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Abstract: We consider a gas of interacting electrons in the limit of nearly uniform density and treat
the one dimensional (1D), two dimensional (2D) and three dimensional (3D) cases. We focus
on the determination of the correlation part of the kinetic functional by employing a Monte
Carlo sampling technique of electrons in space based on an analytic derivation via the Levy-Lieb
constrained search principle. Of particular interest is the question of the behaviour of the functional
as one passes from 1D to 3D; according to the basic principles of Density Functional Theory
(DFT) the form of the universal functional should be independent of the dimensionality. However,
in practice the straightforward use of current approximate functionals in different dimensions is
problematic. Here, we show that going from the 3D to the 2D case the functional form is consistent
(concave function) but in 1D becomes convex; such a drastic difference is peculiar of 1D electron
systems as it is for other quantities. Given the interesting behaviour of the functional, this study
represents a basic first-principle approach to the problem and suggests further investigations using
highly accurate (though expensive) many-electron computational techniques, such as Quantum
Monte Carlo.

Keywords: Levy-Lieb principle; Monte Carlo sampling of electrons; kinetic-energy functionals;
dimensionality

1. Introduction

In the popular KS-DFT methodology [1], the kinetic energy of the electrons consists only
of the non interacting part while the part concerning the correlation is included in the general term
of the exchange-correlation functional which includes all the correlation contributions. In alternative
approaches, such as that of Orbital-Free-DFT (OFDFT), it may be more useful to not include the
correlation part of kinetic functional in a general correlation term, but to treat it explicitly, since one
of the key quantities of OFDFT is the kinetic term [2–8]. Some of us have previously proposed a
method based on the Levy-Lieb constrained formalism [9,10] to derive a form of the kinetic functional
whose non-analytic part can be determined via a Monte Carlo sampling of the electron correlation
in space [11–13]. For the test case of almost uniform gas in 3D resulted in a kinetic-correlation energy
functional which follows the form

∫
ρ(r) log ρ(r)dr. Interestingly, the same qualitative behaviour was

found also in state-of-the-art Quantum Monte Carlo calculations and opened interesting scenarios
where electron correlations may be expressed within the framework of Information Theory [13–15].
An interesting question that can be addressed by this method is the following: in general the
universal functional of DFT should have a form which is independent of the dimensionality, i.e.,
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the functional behaviour should not depend on the spatial dimensions [16,17]. This is termed the
dimensional crossover (DC) of density functionals and is a very important property of the universal
functional, that guides the construction of approximate functionals. As a consequence, given the
physical consistency of our approach for 3D and its relatively affordable computational costs, one can
extend the study to 2D and 1D systems and see whether or not the functional form changes drastically.
Results of this study can be taken as a basis for more accurate and far more expensive calculations of the
kinetic correlation functional, e.g., by state-of-the-art Quantum Monte Carlo techniques. Our results
show an interesting feature: in 2D and 3D the functional form is consistent (in both cases logarithmic
or with a power law of 1/2, concave behaviour), however in 1D the change is drastic and consistent
with results present in literature on other quantities (convex behaviour). This drastic difference is
certainly intriguing and worth further investigations, and, if confirmed by other calculations, gives
an interesting insight in the construction of energy functionals.

The paper is organized as follows: first we summarize the conceptual approach employed
in this study, that is Levy-Lieb constrained search formalism for the design of kinetic energy
functionals combined with Monte Carlo evaluation technique, next we introduce the problem of the
dimensional-crossover of the kinetic-correlation energy functional and finally we report the technical
aspects and the simulation results of the study.

