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Abstract: Piezoelectric structures are widely used in engineering designs including sensors, actuators,
and energy-harvesting devices. In this paper, we present the development of a three-dimensional
finite element model for simulations of piezoelectric actuators and quantification of their responses
under uncertain parameter inputs. The implementation of the finite element model is based on
standard nodal approach extended for piezoelectric materials using three-dimensional tetrahedral
and hexahedral elements. To account for electrical-mechanical coupling in piezoelectric materials,
an additional degree of freedom for electrical potential is added to each node in those elements
together with their usual mechanical displacement unknowns. The development was validated with
analytical and experimental data for a range of problems from a single-layer piezoelectric beam to
multiple layer beams in unimorph and bimorph arrangement. A more detailed analysis is conducted
for a unimorph composite plate actuator with different design parameters. Uncertainty quantification
was also performed to evaluate the sensitivity of the responses of the piezoelectric composite plate
with an uncertain input of material properties. This sheds light on understanding the variations in
reported responses of the device; at the same time, providing extra confidence to the numerical model.

Keywords: piezoelectric materials; finite element method; PZT; unimorph actuator; energy
harvesting; uncertainty quantification

1. Introduction

Piezoelectric materials can be found in a wide variety of products from kitchen appliances to
automobile industries and health care devices. The extensive use of piezoelectric materials in many
engineering applications is due to its unique physical characteristics resulting from its specific material
properties. Piezoelectric materials are crystalline materials in which mechanical and electrical states
interact with each other. The mechanical and electrical states interact in a material with charged
particles with no center of symmetry. Three types of microscopic level charge disorientation produce
the macroscopic level polarization in a dielectric material, including electric and ionic polarization and
dipole reorientation [1]. In the electronic polarization, the applied electric field deforms the electronic
cloud, but in the case of ionic polarization, the applied electric field pushes the anion to the anode and
the cations to the cathode. In the dipole reorientation, an applied electric field reorients the dipole
directions in the separate domain of the material in one direction to polarize the material. The latter
method is valid for the macroscopic non-polarized material consisting of many polarized volumes.
A widely-used class of piezoelectric materials is a polycrystalline structure of lead zirconate titanate,
Pb(ZrxTi1−x)O3, also known as PZT which is a solid solution of two materials, lead titanate PbZrO3
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and lead zirconate PbTiO3. The Zr and Ti ions in a lattice of an unpolarized PZT material are randomly
distributed to neutralize the electrical polarity. The application of a high electric field at a temperature
close to the Curie point aligns the Zr and Ti ions in lattices to polarize the materials. In another class of
piezoelectric materials, molecular dipoles of polar polymers such as Polyvinylidene Fluoride (PVDF)
are reoriented in one direction.

The ability of piezoelectric materials to generate electric potential from a mechanical strain and
vice versa provides opportunities to use these materials as sensors or actuators found in many types
of transducers. A sensor transforms mechanical energy to electrical output for monitoring purposes,
and an actuator normally converts electrical energy to mechanical motions. The widely-discussed
use of piezoelectric materials as sensors is found in the sonar (sound navigation and ranging) system,
a sound-based navigation system, in which the electro-acoustic transducer converts the acoustic signals
to the electrical signals. Ultrasound equipment in the medical industry uses the piezoelectric actuator to
convert the electrical signal to mechanical vibration. A quartz wrist watch uses a piezoelectric actuator
to convert electrical energy from a battery to mechanical vibration, which moves the second, minute,
and hour arms of the watch. More recently, researchers have been exploring piezoelectric materials
in their innovations such as heart rate monitors [2], piezoelectric-based toe-heaters for frostbite
protection [3], and conversion of ocean wave energy to electrical energy [4]. Piezoelectric materials are
also widely used in many droplet-on-demand applications including inkjet head printers, spraying
devices, etc. For its wide ranging applications, understanding the characteristics of piezoelectric
materials is essential in the process of the design and optimization of those devices.

Characterizing piezoelectric material behaviors is typically done through experiment with a
specific design and prototype. Besides experimental characterization, there exist different analytical
and numerical methods to model and analyze the responses and characteristics of piezoelectric
material-based devices. Equivalent circuits [5], spring models [6], and thermal analogy [7] are analytical
methods to model the simplified piezoelectric materials. For three-dimensional analysis, the finite
element method has been a popular choice for modeling and simulations of piezoelectric material
responses. Since the pioneering work of [8] on the application of the finite element method for
piezoelectric materials, there have been numerous development of FEM tools to model piezoelectric
structures ranging from solid three-dimensional elements to one- and two-dimensional elements
such as beam, shell, and plates; including recent work on developing linear and quadratic shell
elements [9,10]. In [11], a comprehensive review of the development of FEM was presented, classifying
the number of different approaches based on element types, as well as the number of degrees of
freedom. While the majority of solid three-dimensional FEM models focus on static and modal analysis
of piezoelectric structures, there are fewer developments for unsteady analysis. This is even more
desirable in Fluid-Structure Interaction (FSI) simulations when piezoelectric structure models are
required to couple with flow models for analysis of FSI responses.

