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Abstract: It has already been established by the systems-level approaches that the future of 

predictive disease biomarkers will not be sketched by plain lists of genes or proteins or other 

biological entities but rather integrated entities that consider all underlying component 

relationships. Towards this orientation, early pathway-based approaches coupled expression data 

with whole pathway interaction topologies but it was the recent approaches that zoomed into 

subpathways (local areas of the entire biological pathway) that provided more targeted and 

context-specific candidate disease biomarkers. Here, we explore the application potential of 

PerSubs, a graph-based algorithm which identifies differentially activated disease-specific 

subpathways. PerSubs is applicable both for microarray and RNA-Seq data and utilizes the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database as reference for biological pathways. 

PerSubs operates in two stages: first, identifies differentially expressed genes (or uses any list of 

disease-related genes) and in second stage, treating each gene of the list as start point, it scans the 

pathway topology around to build meaningful subpathway topologies. Here, we apply PerSubs to 

investigate which pathways are perturbed towards mouse lung regeneration following H1N1 

influenza infection. 
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1. Introduction 

We are going through the “Network Medicine” era, an emerging research field which has the 

potential to capture more realistically the molecular complexity of human diseases and provide - 

computational methodologies that can discern more efficiently how such complexity controls 

disease manifestations, prognosis, and therapy. It integrates “Systems Medicine” and “Network 

Science” fields to formulate unbiased large-scale network-based analyses in order to uncover this 

complexity -. However, the current high-throughput molecular technologies produce an 

unprecedented amount of biological data, posing a growing need for new “Network Medicine” tools 

to manage the complexity of “Big Data” and “Big Graphs” that are generated [1]. 

There is growing consensus that the advances in analysis methods fall behind relative to the 

massive amounts of omics data produced nowadays. In recent years, there was a paradigm shift that 

successfully moved the research focus from coupling diseases with single genes or single-nucleotide 

polymorphism (SNPs) to disease signatures or gene sets [2]. More recently, more sophisticated 
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systems-level approaches gained ground and pushed forward the transition from gene-to-gene 

analysis to signaling pathways and complex interaction networks, thereby gaining a more realistic 

and holistic insight into disease mechanisms [3]. 

Towards this orientation, pathway-based analysis has been proved to be efficient for 

comprehending biological mechanisms and disease etiology [4,5]. The main concept is a simplified 

analysis that groups single genes into sets of functionally related and interacting proteins. In this 

way, the complexity is reduced to a numerically feasible number at the magnitude of hundreds and, 

moreover, identifying “differential” pathways between two conditions has more explanatory power 

than gene lists. The first works in this field ignored the pathway interacting topology and used  

over-representation to compare the number of interesting genes that hit a given pathway with the 

number of genes expected to hit the given pathway by chance [4]. Later studies used Functional class 

scoring (FCS) to identify coordinated changes in the expression of genes in the same pathway [6]. 

Other approaches focused on the effect of the upstream genes relative to the downstream genes and 

coupled classical enrichment analysis along with the perturbation of a specific pathway to quantify 

the impact of upstream genes [7,8]. 

More recently, pathway analysis evolved to subpathway analysis, which searches for sub-areas 

on the topology to interpret the related biological phenomena and provides more targeted and 

context-specific molecular candidate signatures for disease etiology [9–16]. Subpathways are local 

subnetworks in the pathway topology which can be associated with small scale biological functions, 

within the boundaries of the pathway, and whose deregulation can give rise to a disease. 

Subpathway-based analysis has dealt with various challenges and signifies rightfully the next 

generation in pathway analysis [12]. Examining the entire pathway topology as one unit, hinders the 

detection of the small scale perturbations which might reflect a pathophysiological state or response 

to treatment [9]. Also, different pathway subnetworks may perform the same function in the same 

pathway and different pathways due the high overlap may use the same subnetworks in similar  

roles [9]. Subpathway-based tools, with their capacity to scan the entire pathway network and zoom 

into the specific subareas that are deregulated, can explore deeper the biological significance of 

disease-associated mutations identified by genome-wide association studies and full-genome 

sequencing. Hence, in the recent years several tools have been published under this perspective, 

offering new horizons in the Network Medicine field [9–16]. 

