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Abstract: Tuberculosis (TB) is a world-wide health problem with approximately 2 billion people
infected with Mycobacterium tuberculosis (Mtb, the causative bacterium of TB). The pathologic
hallmark of Mtb infection in humans and Non-Human Primates (NHPs) is the formation of spherical
structures, primarily in lungs, called granulomas. Infection occurs after inhalation of bacteria into
lungs, where resident antigen-presenting cells (APCs), take up bacteria and initiate the immune
response to Mtb infection. APCs traffic from the site of infection (lung) to lung-draining lymph
nodes (LNs) where they prime T cells to recognize Mtb. These T cells, circulating back through blood,
migrate back to lungs to perform their immune effector functions. We have previously developed
a hybrid agent-based model (ABM, labeled GranSim) describing in silico immune cell, bacterial (Mtb)
and molecular behaviors during tuberculosis infection and recently linked that model to operate
across three physiological compartments: lung (infection site where granulomas form), lung draining
lymph node (LN, site of generation of adaptive immunity) and blood (a measurable compartment).
Granuloma formation and function is captured by a spatio-temporal model (i.e., ABM), while LN
and blood compartments represent temporal dynamics of the whole body in response to infection
and are captured with ordinary differential equations (ODEs). In order to have a more mechanistic
representation of APC trafficking from the lung to the lymph node, and to better capture antigen
presentation in a draining LN, this current study incorporates the role of dendritic cells (DCs)
in a computational fashion into GranSim. Results: The model was calibrated using experimental
data from the lungs and blood of NHPs. The addition of DCs allowed us to investigate in greater
detail mechanisms of recruitment, trafficking and antigen presentation and their role in tuberculosis
infection. Conclusion: The main conclusion of this study is that early events after Mtb infection
are critical to establishing a timely and effective response. Manipulating CD8+ and CD4+ T cell
proliferation rates, as well as DC migration early on during infection can determine the difference
between bacterial clearance vs. uncontrolled bacterial growth and dissemination.

Keywords: agent-based model; multi-compartmental model; tuberculosis; dendritic cells; uncertainty
and sensitivity analysis

1. Introduction

Tuberculosis (TB) remains one of the main causes of death world-wide and the leading cause due
to an infectious disease [1]. For such an ancient disease, it is surprising that so little is still known
about what provides a protective response against infection with Mycobacterium tuberculosis (Mtb),
the causative agent. When infection occurs with Mtb, two main outcomes are observed. One is active
disease where the host is unable to contain infection, which if left untreated results in death of the
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host (about 5%–10% of those infected). Active disease can occur directly after infection (primary TB),
after reactivation (see below) or in the case of re-exposure (which is probably the most common
pathway leading to disease in highly endemic countries). The difference between re-exposure and
re-activation likely plays a role in the immune response observed. The second outcome is latent
infection. This occurs when the host controls infection, which remains clinically latent even though
bacteria are still harbored (about 90% of infected) [2]. Latent infection can become reactivated if the host
is compromised in some way leading to active disease. There is still no efficacious vaccine against Mtb,
although ~30 vaccines are in various stages of testing and clinical trials (http://www.aeras.org/).
Long regimens of antibiotics (6–9 months) with multiple drugs are needed to control infection.
Antibiotics also represent a double-edged sword, since they lead to Mtb resistance (which is rapidly
increasing), especially due to long time regimens that are naturally associated with non-compliance.
New treatment and prevention strategies are desperately needed to make a major impact on TB
morbidity and mortality. However, the host-pathogen interactions occurring during Mtb infection are
complex and span across multiple biological scales, ranging from bacterial and cellular to organ to
an entire host, making research on TB challenging.