2. Levy-Lieb Constrained Search Formalism and Monte Carlo Evaluation

In the Levy-Lieb constrained search formalism, the minimisation problem for the ground state
of electrons is:

EGS = min
ρ

[ min
Ψ→ρ
〈Ψ|T̂ + V̂ee|Ψ〉+

∫
v(r)ρ(r)dr], (1)

where Ψ is the N-electron wavefunction, T̂ and V̂ee are the kinetic energy and electron-electron potential
energy operators, respectively, v(r) is the external potential, and ρ(r) is the electron density. The inner
minimisation of the universal functional is carried out with respect to the wavefunctions integrating
to density ρ(r) and the outer minimisation is done on all densities, preserving the N-representability
(i.e., integrating to N). In an alternative representation, N-electron wavefunction can be substituted
by its corresponding 3N−dimensional probability density and expressed in terms of the one particle
density ρ(r1) and the N − 1, conditional electron density [11,18]:

|Ψ|2 = ρ(r1) f (r2, r3, ...rN |r1). (2)

In order to assure the fermionic character f (r2, r3, ...rN |r1) must satisfy the following necessary
mathematical conditions: ∫

f (r2, r3, ...rN |r1)dr2dr3...drN = 1. (3)

f (r1, r2, ..ri..rN |rj) = 0, ∀i = j; j = 1, N. (4)

Upon reformulating the expression of Equation (1), one obtains:

EGS = min
ρ

( min
f

Γ[ρ(r1), f ] +
∫ 1

8
|∇ρ(r1)|2

ρ(r1)
dr1 +

∫
v(r1)ρ(r1)dr1). (5)

where

Γ[ρ(r1), f ] =
∫

ρ(r1)[
1
8

∫ |∇1 f |2
f

dr2...drN +
(N − 1)

2

∫ f
|ri − rj|

dr2...dri...drj...drN ]dr1. (6)

which for convenience we express as:

Γ[ρ(r1), f ] = I[ρ(r1), f ] + C[ρ(r1), f ]. (7)
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3. Monte Carlo Sampling for Nearly Uniform Electron Gas

3.1. Spinless Case

For the evaluation of the non-local part of the kinetic energy and Coulomb interaction, Γ[ρ(r), f ]
in Equation (6), first an ansatz about the form of f is done. Such an ansatz satisfies the mathematical
requirements and basic physical principles (for details see [11,14]) and is derived for the spinless case,
that is, spins are not explicitly considered:

f (r2...rN |r1) = eD f (r1)
N

∏
n=2

e−γEH(r1,rn) ∏
i>j 6=1

e−βEH(ri ,rj). (8)

where the quantity eD f (r1) is the normalisation factor and

EH(r1, rn) =
1

|r1 − rn|
, EH(ri, rj) =

1
|ri − rj|

. (9)

For the numerical evaluation, the expressions are transformed as:

Γ[ρ(r1), f ] =
1
M

M

∑
m=1

[
1
8
|∇1 f

f
|2 + 1

N

N

∑
i=1

∑
j>i

1
|ri − rj|

]ρ(r1),γ. (10)

and in this form, Metropolis Monte Carlo can be employed to evaluate the quantities, of interest,
in fact the minimisation w.r.t. f in Equation (5) is now reduced to a minimisation (for a given density)
w.r.t. γ and β; for simplicity, in previous studies we used γ = β. As a consequence, treating different
densities and calculating I for each density we can numerically obtain the correlation part of the kinetic
functional I[ρ(r1), f ]; the numerical result can then be fit into an analytic expression. For the Monte
Carlo moves, the acceptance ratio is given as

fnew

fold
= e−γ[EH(r1,rnew

k )−EH(r1,rold
k )] ∏

i 6=1,k
e−γ[EH(ri ,rnew

k )−EH(ri ,rold
k )]. (11)

The analytic form obtained for the correlation part of the kinetic energy functional is:

I[ρ] =
∫

ρ(r)(A + B ln ρ(r))dr, (12)

and thus, from Equation (5), the total kinetic energy functional reads:

K[ρ(r)] = TW [ρ(r)] +
∫

ρ(r)(A + B ln ρ(r))dr, (13)

where TW [ρ(r)] = 1
8

∫ |∇ρ(r)|2
ρ(r) dr, is the von Weizäcker kinetic energy [19], and A, B are the fitting

parameters. In the above expressions, the indistinguishability of electrons allows to remove the
labeling for the electron position.

