inequality results from
Equation (A2). Finally note that the first derivative of f is f

′
(πi) = C − 2πi ∈ [C − 2, C]. Thus

| f (π′i)− f (π
′′
i )|

|π′i − π
′′
i |

≥ C − 2

⇔ ‖ f (π
′
i)− f (π

′′
i )‖2≥ (C − 2)2‖π′i − π

′′
i ‖2,

and combining this result with previous statement yields√
f (θπ

′
i + (1− θ)π

′′
i )

≥ θ
√

f (π′i)+(1−θ)
√

f (π′′i )+
(C − 2)2

C3 θ(1−θ)‖π′i−π
′′
i ‖2,

thus g(πi) is strongly concave with modulus 2(C−2)2

C3 . By Lemma A3, G̃m(π) is also strongly concave
with the same modulus.

The next two lemma are fundamental and they are used in the proof of Lemma 4 and the boosting
theorems. The first one relates l1-norm and l2-norm and the second one is a simple property of the
exponential function.

Lemma A4. Let x ∈ Rk then ‖x‖1 ≤
√

k‖x‖2.
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Lemma A5. For x ≥ 1 the following holds
(

1− 1
x

)x
≤ 1

e .
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