When Mtb bacteria are inhaled into lungs, they are taken up by two types of lung resident
immune cells that are known generally as antigen-presenting cells (APCs): these are macrophages
(MΦs) and dendritic cells (DCs). Mtb is preferentially an intracellular pathogen, however their growth
rate is extremely slow compared to most bacteria (days rather than minutes). APCs are typically
unable to kill Mtb unless they are in a highly activated state, and thus bacteria grow and burst out of
these cells, killing their host cell; and are taken up by new APCs. This process continues, leading to
the development of the hallmark of Mtb infection: a granuloma. Granulomas are a collection of
host immune cells (e.g., macrophages, DCs and T cells) together with bacteria and infected cells,
with a centralized necrotic region. It is presumed that the organization is an attempt to contain or
eliminate the infection, but Mtb have evolved mechanisms that permit survival within granulomas.
Within a single host, several granulomas form in response to the initial infection dose, and these
granulomas are heterogeneous with variable trajectories, complicating the study of this infection [3–5].
For example, in some hosts none of the granulomas are successful at controlling bacterial replication,
and those that fail lead to a pattern of dissemination and new granuloma formation, resulting in lung
destruction and active TB. In other hosts, granulomas can all be successful and the host can develop
latent infection. Thus infection dynamics play out at the scale of granuloma. T cells play a central role
in protection against TB [6–11], as best exemplified by the dramatic susceptibility of HIV+ humans to
TB, even in the early stages of HIV infection [12–14]. Other immune cells are increasingly shown to play
key roles in the immune dynamics of Mtb infection and T cells are interdependent on their dynamics.

What has received far less attention are the cells of the early immune response in Mtb infection,
e.g., DCs, and it is likely that these cells bridge to long-term immunity in important and key ways.
Figure 1 shows how dynamics occurring in lungs, lymph nodes and blood are dynamically linked and
each participates in the host-pathogen interactions describing Mtb infection. Most experimental studies
focus on a single biological (length and/or time) scale of interest, e.g., examination of immune cells in
blood or a particular signaling pathway. To truly understand the complex in vivo immune response to
Mtb, it is important to integrate information from experiments performed at multiple scales and over
multiple physiological compartments (lung, blood, lymphatics, and lymph nodes). To address this
complex disease we thus need a comprehensive and integrative tool to generate testable hypotheses
about what characterizes an effective immune response to Mtb infection. We use a mathematical and
computational modeling approach to identify key features of the host immune system that can serve
as targets for control of infection. We focus specifically on the role of dendritic cells as they serve as the
link between physiological compartments of lungs and lymph nodes (LNs) that generate activated
immune cells that can traffic to lung granulomas to aid in infection control.

http://www.aeras.org/
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Figure 1. Overview of the immune response to Mycobacterium tuberculosis (Mtb) infection. Infection 
begins in lungs and antigen-presenting cells (APCs) such as dendritic cells (DCs) take up Mtb and 
then traffic from lungs to lung draining lymph nodes (LNs) where they prime T cells via the process 
of antigen presentation. This occurs when pieces of Mtb (called antigens) are presented on the 
surface of dendritic cells (DCs) to T cells to activate T cells. These T cells migrate back to the lungs via 
blood, and participate in granuloma formation and function, including functions such as activation 
of macrophages to kill their intracellular Mtb [9,15]. Some T cell subsets that have been primed by 
DCs (cytotoxic CD8+ T cells) can kill infected macrophages directly [11,16,17]. 

Mathematical/computational models are powerful tools for deciphering the outcomes of 
multiple simultaneous, nonlinear processes. In particular, agent-based models (ABMs) link 
molecular and cellular behavior—and therapeutic interventions aimed at molecules and cells—with 
tissue scale outcomes, such as a growing or stable granulomas or containment of infection. Excellent 
reviews on ABMs can be found in [15–18]. Because we are interested in individual cellular behavior, 
ABMs are the appropriate modeling type here.  

While we have modeled the host-Mtb response using non-linear ordinary differential equation 
(ODE) systems [19–23], we and others have built ABMs that capture both the spatial and temporal 
dynamics of granuloma formation in the lung [20,22,24–28]. Our modeling framework, GranSim, 
focuses on immune dynamics in the context of bacterial dynamics is a hybrid agent-based model (for 
full details see [29]). We have used GranSim to explore drug treatment during Mtb infection [30–32] 
and performed virtual clinical trials to predict optimal treatment strategies [30–35]. Here we explore 
a version of GranSim that is multi-compartment, where the hybrid ABM is connected to two 
non-linear systems of ODEs tracking compartmental models capturing dynamics of blood and lung 
draining LNs. This multi-compartment model was recently used to explore the existence of 
biomarkers for TB [36]. However in that model, we only had a mathematical phenomenological 
proxy for APCs moving from the lung to the LN and similarly a probability function capturing 
recruitment of T cells from the LN back to the granuloma. Here, we replace the phenomenological 
expressions for these processes by explicitly including DCs in the lung model GranSim, and tracking 
their trafficking from lung to LN where they orchestrate priming of T cells. We use our sensitivity 
and uncertainty analyses techniques to analyze the 3-compartmental hybrid system and identify 
which mechanisms are driving different granuloma outcomes in the lung [37]. In addition, we derive 
a way to scale our single granuloma lung model to a whole host scale so that we are not only able to 
calibrate our model with data, but also so we are able to compare our results with data derived from 
non-human primates (NHP) as we have done previously [36]. Our predictions can be used to predict 
how certain treatments could improve infection outcomes. 