With this motivation, this paper presents an implementation of the Finite Element Method (FEM)
to solve the piezoelectric problems and its applications to the design of piezoelectric actuators. In this
work, the FEM implementation is based on the standard nodal approach extended for piezoelectric
materials using three-dimensional tetrahedral and hexahedral elements. While hexahedral elements
are mostly preferred in FEM analysis due to their superior accuracy and robustness, tetrahedral
elements allow handling of complex geometries often encountered in practical applications. To account
for electrical-mechanical coupling in piezoelectric materials, an additional degree of freedom for
electrical potential is added to each node in those elements together with their standard displacement
unknowns. The implementation of the piezoelectric model is based on an existing open source
FEM code, OOFEM [12]. This presents the first significant contribution of the current work to the
development of three-dimensional FEM as a general purpose analysis tool for piezoelectric materials.

For any numerical analysis, it is important to quantify errors associated with a model for
quality assessment of its effectiveness and predictability. Apart from known errors present in
the model, there are uncertainties from various sources including input parameters and material
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properties. There has been a great emphasis on verification and validation together with uncertainty
quantification for numerical computations over the past few decades, including the pioneering work
on the introduction of the Grid Convergence Index (GCI) [13] to a more general framework presented
in [14,15]. Carrying out the error analysis and uncertainty quantification certainly provide confidence in
the predictability of computational models. However, this process is cumbersome and time consuming,
thus discouraging practitioners from adhering to those guidelines. In this work, a detailed framework
of verification and validation was followed to access the convergence, as well as the accuracy of
the proposed approach. Errors from uncertain parameters are also considered to establish bounds
of prediction and investigate sources of discrepancy between numerical and experimental data.
Uncertainties from different sources are identified, characterized, and quantified by propagating
them through the model using the general framework proposed in [15].

The rest of the paper is organized as follows. In the next section, we present the mathematical
foundation for the piezoelectric material modeling including a discussion on the finite element
formulation for the dynamic piezoelectric problem. The numerical method is then validated with
experimental data and analytical results for a number of problems ranging from a simple unimorph
beam to three-layer plates. The last section of the paper presents an application of the developed
method for analyzing the responses of piezoelectric actuators used in synthetic jet devices. It includes
validation with experimental data, as well as quantification of uncertainties in material properties on
response predictions.

2. Mathematical Formulations

2.1. Governing Equations for Piezoelectric Materials

The behavior of a piezoelectric material relating to the responses of the structure is strongly
subjected to coupled electro-mechanical interactions. The dynamic response of a piezoelectric
continuum of volume Ω bounded by surface Γ = ∂Ω is governed by momentum conservation
equations and Gauss’s law in a dielectric as:

ρüi = σij,j + ρ f B
i , (1)

Di,i = 0 (2)

where σij and Di are the components of the Cauchy stress tensor and electric displacement vector.
ρ, and f B

i are the density and body force, respectively. The displacement vector equation is the Gauss
law written in the absence of free charges. The subscripts ()i and ()ij represent the ith and (i, j)th

component of a vector and a matrix, respectively. The symbols (̈), and (),i represent ∂2()
∂t2 and ∂()

∂xi
,

respectively. Typical boundary conditions are defined in Table 1.

Table 1. Boundary conditions for the dynamic piezoelectric equations.

Mechanical Electrical

Natural Boundary Conditions σijnj = f b
i on S f Dini = qs on Sq

Essential Boundary Conditions ui = us
i on Su φ = φs on Sφ

Constitutive equations for the coupled electromechanical problem are defined as:

σij = Cijklεkl − ekijEk, (3)

Di = eiklεkl + εikEk, (4)

where Cijkl , εkl , and ekij are elastic, dielectric material, and piezoelectric constants, respectively.
The Cauchy strain tensor εkl is defined as:
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εkl =
1
2
(uk,l + ul,k) (5)

and the electric field vector component with an assumption of negligible magnetic effects is irrotational
and can be represented in terms of electric potential, φ:

εijkEiEj = 0 => Ei = −φ,i, (6)

where εijk represents the Levi–Civita symbol.

2.2. Finite Element Discretization

According to the principle of virtual work for an arbitrary admissible variable of the displacement
field δui and the potential δφ [11], the mechanical equilibrium can be written as:∫

Ω

(
σij,j + ρ f B

i − ρüi

)
δuidΩ +

∫
Ω

Di,iδφdΩ = 0. (7)

Applying the divergence theorem and the boundary condition, Equation (7) can be re-written as:

−
∫

Ω
σijδεijd∆ +

∫
Ω

DiδEid∆−
∫

Ω
ρüiδuidΩ +

∫
Ω

ρ f B
i δuidΩ +

∫
∂Ω

f b
i δuidS +

∫
∂Ω

qsδφdS = 0 (8)

Applying constitutive equations with an assumption of zero free charge and zero induced
potential, the variational Equation (8) can be written as:∫