In previous work [17], we developed - Perturbed Subpathways (PerSubs) tool to extract - 

perturbed disease-specific subpathways from pathway networks. An important feature of the 

algorithm is that it identifies perturbed subpathways from KEGG pathway maps by using as 

starting point, prior to scanning pathway topology, a set of interesting gene-nodes (i.e., differentially 

expressed genes, disease-specific genes etc.). PerSubs utilizes a measure based on two multivariate 

logistic functions to set the co-expression status between the members of an interacting pair - as 

highly positive or negative. We applied PerSubs on a microarray experiment that included colony 

samples from control and H1N1 influenza treated lungs (12 days post infection) to study 

mechanisms towards lung regeneration following catastrophic damage [18]. Our results show that 

PerSubs can provide subpathways that reflect well processes related to tissue repair and 

development. 

2. Materials and Methods 

PerSubs algorithm [17] extracts perturbed subpathways from pathways taking into account 

graph topology and differential expression of the corresponding gene-nodes (Algorithm 1). 

Differential expression is used based on gene expressions from transcriptomics data. PerSubs 

extracts subpatways perturbed by a condition (disease or biological process) under study. 

Subpathways are extracted in the form of - densely connected subgraphs around nodes of interest 

based on topological criteria. For this, we follow a “seed growing” approach similarly to [19], where 

we start from an initial Node of Interest (NoI) and we identify the perturbation caused by this node 

in the entire pathway network. Users can provide a list of genes of interest, but here we selected as 

nodes of interest the significantly differentially expressed genes. 
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Node (gene/protein) differential expression intensity is calculated based on a geometrical 

multivariate effective approach, called the Characteristic Direction (chdir) [20]. It uses a linear 

classification scheme, which defines a separating hyper-plane, the orientation of which can be 

interpreted to identify differentially expressed genes (DEG). More specifically, it incorporates a 

regularization scheme to deal with the problem of dimensionality, and also provides an intuitive 

geometrical picture of differential expression in terms of a single direction. This geometrical picture 

reliably characterizes the differential expression and also leads to some natural extensions of the 

approach such as improved gene-set enrichment analysis. 

In the computation of the characteristic direction, in order to identify differentially expressed 

genes, initially the steps below are followed: 

1. Gene expression data have N samples, in which the expression of p genes is measured. 

2. Each sample’s expression profile forms a row of the matrix X (N × p) (each of sample’s 

expression comes from one of K classes (e.g., disease or normal state) belonging to the set G).  

3. Bayes rule provides an expression for the class posteriors 𝑃(𝐺|𝑋), 

𝑃(𝐺 = 𝑘|𝑋 = 𝑥) =
𝑓𝑘(𝑥)𝜋𝑘

∑ 𝑓𝑖(𝑥)𝜋𝑖
𝐾
𝑖=1

 ,  

where 𝑓𝑘(𝑥) is the class-conditional density of X, x is a particular instance of the values in a 

gene expression profile, 𝜋𝑘 is the prior probability of class k. 

4. The class-conditional density can be modeled as a multivariate Gaussian: 

𝑓𝑘(𝑥) =
1
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where 𝜇𝜅 and 𝛴𝜅 is mean and covariance respectively. 

5. Then, linear discriminant analysis (LDA) is applied based on the assumption that the 

covariance matrix is the same for each class (𝛴𝜅 = 𝛴∀𝑘). The log-ratio of class posteriors P 

(G|X), provides a measure of the relative likelihood of classifying to those classes. Hence, the 

log ratio of classifying to classes κ and l is formulated as: 

𝑙𝑜𝑔
𝑃𝑟 (𝐺 = 𝑘|𝑋 = 𝑥)

𝑃𝑟 (𝐺 = 𝑙|𝑋 = 𝑥)
= 𝑙𝑜𝑔

𝜋𝑘

𝜋𝑙
−

1

2
𝛾𝑇𝛴−1𝛾 + 𝑥𝑇𝛴−1𝛾, 

where, 𝛾 is (𝜇𝑘 − 𝜇𝑙) πk, is the class mean, andit is assumed that both classes have the same 

covariance matrix, Σ (𝛴𝜅 = 𝛴∀𝑘), 𝜇𝑘 = ∑
𝑥𝑖

𝑁𝑘
𝑔𝑖=𝑘 , 𝛴 = 𝛴𝑘=1

𝑘 𝛴𝑔𝑖=𝑘
 (𝑥𝑖 − 𝜇𝑘)𝑇/(𝑁 − 𝐾), where 𝑥𝑖 is 

a row from the data matrix X. 