Figure 1. Overview of the immune response to Mycobacterium tuberculosis (Mtb) infection. Infection
begins in lungs and antigen-presenting cells (APCs) such as dendritic cells (DCs) take up Mtb and
then traffic from lungs to lung draining lymph nodes (LNs) where they prime T cells via the process of
antigen presentation. This occurs when pieces of Mtb (called antigens) are presented on the surface
of dendritic cells (DCs) to T cells to activate T cells. These T cells migrate back to the lungs via
blood, and participate in granuloma formation and function, including functions such as activation of
macrophages to kill their intracellular Mtb [9,15]. Some T cell subsets that have been primed by DCs
(cytotoxic CD8+ T cells) can kill infected macrophages directly [11,16,17].

Mathematical/computational models are powerful tools for deciphering the outcomes of multiple
simultaneous, nonlinear processes. In particular, agent-based models (ABMs) link molecular and
cellular behavior—and therapeutic interventions aimed at molecules and cells—with tissue scale
outcomes, such as a growing or stable granulomas or containment of infection. Excellent reviews on
ABMs can be found in [15–18]. Because we are interested in individual cellular behavior, ABMs are the
appropriate modeling type here.

While we have modeled the host-Mtb response using non-linear ordinary differential equation
(ODE) systems [19–23], we and others have built ABMs that capture both the spatial and temporal
dynamics of granuloma formation in the lung [20,22,24–28]. Our modeling framework, GranSim,
focuses on immune dynamics in the context of bacterial dynamics is a hybrid agent-based model
(for full details see [29]). We have used GranSim to explore drug treatment during Mtb infection [30–32]
and performed virtual clinical trials to predict optimal treatment strategies [30–35]. Here we explore
a version of GranSim that is multi-compartment, where the hybrid ABM is connected to two non-linear
systems of ODEs tracking compartmental models capturing dynamics of blood and lung draining LNs.
This multi-compartment model was recently used to explore the existence of biomarkers for TB [36].
However in that model, we only had a mathematical phenomenological proxy for APCs moving from
the lung to the LN and similarly a probability function capturing recruitment of T cells from the LN
back to the granuloma. Here, we replace the phenomenological expressions for these processes by
explicitly including DCs in the lung model GranSim, and tracking their trafficking from lung to LN
where they orchestrate priming of T cells. We use our sensitivity and uncertainty analyses techniques
to analyze the 3-compartmental hybrid system and identify which mechanisms are driving different
granuloma outcomes in the lung [37]. In addition, we derive a way to scale our single granuloma lung
model to a whole host scale so that we are not only able to calibrate our model with data, but also so
we are able to compare our results with data derived from non-human primates (NHP) as we have
done previously [36]. Our predictions can be used to predict how certain treatments could improve
infection outcomes.
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2. Materials and Methods

2.1. GranSim: Computational Model of Granuloma Formation and Function in the Lung

The pathologic hallmark of Mycobacterium tuberculosis (Mtb) infection in humans and NHPs
is the formation of spherical structures, primarily in the lungs, called granulomas. Infection occurs
after inhalation of Mtb into the lungs. Resident antigen presenting cells (APCs) such as MΦs and DCs,
take up Mtb and initiate granuloma formation. DCs traffic to lung-draining LNs where T lymphocytes
are primed. These T lymphocytes migrate to the lung and participate in granuloma formation and
function (see Figure 1). We have developed a hybrid agent-based model (ABM, labeled GranSim)
describing in silico cellular (i.e., macrophages and T cells), bacterial and molecular behaviors during
Mtb infection in three physiological compartments: lung (site of infection), draining lymph node
(LN, site of generation of adaptive immunity) and blood (a measurable compartment) [36].

Our computational model captures single granuloma formation and function in the
lung [24,25,38,39], while LN and blood compartments [19,40] represent dynamics of the whole body
in response to infection, i.e., we assume they are well-mixed compartments.