Ω

(
Cijklεklδεij − eiklεklδEi

)
dΩ +

∫
Ω

ρüiδuidΩ−
∫

Ω
ρ f B

i δuidΩ

=
∫

∂Ω
f b
i δuidS +

∫
∂Ω

qsδψdS +
∫

Ω
eijkEkδεijdΩ +

∫
Ω

εikEk(ψ)δEidΩ
(9)

In a finite element model, the continuum domain is divided into a finite number of
non-overlapping elements of simple geometrical shapes where the unknowns are calculated and stored
at the nodes of elements. The displacement field {u} and the electric potential {ϕ} over the element
can be defined in terms of the nodal displacements {ui} and the nodal electric potentials {ϕi} using
corresponding shape functions defined as [Nu] and [Nϕ], as in Equations (10) and (11), respectively.

{u} = [Nu]{ui} (10)

{ϕ} = [Nϕ]{ϕi} (11)

The strain vector {ε} and the electric field {E} are related to the displacement field {u} and the
electric potential {ϕ} using Equations (12) and (13), respectively:

{ε} = [D]{u} (12)

{E} = −5 ϕ. (13)

Here, [D] is the derivation operator defined as:

[D] =


∂

∂x 0 0 0 ∂
∂z

∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0


T

, (14)

and5 is the gradient operator. Substituting the values of {u} and ϕ in the above equations, the strain
and electrical field can be expressed in relation to the displacement nodal values {ui} and the potential
nodal values {ϕi} as:
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{ε} = [Bu]{ui} (15)

{E} = [Bϕ]{ϕi}, (16)

where [Bu] = [D][Nu] and [Bϕ] = −5 [Nϕ].
Substituting Equations (15) and (16) for the strain and the electric field into the variational

principles (9), we obtain the coupled electromechanical formulation for the piezoelectric material
written in discrete matrix form as:[

[M] 0
0 0

] [
üi
φ̈i

]
+

[
[Kuu] [Kuφ]

[Kφu] [Kφφ]

] [
ui
φi

]
=

[
fi

gi.

]
(17)

Here, [M], [Kuu], [Kϕu], [Kϕϕ], { fi}, {gi} are defined as:

[M] =
∫

Ω
ρ[Nu]

T [Nu]dΩ; [Kuu] =
∫

Ω
[Bu]

T [CE][Bu]dΩ,

[Kϕu] =
∫

Ω
[Bϕ]

T [e]T [Bu]dΩ = [Kuϕ]
T ; [Kϕϕ] =

∫
Ω
[Bϕ]

T [ε][Bϕ]dΩ,

{ fi} =
∫

Ω
ρ[Nu]

T{ f B}dΩ +
∫

∂Ω
[Nu]

T{ fb}dΩ; {gi} =
∫

∂Ω
[Nϕ]

TqsdS.

The discrete coupled Equation (17) can be implemented in any standard finite element packages.
In a typical finite element implementation, problems are defined in a specific domain with a required
number of Degrees of Freedom (DOFs). In this work, a domain (3dpiezo) was developed to solve
for piezoelectro-mechanical coupled problems with 4-DOFs (u-, v-, w-displacement and voltage (V)).
The linear piezoelectric hexahedral and tetrahedral elements were implemented in the open source
finite element framework, OOFEM [12]. Figure 1 shows the node numbers of the element, and each
node of the element has 4-DOFs. In this implementation, the global mass matrix, stiffness matrix,
and force matrix are computed and assembled from the elemental mass matrix, stiffness matrix, and the
right-hand side of the Equation (17) for each individual elements with the additional degree of freedom
of electrical potential at each node. Appropriate boundary conditions for electro-mechanical coupling
were also implemented in OOFEM for different types of loading. This developed model was applied
and validated for a number of problems shown in the section about verification and validation.
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Figure 1. Schematic of hexahedral (LSPiezo) and tetrahedral (LTRPiezo) reference element for
piezo-elastic coupling implemented in OOFEM.

2.3. Error and Uncertainty Quantification

When using numerical models for the prediction of structure responses, it is important to
understand errors associated with the prediction, as well as any uncertainty arising from the process.
Among different types of errors and uncertainties associated with computational modeling and
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simulations [14], three typical types of inaccuracy are considered in this work, namely discretization
errors (εh), input errors (εi), and surrogate model errors (εs):

εnum = εh + εi + εs. (18)

Discretization errors εh are deterministic and classified as acknowledged errors resulting
from errors due to numerical schemes used to discretize the governing equations. Generally,
the discretization error can be approximated as proportional to some measure of grid resolution h,

εh = f (h)− ftrue ≈ Chp, (19)

where f is a general quantity of interest and p is normally referred to as grid convergence order.
In practice, the convergence order can be determined from solutions on grids with a successive refinement
ratio of r as,

p = log
(

f (h3)− f (h2)

f (h2)− f ( f1)

)
/ log(r). (20)

The discretization error can then be estimated as asymptotic convergence of error using
Richardson extrapolation as:

εh = fh=0 − f (h1) ≈
f (h1)− f (h2)

rp − 1
. (21)

This requires additional evaluation of the quantities of interest at a grid finer than the current grid
to estimate the discretization error.