6. Finally, the orientation of the separating hyper-plane (between classes k and l) is defined by the 

normal p-vector, in the third term on the right hand side, that we label b, 

𝑏 = 𝛴−1(𝜇𝑘 − 𝜇𝑙)  

The Characteristic Direction method is significantly more sensitive than existing methods for 

identifying DEGs. In our methodology, the chdir value is used as weight for the corresponding node 

and the final pathway graph is weighted with respect to edges with the mean chdir value of the 

corresponding gene values. This weight promotes the interconnecting nodes with high differential 

expression . 

Subsequently, in order to extract perturbed subpathways from pathways, we use some graph 

theoretical properties to determine the densely connected neighborhood of a node. Let G = (V, E) a 

weighted directed graph, where V is the node set and E the edge set, with wvu denoting the edge 

weight from node v to node u. With N(v) we represent the neighbors of node v. For a subgraph  

S⊆G, the internal degree NINT(v, S) of a node v∈S is defined as the number of edges connecting v with 

nodes within S and the external degree as the number of edges connecting v with nodes not 
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belonging to S. The weighted internal degree is defined as the sum of weights of internal edges 

divided by internal degree:  
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Similarly, we define external weighted degree. The density of a graph is defined as the number 

of edges divided by the number of all possible edges. The weighted density of a (sub)graph is 

defined as the sum of all edge weights over the number of all possible edges: 
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The algorithm operates on two phases, firstly the node set is expanded by selecting some of the 

external neighbors and secondly the selected node set is pruned. Initially, we start with a set S 

including only the NoI node s. Then, for each NoI’s neighbor v∈N(s), we compute the internal and 

external unweighted and weighted degree. In order to select a highly connected subset, a node v is 

included in the set S, if it satisfies the following two criteria: 

a
SvEXTNSvINTN

SvINTN


 ),(),(
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),(),( :2Criterion SvEXTNWSvINTNW   
 

where α is a parameter set for direct neighbors of NoI and for other nodes. After a fine tuning with 

repetitive trials, the optimal parameter value of α was set to 0.55 and 0.85 respectively.  

In the second phase we aim to obtain a more compact set by maximizing the weighted density. 

For this, we remove one by one nodes until we reach to a maximum value. The order of nodes is 

determined by the magnitude of the first criterion, with the less significant nodes examined first for 

removal. The algorithm is iterated in terms of the external neighbors of the selected nodes, until no 

more nodes can be added to the set S.  

Algorithm 1. Pseudocode of PerSubs Algorithm 

Input: NoI, G, α1, α2 

Output: final subpathway S 

I. S = {NoI} // initialize 

II. For each v in S    // inclusion step 

    a. Find neighbors N(v) 

    b. Keep not included neighbors: N(v) = N(v) − S  

    c. For every u in N(v) 

        i. Calculate NINT, NEXT, NWINT, NWEXT 

        ii. If u∈ N(NoI) 

            1. Evaluate if Criterion1 > α1 

        iii. Else 

            1. Evaluate if Criterion1 > α2 

        iv. Evaluate Criterion2 

        v. if Criterion1 = true AND Criterion2 = true 

            1. Include u: S = S∪u 

III. For each v in S ordered by increasing Criterion1    // pruning step 

    a. if DW(S − v) > DW(S) 

        i. Remove v: S = S − v 

IV. Repeat steps II and III until no new nodes added 
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The output of PerSubs is a list of subpathways that can serve as potential network biomarkers 

for the case under study. Further, we evaluate statistically the resulted subpathways in order to keep 

the most reliable ones based on a permutation strategy. The gene labels in the RNA-Seq dataset are 

randomly shuffled 1000 times and each time PerSubs is re-applied. The subpathways starting from 

the same gene are compared based on their average weight. For each subpathway, the p-value is the 

percentage of cases where the average weight is lower than the respective value in the real condition 

(p-value < 0.05). 