GranSim captures cellular recruitment to lungs, chemotaxis of cells, changes of cell states (activation,
infection, etc.), cytokine and chemokine secretion, as well as effector T cell functions [24,25,38,39,41].
Probabilistic interactions between immune cells and bacterial populations are described by sets of rules
between immune cells and Mtb in the lung that are updated based on new biological data [39,42,43].
We also capture multi-scale events, such as tumor necrosis factor (TNF) or interleukin-10 (IL-10)
receptor/ligand binding and trafficking and intracellular signaling events with ordinary differential
equations (ODEs) that are solved within each agent [38,39,41–43]. Diffusion of relevant chemokines
and cytokines is performed by solving the relevant partial differential equations (PDEs) [44].
Each simulation follows events over several hundred days, building over time to track thousands of
individual cells (agents). Based on our recent work [32], we represent the section of lung tissue where
granuloma typically develops with a larger spatial grid (4 × 4 mm)to better capture physiological
granuloma sizes (with mean and standard deviation of 2 and 0.5 mm, respectively, on a collection of
~500 granulomas, see [32] for details). This new, larger grid size comprises a collection of 200 × 200
micro-compartments sized to a macrophage diameter of ~20 mm. All of the rules and an executable
file for GranSim can be found at [29].

2.2. Multi-Compartment Gransim: Tracking Cell Dynamics in the Lymph Node and Blood

Our unique multi-scale and multi-physiological compartmental, hybrid computational model
generates in silico data on dynamics of infection in both blood and lymph node, capturing formation
of independent granulomas in lungs and at the same time T cell profiles in blood. In a recent
study [36], we easily captured LN and blood dynamics using a compartmentalized system of non-linear
31 ordinary differential equations (ODEs), where we tracked CD4+ and CD8+ T cells with different
memory classes (i.e., Naïve, Effector, Central and Effector Memory), both Mtb-specific and non
Mtb-specific. Mtb-specific T cells represent a generic class of antigen-specific T cells, assuming that
all Mtb-specific antigens are equally immune-responsive. This system of ODEs can be found in the
Supplementary File 1.

2.3. Adding DCs to GranSim

In order to have a better representation of APC trafficking from the lung to the lymphatics,
herein we added a new class of cells to GranSim, namely dendritic cells (DCs). DCs are considered
professional APCs, since their main task is to sample tissues and blood for foreign cells/non-self
particles/antigen and, when needed, to traffic to specific organ draining lymph nodes to initiate
a specific immune response by presenting their findings to T cells. The initial number of resident
DCs in lungs is based on a fraction (percentOfMacInitNumber) of resident macrophages in the lung,
and consequently on the grid. These numbers are calibrated from experimental staining of healthy
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lung tissues in our previous studies [20,22]. DC recruitment to the lungs is executed with a random
probability of percentOfMacInitNumber. Once on the grid, we assume that a DC moves and secretes
cytokines and chemokines similarly to [45,46].

The first major difference between macrophages and DCs in our model is that macrophages
can take up Mtb and kill their intracellular load, while it has been shown that DCs do not kill their
intracellular burden [47–49]. Macrophages can do this task more efficiently when stimulated by
cytokines such as INF-γ. Another major difference between macrophage and DC dynamics in our
model is that once a DC interacts directly (or indirectly) with Mtb antigens, it is labeled as “stimulated”.
Mtb antigen stimulation can occur in the following ways: (i) DCs uptake Mtb; (ii) Infected Macs
are in the DC in the Moore Neighborhood (i.e., defined as the grid spaces on a two-dimensional
square lattice that are composed of a central grid space and the eight grid spaces that surround it) [50];
(iii) Extracellular Mtb are in the Moore Neighborhood of a DC and (iv) Dead Mtb are in the Moore
Neighborhood (i.e., the surrounding 8 grid compartments of a given grid space in the ABM) of the DC.

Once DCs are stimulated, a parameter determines the time of DC exit from the lung and allows
it to migrate into the lymphatics (exitInterval), which is the conduit to the draining LN. In contrast,
macrophages never exit the grid, they can only die (via age or by being killed a number of different
ways (Apoptosis, induced cell death by cytoxic T cells, etc.). The lymphatics are represented in the
model as a virtual compartment to mimic spatial delays during DC trafficking from the site of infection
to the LN. After exiting the lung, DCs are placed in a queue, where another parameter (exitToLN) tracks
the physiological delay observed for DCs to reach the draining lymph node. This delay is observed on
average to be about a few days to a week in most infections [51]. Once in the LN, DCs perform antigen
presentation leading to T cell priming and activation as described in [19,36].