Ideally, inputs to computational models should be the same as in actual physical systems.
However, due to a lack of knowledge, equipment errors, or variability in measurement techniques,
there are discrepancies in input parameters between physical and numerical models. This uncertainty,
such as the material properties and the geometrical dimensions of the apparatus, potentially introduces
errors to numerical predictions. The input errors εi are normally stochastic and represented as random
variables with a normal distribution of a zero mean and a constant bias. Assume that the input ξ

to a model with expected output function f is random with a suitable probability distribution p(ξ).
The input error to a computational model can be accounted for by propagating its randomness through
the model to the final output. The statistical properties of output function f such as the mean µ f and
the variance σ2

f are defined as:

µ f =
∫

f (ξ)p(ξ)dξ, σ2
f =

∫
( f (ξ)− µ f )

2 p(ξ)dξ. (22)

To quantify the uncertainty propagation through computational models, there are various
techniques dependent on the types of uncertainties, as well as a representation of output
uncertainty [15]. For aleatory uncertainties presented in this work, the Latin Hypercube Sampling
(LHS) approach and stochastic expansion (polynomial chaos expansion) technique are applied for
characterizing the propagation of uncertainties through the developed FEM. Given a probability
distribution of input, a sampling-based approach will evaluate the output on the quantities of interest at
various sample points one-by-one to build a discrete representation of output responses. For traditional
random sampling, also known as the Monte Carlo approach, it requires a large number of samples
to determine the output distribution accurately. In the LHS approach, each input variable is divided
into N-bins of equal probability, and a sample point is uniformly determined from a unique bin for
each variable, thus avoiding clustering of samples. LHS requires less sample points as compared
to random sampling for the same accuracy. Alternatively, to alleviate the problems of large sample
sizes, a response function can be built from a limited number of sample points using polynomial
chaos expansion. This approximation is considered as a surrogate model to the more expensive
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computational model and allows evaluation of a much larger number of output functions for a more
accurate distribution. However, there is an error associated with this surrogate model that needs to be
taken into account during the uncertainty quantification process. Consider a PCEof output function f
using Hermite polynomial basis functions φ = {φ0(.), φ1(.), . . . , φn(.)},

fPCE(ξ) ≈
n

∑
j=0

λjφj (23)

It has been shown [16] that errors for PCE surrogate models built from m training data points
( fi, ξi), i = 1, 2, . . . , m follow a normal distribution with zero mean and variance given as:

Var[εs] ≈ s2 + s2φ(ξ)T(ΛTΛ)−1φ(ξ), (24)

where Λ = {φ(ξ1), . . . , φ(ξm)} and s2 = 1
m−n ∑m

i=1 [ fi − fPCE(ξi)]. One can refer to the earlier
work [15] and the references cited therein for more details about the LHS and PCE approaches.

3. Verification and Validation

In this section, the developed FEM solver is applied to a number of test case ranging from a
simple beam to more complex piezoelectric structures used in the design of actuators. The results of
the solver are validated with experimental and analytical data to establish its accuracy, as well as the
convergence rate.

3.1. Single-Layer Piezoelectric Beam

A single-layer piezoelectric beam with PZT-5Hmaterial was used to validate the solvers for static
responses. The material properties of PZT-5H are specified in Table 2 and used throughout the current
work. Figure 2 shows the schematic of the case setup with detailed dimensions. The case represents a
multilayered design of a piezoelectric actuator frequently used in engineering applications.

Table 2. Material properties of PZT-5H.

ρ = 7500 (kg/m3)

[c] =


12.6 7.95 8.41 0 0 0
7.95 12.6 8.41 0 0 0
8.41 8.41 11.7 0 0 0

0 0 0 2.3 0 0
0 0 0 0 2.3 0
0 0 0 0 0 2.325

 × 1010 (Pa)

[ε] =

1700ε0 0 0
0 1700ε0 0
0 0 1470ε0


[e] =

 0 0 0 0 17 0
0 0 0 17 0 0
−6.5 −6.5 23.3 0 0 0

 (Cb/m2)
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xy

z

L = 10 mm

D = 5 mm

H = 2 mm

φ

Figure 2. Single-layer beam. The poling direction of the beam is the z-axis. The length L, height H,
and width D of the beam are 10 mm, 2 mm, and 5 mm, respectively.