3.2. Adding the Effects of Spin

An extension of the method was done in order to include the effects of the spin [13]. The Pauli
exclusion principle even in the absence of Coulomb interactions tells us that two same-spin electrons
cannot have the same position. This observation is introduced to extend the form of f via the introduction
of an additional interaction between the so-called Pauli pairs; in simple terms, for every electron,
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the nearest electron (not already paired to any other electron and whose distance is denoted by rpp(i))
is the corresponding Pauli companion and they are related via the Pauli weighting function

p = ∏
Paulipairs

e−α|ri−rpp(i)|. (14)

The modified conditional electron density:

g(r2...rN|r1) = p · eDg(r)
N

∏
n=2

e−γEH(r1,rN) ∏
i>j 6=1

e−βEH(ri,rj), (15)

with

e−Dg(r1) =
∫

dr2dr3...drN ∏
PauliPairs

e−α|ri−rpp(i)|
N

∏
n=2

e−γEH(r1,rN) ∏
i>j 6=1

e−βEH(ri,rj). (16)

For the Monte Carlo evaluation of:

I[ρ(r1), f ] = 〈1
8
|∇1g

g
|2〉 (17)

the new acceptance rule becomes:

gnew

gold
=

pnew

pold e−γ[EH(r1,rnew
k )−EH(r1,rold

k )] ∏
i 6=1,k

e−γ[EH(ri,rnew
k )−EH(ri,rold

k )]. (18)

Upon moving an electron, all the Pauli pairs are re-evaluated and new pair-distances are
considered. Upon inclusion of Pauli weighting function, the Kinetic-correlation energy I[ρ(r1), f ]
consists of three main contributions (see Equation (31) in Reference [13]): a term which would be
equivalent to the Thomas-Fermi kinetic functional if α is chosen to be

√
CFρ1/3 with an analytic form:

TTF = CFρ
5
3
0 [20,21], and the two terms which needs to be evaluated, that is the kinetic-Coulomb

correlation and kinetic-spin-cross correlation term,

IC ∼= γ̃2
N

∑
i=2

N

∑
j=2

[∇1EH(r1, ri) · ∇1EH(r1, rj)], (19)

and

IsC ∼= 2αγ̃up ·
N

∑
i=2
∇1EH(r1, ri). (20)

In the above expressions, γ̃ is the value which minimises the energy functional at a given density.
A scaling factor k is used for the parameter α for softening the spin interactions. Therefore, the modified
parameter, α′ = kα and 0 ≤ k ≤ 2 (going from spinless to full spin case). Numerical results show
that despite the addition of effective spin, the functional form of the correlation term of the kinetic
functional remains logarithmic and reads:

Kspin[ρ] = TTF + TW +
∫

ρ(r1)(AC + BC ln ρ(r1))dr1 +
∫

ρ(r1)(AsC + BsC ln ρ(r1))dr1. (21)

The quantities AC, BC, AsC and BsC are the fitting parameters for IC and IsC respectively. In this
study, since we are interested in the functional form of the correlation term of the kinetic functional,
we will employ the spinless approach, however, for the 1D case, given the drastic change in the functional
behaviour we will check whether the effect of the spin changes the conclusions reached.
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4. Dimensional Behaviour of Electronic Kinetic Correlation Functional