2.4. Scaling to Host Feature

When a host is infected with Mtb, not one, but a large number of granulomas form in the
lungs over time. The median number of granulomas at 4 weeks was 46 ± 21 (range 13–97, n = 14
monkeys) [52]. This number is due to the bacterial dose that the host receives, and also the ability of
bacteria to disseminate in the lung. GranSim currently captures granuloma formation and function
of a single granuloma during TB infection in the lung. We now explicitly introduce a scaling factor
(i.e., scalingMDC) to capture TB infection in the whole lung. In other words, we multiply the number
of DCs migrating to the LN from our single granuloma model by scalingMDC to represent multiple
granulomas draining DCs into the LN. This larger number of DCs is then passed to the ODE system
representing the LN-Blood compartments, where the DC Equation (S1) is pulsed accordingly (see more
details below). We calibrate this scaled GranSim (that is coupled to the LN and blood ODE model) to
experimental data derived in the lung and the blood for each non-human primate (NHP). The blood
data is available longitudinally, while the lung data is taken from many different NHP at the time of
death (necropsy) over different time, that we collate into a time series (see section below on NHP data
for a full explanation and also [19]).

We assume that the majority of the granulomas found in the lung at necropsy (i.e., the parameter
scalingMDC) have developed at the time of initial infection. The scaling to host step is performed by
multiplying the number of stimulated DCs in our in silico granuloma by scalingMDC. The resulting
quantity pulses Equation (S1) of the system of ODEs, namely the equation capturing DC dynamics
(see Supplementary File 1 for all the details on the equations cited in the manuscript).

Figure 2 shows an example of the scaling to host procedure with scalingMDC = N. Antigen
presentation (see Equations (S2) and (S11)) and T cell priming (see Equations (S3)–(S6) and (S12)–(S15))
are then performed in the lymph node compartment and many different T cell phenotypes are
generated and migrate from LN into the blood. Some of these T cells traffic through blood and reach
the site of infection. This is driven by chemokine gradients and many signals induced by infection
and inflammation in the lung. Since we only model one granuloma in detail (i.e., GranSim), we recruit
Effector-(E) and Effector Memory-(EM) T cells to GranSim first and update T cell levels in blood. Then,
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we perform recruitment N−1 times to mimic recruitment in the remainder of the granulomas in the
lung. Recruitment in these N−1 granulomas is performed assuming similar recruitment conditions at
their vascular sources. At the end of each recruitment step, the blood levels are updated reflecting the
number of E- and EM-T cells that have successfully migrated to the other granulomas.
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function of cells and tissues in the body during a single imaging session. FDG is a PET probe that 
incorporates into metabolically active host cells. FDG avidity is calculated by standardized uptake 
values (SUVs), a measure of the metabolic activity of each granuloma and is corrected for granuloma 
size [53]. The red (“hot”) spots represent inflammation within granulomas indicating a number of 
granulomas are present (image courtesy of Joanne Flynn lab). A diagram of our in silico 
multi-compartment hybrid model is shown in Panel (B). An Agent-Based Model captures formation 
of a single granuloma in the lung, while a system of 31 ordinary differential equations (ODEs) 
captures the lymph node coupled to the blood dynamics of the whole host. Panel (C) illustrates the 
scaling to host methodology implemented to capture recruitment to the other granulomas. Where 
N-1 granuloma remain in the lung with the Nth being the one we model with GranSim. 
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Figure 2. Scaling to host methodology. Our in silico model captures single granuloma formation in
the lung. Panel (A) shows a PET-CT scan of the lung of an infected Non-Human Primate (NHP).
An important and likely independent driver of Mtb infection outcome is inflammation. In vivo
18F-Fluorodeoxyglucose (FDG)-PET/CT signals are used to measure the extent of inflammation both in
humans [3] and in non-human primates infected with Mtb [52,53]. PET-CT scan is an advanced nuclear
imaging technique which combines positron emission tomography (PET) and computed tomography
(CT) into one machine. A PET/CT scan reveals information about both the structure and function of
cells and tissues in the body during a single imaging session. FDG is a PET probe that incorporates
into metabolically active host cells. FDG avidity is calculated by standardized uptake values (SUVs),
a measure of the metabolic activity of each granuloma and is corrected for granuloma size [53]. The red
(“hot”) spots represent inflammation within granulomas indicating a number of granulomas are present
(image courtesy of Joanne Flynn lab). A diagram of our in silico multi-compartment hybrid model
is shown in Panel (B). An Agent-Based Model captures formation of a single granuloma in the lung,
while a system of 31 ordinary differential equations (ODEs) captures the lymph node coupled to the
blood dynamics of the whole host. Panel (C) illustrates the scaling to host methodology implemented
to capture recruitment to the other granulomas. Where N−1 granuloma remain in the lung with the
Nth being the one we model with GranSim.