There are two main actuation modes for a multilayered design dependent on the orientation
of the poling direction and electrical field. For in-plane mode, tensile deformations are achieved by
applying the voltage in the poling direction. When the electric field is parallel to the poling direction,
the in-plane and the thickness deformation can be analytically obtained as [1]:

u = (ux, uy, uz) =

(
d31φL

h
,

d32φw
h

, d33φ

)
. (25)

Alternatively, the laminar beam can be actuated in shear mode where the electrical field is applied
perpendicular to the poling direction. In this case, the coupling coefficient d15 controlled the design.
The analytical solution of bending displacement is given [1] as:

∆ =
Ld15φ

h
. (26)

Tensile and shear deformation cases were analyzed with the developed FEM solvers using two
different element types. Figure 3 shows the displacement contours of the beam under in-plane and
shear mode of displacement. In this case, an electrical field was applied in the thickness z-direction,
while the poling direction was changed from the z-direction for in-plane mode to the x-direction for
shear mode. Table 3 summarizes the comparison of the prediction from the model on the displacement
of the PZT beam under tensile and shear mode with reference to the analytical solution. It can be
seen that the FEM model provided exact displacement compared to the analytical response on a very
coarse grid for the tensile case with both a tetrahedral and hexahedral element. For the bending case,
tetrahedral elements resulted in a larger deflection compared to analytical displacement; the error
was about 5.4%, as shown in Table 3. This simple test demonstrated the well-known superiority of
hexahedral elements compared with tetrahedral ones in bending modes. In subsequent examples,
hexahedral elements were used for most of the cases, unless otherwise specified.
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(a) in-plane mode (b) shear mode

Figure 3. Single-layer beam under tensile and shear displacement.

Table 3. Displacement prediction from the FEM solver with different types of elements (tetrahedral
and hexahedral) for a single-layer PZT beam under tensile and shear load.

Tensile Shear

∆ (mm) Ne ux uy uz |u|

Tet 1 780 1.37 × 10−7 6.85 × 10−8 5.93 × 10−8 3.900 × 10−7

- 0.2 49,960 1.37 × 10−7 6.85 × 10−8 5.93 × 10−8 3.900 × 10−7

Hex 1 100 1.37 × 10−7 6.85 × 10−8 5.93 × 10−8 3.696 × 10−7

- 0.2 10,000 1.37 × 10−7 6.85 × 10−8 5.93 × 10−8 3.696 × 10−7

Analytical - - 1.37 × 10−7 6.85 × 10−8 5.93 × 10−8 3.695 × 10−7

3.2. Bimorph Piezoelectric Beam

A widely-used bimorph case with opposite polarities at the different layers, commonly used to
validate the shell and plate elements [1], was used to validate the solver for a very high aspect ratio
of the beam length to the beam height scenario. The bimorph setup can be used as a micro-actuator
or a micro-sensor. Figure 4 shows the schematic of the bimorph piezoelectric beam consisting of two
geometrically-similar uniaxial piezoelectric layers with opposite polarity. These layers are stacked
together to obtain the opposite strain in layers, resulting in bending when voltage is applied across
the thickness.

Figure 4. Bimorph beam with equally-thick piezoelectric layers.
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Opposite polarity of the beams with the voltage across the thickness generates moment to bendthe
bimorph beam. An analytical solution of the bimorph beam deflection is given as Equation (27) using
the classical theory of beams [1].

z(x) =
3
2

d31φ

h2 x2 (27)

The material used in the bimorph beam simulation was PZT-5H, and the properties of the material
are listed in Table 2.

To validate the solver for simulations of an actuator, φ = 100 V was applied across the thickness of
the beam with L = 100 mm, b = 5 mm, and h = 1 mm. The three-dimensional hexahedral piezoelectric
element was used to simulate the beam with the finite element methods, and the computed static
beam deflection was compared with the analytical results, as shown in Figure 5a. Figure 5b plots the
reducing error with the increasing number of elements in the simulations. The error was measured as
the difference of computed deflection with analytical prediction using beam theory. It can be seen that
a second-order convergence was observed in this case, as expected for FEM analysis.
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Figure 5. Comparison of FEM results with analytical data for the bimorph beam case: (a) deflection
profile along the x-axis and (b) deflection error along the length of the bimorph beam with the increasing
number of elements in the simulation.

3.3. Three-Layer Actuator Beams

The solver is further validated with a three-layer beam case [17] with two piezoelectric beams
attached to the non-piezoelectric beam, as shown in Figure 6. The poling directions of the piezoelectric
beams were parallel to the z-axis, and the voltage v = 100 V was applied at the free sides in the
z-direction of the three-layer actuator beam setup. L is the length of the non-piezoelectric beam,
and the piezoelectric layers have a length of l = x1 − x2, where x1 = L

12 and x2 = 5L
12 .

Figure 6. Three-layered beam with two smaller piezoelectric beams of the same width (shown as gray
color) as the non-piezoelectric beam (shown as white color). Beam length L = 60 mm; piezoelectric
layer thickness tp = 0.5 mm, and the thickness of the non-piezoelectric beam was tb = 1.0 mm; and the
applied voltage v = 100 V.
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The analytical solution of the problem is given [17] as:

z(x) =
−3d31Ep(tb + tb)

Ebt3
b − 3Eptb(3t2

b + 6tptb + 2t2
p)

{
H[x− x1](x− x1)

2 − H[x− x2](x− x2)
2
}

v, (28)

where (tp, tb) and (Ep, Eb) are the thickness and Young’s modulus of the piezoelectric layer and the
non-piezoelectric beams, respectively. Here, x ≤ L is the location at which the vertical deflection
z(x) of the cantilever converter is calculated. The geometrical and material properties used in the
numerical simulations were Ep = 7.7 × 1010 N/m2, Eb = 2.0 × 1011 N/m2; Poisson’s ratio νp = 0.3,
νb = 0.33; density ρp = 7700 kg/m3, ρb = 7860 kg/m3. The piezoelectric strain coefficient matrix d is
defined in Table 4.

