
Implementation of Transcriptome Anomalous Diffusion in Genetic Programming (TAD-GP)  

Taxonomy: Genetic Programming algorithm is an example of an Evolutionary Algorithm and belongs to 
the field of Evolutionary Computation and more broadly Computational Intelligence and Biologically 
Inspired Computation. The GP algorithm is sibling to other Evolutionary Algorithms, e.g. the Genetic 
Algorithm (GA), Evolution Strategies, Evolutionary Programming, and Learning Classifier Systems.  

Inspiration: The Genetic Programming algorithm is inspired by population genetics (including heredity 
and gene frequencies), and evolution at the population level, as well as the Mendelian understanding of 
the structure (such as chromosomes, genes, alleles) and mechanisms (such as recombination and 
mutation). TAD instead focuses on the transcriptome structure (transcript classes, e.g. mRNA, miRNA, 
lncRNA and rRNA) and mechanisms (transcription, export, import, silencing, enhancing, decay half-life). 

Metaphor: Individuals of a population contribute a portion of their transcriptome (functionally the 
genotype) proportional to a semantic filter dependent on all of the transcriptome, acting on each 
transcript individually. The individual transcript contributions are pooled, then distributed to the 
population in the form of survivors. The next generation is created through a process of implementing 
transcriptome operations that involves silencing or enhancing specific semantically-selected transcripts 
in the population, and optionally with the introduction of random errors (mismatch at the semantic 
level).  Alternate process of multicellular growth involves transcript operators such as secretion to 
extracellular pool, absorption of transcripts from extracellular pool, and the introduction of random 
copying errors (called mutation) or degradation operators (with some half-life). This iterative process 
may result in an improved adaptive-fit between the phenotypes of individuals in a population and the 
environment. 

Programs may be evolved and used in a secondary adaptive process, where an assessment of candidates 
at the end of that secondary adaptive process is used for differential reproductive success in the first 
evolutionary process. This system may be understood as the inter-dependencies experienced in 
evolutionary development where evolution operates upon an embryo that in turn develops into an 
individual in an environment that eventually may reproduce. 

Strategy 

The objective of the Genetic Programming algorithm is to use induction to devise a computer program. 
This is achieved by using transcriptome and evolutionary operators on candidate programs with a 
Cartesian graph or tree structure to improve the adaptive fit between the population of candidate 
programs and an objective function. 

Procedure 

Algorithm (below) provides a pseudocode listing of the Genetic Programming algorithm for minimizing a 
cost function, based on Koza and Poli's tutorial [Koza2005]. Genetic Program uses LISP-like symbolic 
expressions called S-expressions that represent the graph of a program with function nodes and 
terminal nodes. While the algorithm is running, the programs are treated like data, and when they are 
evaluated they are executed.  

 

 



Algorithm TAD-GP in pseudo code is:      

// start with an initial time 

t := 0; 

// initialize a usually random population transcriptomes of N individuals. Transcripts are programs of 
// some length and have calculable Similarity and Reverse Complementarity measures to the whole 
// population of transcriptomes.  

initPopulation P (t); 

// evaluate fitness of all initial individuals of population 

evaluate P (t); 

// test for termination criterion (time, fitness, etc.) 

while not done do 

// increase the time counter 

t := t + 1; 

// select fittest sub-population for survival; return P’ 

P’ := selectFittest [ P (t), selectionP%, P’ ]; 

// Calculate Tα
OUT = Tα * F[S, RC, N, Tα ] from Equation 2. 

// Remove transcripts with semantic filter F from each survivor to ExtracellularPool 
// Filter acts on selectionF% of transcriptome; return modified individuals as P’’ 
// Calculate TEC = T1

OUT + T2
OUT + T3

OUT + … from Figure 2 in text. 

ExtracellularPool := filter [P’ (t), selectionF%, P’’(t) ]; 

// Add selectionD% of ExtracellularPool transcripts to P’’ stochastically; return P’’’ 
// Calculate Tα

IN = TEC * F[S, RC, N, Tα ] from Equation 2. 

distribute [P’’ (t), ExtracellularPool, selectionD%, P’’’(t) ] ; 

// implement transcriptome silencers and enhancers, return as P 

P := implement [P’’’ (t), P ]; 

od 

end GA-AD 

                                                                                             

Heuristics 

• The evaluation (fitness assignment) of a candidate solution takes the structure of the program 
into account, rewarding parsimony. 



• The selection process should be balanced between random selection and greedy selection to 
bias the search towards fitter candidate solutions (exploitation), whilst promoting useful 
diversity into the population (exploration). 

• All transcriptome operations ensure (or should ensure) that syntactically valid and executable 
programs are produced as a result of their application. 

• The Genetic Programming algorithm component is configured with a high-probability of transfer 
to ExtraCellular Pool and a low-probability of RNA point modifications. Other operators such as 
transcription, decay, and architecture alterations (Accessible/Inaccessible or A/I functions) are 
used with moderate-level probabilities and fill in the probabilistic gap. 

• Architecture altering operations are not limited to the A/I functions of sub-structures of a given 
program. 

• The function set may also include control structures such as conditional statements and loop 
constructs. 

• The Genetic Programming algorithm can make use of Automatically Defined Functions (ADFs) 
that are sub-graphs and are promoted to the status of functions for reuse and are co-modified 
with the programs. 

• The genetic operators employed during reproduction in the algorithm may be considered 
transformation programs for candidate solutions and may themselves be co-evolved in the 
algorithm. 

 