3. Results 

We applied PerSubs on mouse microarray data [18] that explore the extent of lung regeneration 

following catastrophic damage after infection with H1N1virus. In particular, the experiment 

contains samples from 3 colonies from control and H1N1 influenza treated lungs (12 days post 

infection). The complete dataset is deposited in NCBI’s Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/) and is accessible through the accession number GSE32600. By 

applying PerSubs, we detected subpathways (Figure 1) which contain both differentially expressed 

and co-expressed associated genes, as to their expression change between control and infection state. 

All non-metabolic pathway maps of Mus musculus (mmu) were downloaded from KEGG [21] and 

were converted to gene-gene networks based on the CHRONOS R Bioconductor package [11]. 

Influenza infection in the lungs causes severe inflammatory damage to the lung through a 

respiratory outbreak of the innate immune response and the resulting lung injury can lead to other 

complications or chronic damage if not treated [22]. Zooming into H1N1 influenza A strain, it has 

been shown to induce acute respiratory distress syndrome (ARDS), pneumonia, alveolar damage, 

hypoxemia, and massive increase in inflammatory cytokines [18]. Influenza is a very common 

respiratory pathogen and as such it has been extensively studied to reveal its infection kinetics and 

pathogenicity [18]. Comprehending the influenza infection phases and especially repair stage will be 

an enabling step towards preventing these complications by assisting the lung to recover  

properly [22]. 

In this work we explore the (sub)pathways perturbed after H1N1 viral infection of mouse lungs 

at a specific time point (12 days post infection (dpi)). In the original work of [18], the tissue damage 

based on immune cell infiltration displayed peak at 11 dpi, declined at 21 dpi and mostly cleared in 

the lung at 60 dpi. Also, in the interval 10–12 dpi the weight loss of animals reached a peak and 

recovered at 20 dpi. In this work we first identified a set of differentially expressed genes (DEGs) 

between control and infected samples and then applied PerSubs with each DEG as starting point to 

detect the perturbed sub-topologies. In Table 1, we present some representative identified KEGG 

pathway terms. The pathway “ECM-receptor interaction” was found significantly enriched in two 

Influenza A related studies [23,24]. It has been reported that cellular processes such as adhesion, 

dynamic behaviors and apoptosis, regulated by ECM-receptor interaction, influence the entry or 

replication of influenza viruses [23]. Regarding “TGF-b signaling”, it has been shown that 

respiratory viral infections offset secretion of TGF-β which in turn is implicated in decreasing 

pulmonary inflammation and extending host survival [25,26]. Also, TGF-β is involved in tissue 

repair and respiratory tract re-modeling of by stimulating matrix protein production, epithelial 

proliferation and differentiation. Moving forward, “Cytokine-cytokine receptor interaction” 

pathway has been shown to participate into activating the immune and inflammatory response to 

prevent from virus  infections [24]. Moreover, “PPAR signaling” and “complement and 

coagulation” cascades have been suggested to repair excessive tissue damage by exhibiting 

anti-inflammatory functions [27]. Finally, with respect to “leukocyte transedothelial migration”, it 

has been suggested that circulating blood leukocytes migrate to tissue injury and infection site to 

terminate the primary inflammatory trigger and thus assist tissue repair [28,29]. 
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Figure 1. Snapshot of KEGG pathway map (04610) “Coagulation and complement cascades” with the 

detected by PerSubs subpathway highlighted in red. 

In total, our results show that PerSubs extracted a repertoire of diverse subpathways that go in 

line with the findings of the original study and can serve as novel candidates for investigating 

further the host response and repair mechanisms. 

Table 1. Pathway terms detected by PerSubs along with the detected subpathway members. 

Pathway Names Subpathway Members References 

ECM-receptor interaction Gp1ba, Gp5, Itga2b, Itgav, Itgb3, Gp9, Vwf [23,24] 

TGF-beta signaling Acvr2a, Acvr2b, Inhba, Nodal [25,26] 

Cytokine-cytokine receptor interaction Tgfbr1, Tgfbr2, Tgfb2 [24] 

PPAR signaling Cpt-1, Cpt-2, Mcad, Aco, Ucp-1, Pparα [24,27] 

Leukocyte transendothelial migration Itgal, Itgb2, Icam1, Rhoa [28,29] 

Coagulation and complement cascades F12, F11, F9, F10, F2 [24] 
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