Table 4. Piezoelectric coefficients for the piezo layer in the three-layer beam case.

[d] =

 0 0 0 0 3.27 0
0 0 0 3.27 0 0
−1.28 −1.28 3.28 0 0 0

 × 10−10 (m/V)

Figure 7a shows the deflection of the beam with different numbers of elements, while Figure 7b
plots the reducing error with the increasing number of elements in the simulations. It is clearly seen
that the deflection profile converged to analytical results with mesh refinement. However, the rate of
convergence was not second order, as in the previous examples.
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Figure 7. Comparison of FEM with analytical results for the three-layer beam case: (a) deflection profile
along the beam span and (b) error of deflection for meshes with different numbers elements.

4. Uncertainty Quantification of the Piezoelectric Composite Plate Actuator’s Response

Composite plate piezoelectric actuators are found in many electroacoustic devices, including
microphones, micropumps, synthetic jets, etc. The actuator comprises a circular plate of piezoelectric
material bonded with a metallic material plate, and actuation is achieved by applying electrical
potential on an electrode attached to the piezoelectric layer. Figure 8a shows a typical setup of a
composite piezoelectric unimorph actuator (APC 850) [18,19]. In this current setup, a piezoelectric
plate of thickness hp and radius Rin was bonded with a shim disc of thickness hs and radius Rout.
The shim plate was fully clamped, and the material properties of APC 850 were taken from Table 5
extracted from [18,20]. The computational domain was taken as one quarter of the composite plate
in which symmetric conditions were applied at the cut planes. Figure 8b shows a block-structured
mesh of the computational domain where it is characterized by N1 number of points in the radial and
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azimuthal directions of blocks on the piezoelectric plate, N2 number of points (radial and azimuthal)
on the blocks of the shim, and N3 number of layers extruded in the thickness direction for each plate.

Rout

Rin

hp

hs

V

x

z

piezoelectric

shim

(a) Cross-sectional setup of the composite actuator.

(b) Computational domain and mesh.

Figure 8. Problem setup and computational domain of the composite piezoelectric actuator. Note that
the computational domain is taken as a quarter of the disc with symmetric planes.

Table 5. Dimensions and material properties of the APC 850 actuator extracted from [18].

Geometric Properties

Outer radius Rout (mm) 11.7
Radius of piezoelectric Rin (mm) 10.0

Radius of silver Rs (mm) 9.2
Thickness of shim hs (mm) 0.221

Thickness of piezoelectric hp (mm) 0.234
Thickness of silver h (mm) 0.015

Material Properties

Elastic modulus of shim Es (GPa) 90
Poisson’s ratio of shim λs (-) 0.32

Density of shim ρs (kg/m3) 8700
Elastic modulus of piezoelectric Ep (GPa) 63
Poisson’s ratio of piezoelectric λp (-) 0.31

Density of piezoelectric ρp (kg/m3) 7700

Electrical Properties

Relative dielectric constant εr (-) 1750
Piezoelectric constant d31 (m/V) −175× 10−12

.
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4.1. Characterization and Comparison of Actuator Responses

It is important to characterize the responses of the actuator for design purposes.
Prasad et al. [18,19] presented several models for response predictions of unimorph actuators including
a lumped element model and the analytical model based on plate element theory. It is known that
the maximum deflection of the actuator is dependent on the plate thickness ratio (hp/hs), radius
(Rout/Rin), and material properties. Here, FEM was applied for static analysis of the actuator under
voltage load of 5 V. A mesh sensitivity study is shown in Figure 9 for the radial deflection profile with
clear convergence of numerical prediction when the mesh is refined. Table 6 shows the convergence
index with the mesh refinement. At the finest mesh, the maximum displacement was about 4.44%
away from the asymptotic value of the predicted displacement. The order of convergence estimated
according to Equation (20) is:

p = log

(
uG3

z,max − uG2
z,max

uG2
z,max − uG1

z,max

)
/ log(r) = 2.016, (29)

which is approximately the same as the theoretical convergence order of the FEM formulation. It can
be seen that the asymptotic FEM result was larger compared with the experimental and analytical
data in [18]. As explained in [18], the difference could be due to the fact that the silver electrode layer,
as well as the glue between plates were not modeled in the FEM analysis. Looking further into the
experimental data, it was found that the device (APC 850) used in a later work by the same author [19]
showed a slightly different response experimentally and analytically.
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Figure 9. Mesh convergence of FEM analysis for a unimorph piezoelectric actuator in comparison with
the experiment and analytical results [18]. The plots show the deflection profile with normalized radius
along the bottom shim plate.