Universality of density functionals means that the functional form should be conserved in any
dimension. Studies on the behaviour of non-interacting kinetic energy (Ts) and Weizäcker (TW)
functionals clearly explain the dimensional crossover behaviour for kinetic energy functionals [17,22].
Based on these ideas, similar kinds of studies are performed for understanding the dimensional
behaviour of kinetic correlation functional using (nearly) uniform electron gas in different dimensions.
Interacting electrons of a gas at uniform density in 1D, 2D and 3D have also been studied extensively
using various QMC approaches [23–25]; however, a direct comparison between our calculation
and QMC calculations in 1D and 2D is not possible at this stage. In fact the quantity we are
interested in, i.e., the correlation term of kinetic functional, has not been treated in the QMC
studies in 1D and 2D, but only in 3D, where, as mentioned before, there is qualitative agreement
with the results of our approach [15]. In this perspective, as underlined before and as will be
discussed later on, QMC calculations of the correlation term of the kinetic functional are highly
desired, given the results reported here. In general, electrons confined to two-dimensions (2D) have
correlations that are predicted to be stronger than the correlations in a corresponding three-dimensional
system at the same density. Usually in 2D, the system exhibits a Fermi-liquid behaviour at high
densities whereas at low densities they form Wigner crystals [24,26]. Electrons in 1D-chains are very
well described by the Tomonaga-Luttinger liquid theory and show drastically different behaviour
from that of two and three-dimensional case [23,27]. This is due to the strong correlations in 1D
as the electrons cannot avoid each other (only scattering possible in back and forth directions).
Inspired by the discussions in literature an interesting question is to consider this issue within
the Levy-Lieb derivation reported in the previous sections and eventually calculate the correlation
term of the kinetic functional using the Monte Carlo procedure to see whether or not its functional
form changes with the change of dimensionality. From Equation (5) it is clear that the analytic part of

the kinetic functional: TW [ρ(r)] = 1
8

∫ |∇ρ(r)|2
ρ(r) dr, is indeed formally independent of the dimensionality,

however the correlation term IC[ρ(r)] must be determined numerically. Our Monte Carlo approach
reported above, allows us to calculate the correlation part of the kinetic functional in 1D, 2D and 3D;
its dimensional behaviour may be very interesting for building general kinetic functionals, at least
within the range of densities considered in this work. It must be noticed that the Levy-Lieb implicit

functional: minΨ→ρ〈Ψ|T̂ + V̂ee|Ψ〉, in term of the conditional probability: min f Γ[ρ(r1), f ] +
∫ 1

8
|∇ρ(r)|2

ρ(r) ,
is formally exact and that our approximations in building f lead to a final explicit Levy-Lieb functional
(i.e., functional of ρ only) whose accuracy directly relates to the accuracy (and sufficiency) of the basic
(first) principles of electron correlations in f . Thus our numerical functional is approximated only
regarding the assumption of f , if one had f calculated with standard QMC then the functional would
be (numerically) exact (within the accuracy of QMC). For this reason, although the universality of the
functional can be assured only for the truly exact functional, accurate numerical approaches would
lead to functionals whose dimensional behaviour should not deviate much from the behaviour of
the ideal (exact) case. Finally, in 1D case, the form of electron-electron interaction is the 1

rij
and there

is no need for regularisation of the bare potential as the conditional probability function would be
zero for ri = rj by definition, thereby avoiding the singularity [28,29]. Moreover, it must be noticed
that in our approach there are two distinct, though complementary, ways in which the physics of
correlation can be investigated: (a) use the assumptions done for the 3D case for f and consider the 1D
and 2D cases as straightforward limiting cases of 3D, as dimension x and y became small compared to
dimension z; (b) modify f in 2D and 1D in order to get a desired consistency with the results of 3D and
understand which assumptions are required and thus what is the relevant physics of correlation in 1D
and 2D if we assume the 3D case as a reference for the form of the functional. We have so far explored only
case (a), future work will investigate also option (b). In the next section we discuss the results obtained.
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5. Results