Table 6. Mesh sensitivity study and convergence index for the unimorph actuator. GCI, Grid
Convergence Index.

Grid Nr1 Nr2 Nh uz,max (µm/V) GCI (%)

G1 40 10 4 0.08809 -
G2 60 20 6 0.09167 2.89
G3 80 30 8 0.09653 6.03
G4 100 40 10 0.09918 4.44

Asymptotic - - - 0.10499 -
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Figure 10 shows experimental data from two different references for the same reported device.
It can be seen that the difference on deflection of the disc was very large between the two configurations
where maximum deflection at the center of the disc increased 24% from 0.0937 µm–0.1184 µm per
unit applied voltage. For these two configurations, the only significant difference in the setup was
the thickness of the shim layers. The current FEM results showed an increase in response amplitude
with reducing shim thickness, as observed in the experiment. This is further illustrated in Figure 11,
where maximum displacements are shown with changing of the shim and plate thickness ratio in
the variation of their radius. The maximum displacement also increased with increasing radius
ratio. This behavior could help in explaining the discrepancies between current FEM analysis with
experimental data. However, it led to uncertainties in the analysis, requiring detailed quantification of
actuator responses under uncertain parameters.
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Figure 10. Comparison of different experimental data and FEM results obtained from the present work
on the same device APC 850 reported in [18,19]. Here, the experimental (circle symbols) and numerical
data (dashed line with square symbols) are shown for two different setups of the same device.
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different thickness ratios hp/hs shows a consistent trend in the variation of maximum displacement
with the radius ratio.
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4.2. Uncertainty Quantification of Actuator Responses

From the comparison between numerical prediction with experimental data for maximum
displacement of the actuator, it can be seen that the error was consistently about 6.3%. The purpose
of this analysis was to quantify uncertainty in the current numerical prediction in order to explain
the discrepancy. Typically, the process of uncertainty quantifications includes the following steps [14]:
identification of all sources of uncertainties, characterization of input uncertainties, estimation of
numerical errors, propagation of input uncertainties through the model, evaluation of model from
error, and finally, the total uncertainty.

4.2.1. Sources of Uncertainties

There were two main sources of uncertainty in the model inputs, and they include the material
properties and geometrical parameters of the actuator. From the supplier report on material properties
of APC 850 [20], it is highlighted that there were uncertainties in the physical properties of the disc
depending on the shapes and thickness of the plates. For some quantities such as piezoelectric
coefficient d33, the error could be 20% from the reported value. The thickness of the PZT and shim layer
was also a source of uncertainty due to the error in the manufacturing process, as well as uncertainties
with measurement. While uncertainty in thickness can be classified as aleatory (irreducible uncertainty),
the uncertainty in material properties is reducible with more refined measurement techniques.
Aleatory uncertainty is normally characterized by a Probability Density Function (PDF), and epistemic
uncertainty can be represented as an interval-valued quantity.

Uncertainties were introduced to four input parameters of shim plate thickness (hp), PZT plate
thickness (hpzt), and piezoelectric coefficient (d31, d33). In this study, the responses of the actuator
measured by the maximum deflection were investigated with the above uncertainty. The piezoelectric
properties of materials were normally found to be in a wide range of values with the same material,
especially for the piezoelectric coefficient in this case. Table 7 presents a list of uncertain variables with
their mean values, as well as the probability distribution. Here, uncertainties in physical properties and
geometrical parameters are modeled as a random variable with a normal distribution characterized by
the mean and standard deviation.

Table 7. Uncertain input parameters and correlation coefficients obtained from the Latin hypercube
sampling study for maximum displacement of the APC plate. The simple and partial correlation
coefficients are computed on ranked data.

Parameter Mean Probability Distribution LHS 200 Corr LHS300 Corr
Partial Simple Partial Simple

hp (µm) 220.0 normal, σ = 10.0 −0.8808 −0.4305 −0.8628 −0.4855
hpzt (µm) 230.0 normal, σ = 12.5 −0.9043 −0.4933 −0.8438 −0.4610

dE
31 (pC/m) −175 normal, σ = 15.0 −0.9522 −0.7250 −0.9302 −0.7209

dE
33 (pC/m) 395 normal, σ = 5.0 −0.16793 −0.0376 −0.0672 0.0272

Sensitivity analysis was conducted for maximum center deflection with uncertain variables,
as shown in Figure 12, using the Latin hypercube sampling approach [21]. It can be seen from
the scatter plots that the response maximum amplitude was more correlated with thicknesses and
piezoelectric coefficient d31, while correlation with other parameter d33 was weak. This is evidently
shown in the results of the correlation coefficients for all the parameters in Table 7, where the strongest
correlation with d31 was observed for different approaches and correlation measures.
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Figure 12. Scatter plot of maximum deflection at the center of the disc with geometrical and material
property parameters using the Latin hypercube sampling technique.

4.2.2. Quantification of Numerical Errors

The main numerical error in this current computation was discretization error. To evaluate the
discretization error in the Uncertainty Quantification (UQ) framework, numerical simulations were
performed on two grid levels for each of the samples. The results from the coarse and fine grids can be
used to estimate discretization errors using Richardson’s extrapolation, as stated in Equation (21). Here,
for each sampled case, this was carried out on two grid levels of G2 and G3 (Table 6). Figure 13 shows
the distribution of the maximum displacement and estimated numerical error for 200 samples using
the Latin hypercube sampling technique. The mean and standard deviation of numerical uncertainty
was εh,mean = 3.361 × 10−2 (µm/V) and εh,std = 5.865 × 10−3 (µm/V), respectively.
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Figure 13. Distribution of the maximum response with uncertainties and its numerical discretization
error obtained from Richardson extrapolation. The displacement error is shown as error bars in
the graph.

4.2.3. Propagation of Uncertainties through the Model

Depending on the types of uncertainties, there are different approaches to quantify uncertainty
in model predictions [15]. Sampling methods can be used for Uncertainty Quantification (UQ)
in which the response characteristic can be obtained from a probability distribution of uncertain
inputs. Apart from this sampling-based approach, other UQ methods including polynomial chaos
expansion, interval analysis, and reliability were explored to determine the uncertainty of the response.
Table 8 presents the moments of the response (maximum deflection) obtained from using different
UQ methods. It can be seen that the mean response predicted by all the methods was consistent,
ranging from 0.1031–0.1054 µm/V, while the prediction of the standard deviation was more spread
using different methods. The global interval analysis approach normally used for quantification of
epistemic uncertainties provided a similar response prediction as the LHS-based approach, with much
fewer evaluations. Figure 14 depicts the Cumulative Distribution Function (CDF) of maximum
deflection where it is less likely (40%) to obtain a response of umax ≤ 1.0, while the probability of
obtaining maximum deflection of umax ≤ 0.115 µm/V is very likely (80–90%). Results from this UQ
confirmed the variations in the responses measured from experiments and provided confidence to the
numerical simulations.

Table 8. Moments of maximum deflection estimated using different Uncertainty Quantification (UQ)
approaches.

Method No. of Evaluations Mean (µm/V) Std Dev (µm/V) Skewness Kurtosis

LHS200 200 1.0755 × 10−7 1.2538× 10−8 1.1756 6.8497
LHS300 300 1.0543 × 10−7 1.1204 × 10−8 2.2445 × 10−1 6.9922 × 10−1

Polynomial chaos expansion 135 1.0543 × 10−6 1.0590 × 10−7 1.5774× 10−1 6.8291 × 10−2
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Figure 14. Cumulative distribution function of the maximum deflection response obtained from
different UQ approaches. The green line is the CDF of the experiment constructed from two data points.
The shaded area is the area validation metric.

4.2.4. Model Uncertainty

The model uncertainty is measured from the error between the model prediction of the quantity
of interest and the true value obtained from experiment observation at the same input conditions.
With uncertainties in model input, a CDF of the quantity of interest can be obtained when propagating
those uncertainties through the model, as shown in Figure 14. Likewise, one can also reconstruct a
CDF of experimental observation taking into account the uncertainties with measurement procedures.
Here, a crude reconstruction of experimental CDF was performed from two available data points.
Following [22], a model validation metric was defined as the intersection area between the two
CDF curves:

εmodel =
∫ ∞

−∞
( fCDF,e(uz,max)− fCDF,m(uz,max))du. (30)

Among various measures of model errors, the area validation metric provides a good estimation
for evidence of disagreement between the model and experiment. It can be computed from
a limited number of experimental data; thus making it more suitable for many engineering
applications. From the current results of CDF shown in Figure 14, the model error is estimated to be
εmodel = 7.146 × 10−3 µm/V.

From the above estimation of uncertainties, for any given condition, a corrected prediction of
maximum displacement can be computed by including both model error and numerical uncertainties:

uc
z,max(.) = upred

z,max + εnum + εmodel . (31)

This corrected prediction takes into account various uncertainties in model input, numerical
discretization errors, as well as model errors.
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5. Conclusions

In this work, we presented the development of a finite element model for simulations of
piezoelectric materials. The model was an extension of the traditional nodal-based FEM formulation
with an additional unknown for electrical potential. The developed model was verified and validated
with experimental data for a number of canonical applications including a single-layer PZT beam to
multiple layer plates. It was then used for the characterization of the responses from piezoelectric
actuators for synthetic jet devices. It was shown that the responses of the actuators were sensitive
to the properties of the piezoelectric layer, resulting in different displacement characteristics of the
actuator plates. The FEM model was employed to quantify uncertainties in the response amplitudes
of the plate with uncertain input of the material properties of the piezoelectric layer. Results from
the uncertainty quantification confirmed fluctuations in the responses measured in the experiment
and provided confidence to the developed model. It has been shown that the proposed work can be
applied for more complex three-dimensional structures of piezoelectric materials. The model forms a
basic building block for a multi-physic simulations of synthetic jet devices by coupling it with a flow
solver for fluid-structure interaction analysis. This remains as our future work to apply the model to
the design and optimization of the device.
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