For computational convenience we treat the spinless case since the functional form of the correlation
term of the kinetic functional has been shown to be independent of the explicit inclusion of
the spin. We calculate IC[ρ(r)] for different densities in 1D, 2D and 3D; for each density
a minimisation study was done to derive the corresponding optimal γ̃. The numerical values
of IC[ρ(r)] are fitted to an analytic form. In the 1D case, IC is optimally fitted by a power law
(see Figure 1): IC[ρ(r)] = 2.41ρ2 + 0.11ρ + 0.025. For 2D and 3D cases (see Figures 2 and 3): IC follows
the analytical fits of the form, IC[ρ(r)] = A + B ln ρ(r) for 3D or a polynomial fitting with non
integer power law: IC = −0.594ρ(2/3)(r) + 1.838ρ(1/3)(r)− 0.394; for 2D instead the fitting formula is:
IC = 0.167ρ(r) + 1.851ρ(1/2)(r)− 0.360. The physical meaning of the fitting functions may turn to be
very interesting from a conceptual point of view, however it does not represents the main focus of this
study and will be subject of further investigations in future work; instead the change in concavity of
kinetic correlation energy upon reducing the dimensions is the evident and drastic difference between
the 1D case and the higher dimensions cases. The striking difference in the functional dependence
of IC from ρ(r), when comparing 1D to 2D and 3D, is the concavity: convex for 1D whereas concave
for 2D and 3D. Given such a change, a question to ask is whether the role of spins, treated explicitly,
may change the behaviour in 1D. Calculations with the explicit inclusion of the spin display the same
power law behaviour found for the spinless case, for both the kinetic correlation IC[ρ(r)] and and
the spin-cross correlation IsC[ρ(r)] terms. In detail, for different k-values and within the density range,
the polynomial fits for IC and IsC are tabulated in Table 1 (energies and densities are in atomic units).
Technical details are reported in the Appendix A.

Table 1. Polynomial Fits for IC and IsC values (with RMS errors in parenthesis) for 1D including the spin.

k Value IC IsC

k = 0.5 IC[ρ(r)] = 2.214ρ2 − 0.101ρ + 0.031(0.0287) IsC[ρ(r)] = 0.631ρ2 − 0.055ρ + 0.0126(0.0263)
k = 0.75 IC[ρ(r)] = 2.231ρ2 − 0.198ρ + 0.0465(0.0364) IsC[ρ(r)] = 1.016ρ2 − 0.146ρ + 0.0291(0.0687)
k = 1.2 IC[ρ(r)] = 2.204ρ2 − 0.099ρ + 0.0327(0.0114) IsC[ρ(r)] = 1.609ρ2 − 0.165ρ + 0.0363(0.0345)
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Figure 1. Computed values of IC[ρ(r)] for different densities in 1D obtained at optimal γ values.
The analytical fit in this case is IC[ρ(r)] = 2.41ρ(r)2 + 0.11ρ(r) + 0.025 with RMS error value 0.0165.
All values are in atomic units.
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Figure 2. Computed values of IC[ρ(r)] for different densities in 2D obtained at optimal γ values.
The Polynomial fit in this case is: IC = 0.167ρ(r) + 1.851ρ(1/2)(r)− 0.360 with error 0.0277. All values
are in atomic units.
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Figure 3. Computed values of IC[ρ(r)] for different densities in 3D obtained at optimal γ values.
The analytic fit obtained in this case, IC[ρ(r)] = 0.847+ 0.241 ln ρ(r) and the polynomial fit is given by
IC = −0.594ρ(2/3)(r)+ 1.838ρ(1/3)(r)− 0.394 with RMS values 0.0273 and 0.0324 respectively. All values
are in atomic units.

6. Discussion

It must be stated once more that except for the assumption of the form of coupling of electrons
in f , which is essentially a Jastrow factor extensively used in literature for treating correlations [30,31],
the approach is then free of other assumptions. This implies that if the Jastrow factor form of f
is reasonable to describe the basic physics of interacting electrons, then the behaviour of the 1D case
has a real physical meaning and it is not the artifact of the assumptions of the model. In fact in 1D
for both spins and spinless systems, due to the break-down of Fermi-liquid behaviour a quadratic
power law has been already observed; a similar power-law scaling behaviour in 1D electron gas is also
observed experimentally for properties such as conductance, tunneling current I(R), and density of
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states (DOS) while in 3D the behaviour is logarithmic [25,32,33]. An additional argument in favor of
a real physical meaning of our results in 1D is the fact that for the 3D case the logarithmic behaviour of
IC[ρ(r)] found with our approach was then qualitatively verified with state of art Quantum Monte
Carlo calculations [15]; in addition, in Reference [14], it has been shown that the form of f chosen leads
indeed to a first-principle form of electronic correlations, meaning that IC is the average response in
energy of the N− 1 electrons to the displacement of the reference electron. It must be also reported that
the conclusions of our previous work [12,13] have been strongly criticized by experts of OFDFT [34].
However the dispute was created due to a misunderstanding rather than by a conceptual or technical
bug of our approach; in fact the analytic fit obtained with our approach must be considered valid
only within the range of densities considered in the numerical calculations. In such a range then,
the analytic fit is the closest functional form of the kinetic correlation functional (based on our sampling
approach of the electron configuration in space). In this perspective the behaviour found for the 1D
system in the range of densities considered and in comparison to the 3D and 2D case is worth of future
attention and developments in the perspective of building valid analytic kinetic functionals.

7. Conclusions

Our results clearly suggest that the functional behaviour in 1D is different from the other two cases.
The ρ2 + ρ power-law behaviour with respect to the density is observed in both spin and spinless
1D cases. These results could well be related to the power law behaviour of other quantities such as
conductance, current and other electronic charge properties in 1D; in fact they are nothing else than
a response to a perturbation; similarly the Monte Carlo procedure of our approach at each move perturbs
the system by displaying an electron in space and observes its response. The main emphasis of this study
is the drastic change in the behaviour of the kinetic correlation energy (from concave to convex) going
from 3D to 1D rather than the specific fitting function. It must also be clarified that the intention of
this paper is not to draw final conclusion about the power law behaviour of the non analytic term
(correlation term) of the kinetic functional, but to provide a basis from which to start an investigation
using methods with higher accuracy. Our study at a relatively affordable computational effort serves
as an indicator of a possible path of interest in the development of kinetic-energy functionals.
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Appendix A. Technical Details

All Monte Carlo (MC) computations are carried out according to the protocol laid out in
Reference [13]. Using Metropolis algorithm studies on the spinless system in 1D, 2D and 3D are
carried out. Calculations including the effective spin-interactions (with Pauli weighing function) in 1D
are also performed. To rectify the sampling problems, the spin interactions are also softened using
a scaling parameter K, with values 0.5, 0.75, and 1.2. For a 3D system, cubic lattice with almost uniform
electron distribution is taken as the starting configuration. A randomly selected electron is given a trial
move and the move is accepted with a probability, fnew

fold
. Periodic boundary conditions and minimum

image convention are used. For different densities (ρ = 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.2), the optimal
γ parameter minimising the Γ[ρ(r1), f ] are obtained. In all computations, different number of electrons
(N = 10, 20, 30, 25, 27, 35, 64 and 100) for different densities and also same number of electrons for
different densities are used (to check that the results to not depend on the number of electrons) [13].
In 3D for high densities, the evaluations are obtained using the biased MC acceptance rule due to
the low γ value for accurate evaluations. In case of 2D and 1D, uniformly distributed electrons on
a square and line are taken as the starting configurations respectively. Therefore the notion of density
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changes to N
L2 and N

L respectively for each case. Also in these cases, the acceptance probabilities are
very low (close to 30 percent), so large number of MC samplings are used for obtaining the values.

The error bars for the kinetic-correlation energy values are computed by considering the errors
in quadratic fitting of energies used for the estimation of γ minimum for a particular density followed
by the difference in the kinetic-correlation energy values.
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