2.5. Uncertainty and Sensitivity Analysis

We quantify the importance of each host mechanism involved directly and indirectly in the
infection dynamics using statistical techniques known as uncertainty and sensitivity analyses. In our
recent published review on uncertainty and sensitivity (US) analyses techniques [54], we showed how
multidimensional parameter spaces can be globally sampled in a computationally efficient manner
by Latin hypercube sampling (LHS) algorithms. Correlations between model output and parameter
values can then be determined using Partial Rank Correlation Coefficient (PRCC), which varies
between −1 (perfect negative association/correlation between model output and parameters) and
+1 (perfect positive association/correlation between model output and parameters). A PRCC value
of zero or close to zero can be interpreted as having no (significant) association/correlation between
model output and parameters. Statistical tests are available to assess whether a PRCC is significantly
different from 0, as well as if two PRCCs are significantly different (see [37] for a complete review).
In this work we specifically address time-dependent correlations that can be tracked by plotting time



Computation 2016, 4, 39 7 of 25

courses of significant PRCCs with respect to many outputs classified as contributing to inflammation,
infection, adaptive immune response and blood/lymph node factors. By combining both of these
analysis tools [55–58], we guide our understanding as to how and what extent variability in model
mechanisms captured by parameter values can affect infection outcomes in an ordered fashion. We have
successfully used this approach in our previous studies, both equation-based (i.e., ordinary, partial and
delay differential equation systems), as well as agent-based model settings [24,25,59–61].

Our computational model is a hybrid model which combines a deterministic system of ordinary
differential equations with a stochastic agent-based model. Thus we need to address both epistemic
(or subjective, reducible, type B uncertainty, see [62]) and aleatory (or stochastic, irreducible, type A)
uncertainty (see [37,62] for details). Epistemic uncertainty is driven by input/parameter variation,
which is assumed to be constant throughout the in silico simulation. Aleatory uncertainty emerges
anytime stochastic inputs/parameters are built into an in silico simulation. Thus, unless the random
generator selects the same seed, a stochastic model will always generate different outcomes.

To address epistemic uncertainty we perform 1000 parameter sweeps (i.e., parameter samples),
while aleatory uncertainty is addressed by performing 10 replications for each parameter
sweep/combination. This yields 10,000 replications of the model that gives us a solid basis for
analysis. We then calculate PRCCs with respect of the many outcomes under investigation on the
mean of the 10 replicates to control for random effects and aleatory uncertainty.

Given the multi-compartmental nature of our system, detailed uncertainty and sensitivity (US)
analyses were applied to our model to explore model dynamics both within the same compartment
(intra-compartmental/intra-scale) and between different compartments or physiological scales
(inter-compartmental/inter-scale). Here, we vary 50 parameters total: 8 initial conditions for T
cell memory phenotypes in the blood, 36 parameters in the LN-Blood compartment and 6 parameters
in the lung compartment (see Tables 1 and 2 for the parameters varied and the ranges we used).

Table 1. Initial conditions. These values are based on the experimental data collected and published in
our previous work [36]. The values and references for the scaling parameters (i.e., α, λ and host_LN
(lymph node)) are given in Appendix A.

Variable Value Units Description

APC 0 Cell count Antigen presenting cell proxy in the lymph node
NLn,4 NB,4 × (α/host_Ln) Cell count Mtb-specific LN Naïve CD4+ T cell
PLn,4 0 Cell count Mtb-specific LN Precursor CD4+ T cell

EMLn,4 0 Cell count Mtb-specific LN Effector Memory CD4+ T cell
CMLn,4 0 Cell count Mtb-specific LN Central Memory CD4+ T cell

NB,4 [255, 610] × λ Cell/mm3 Mtb-specific Blood Naïve CD4+ T cell
EB,4 0 Cell/mm3 Mtb-specific Blood Effector CD4+ T cell

CMB,4 0 Cell/mm3 Mtb-specific Blood Central Memory CD4+ T cell
EMB,4 0 Cell/mm3 Mtb-specific Blood Effector Memory CD4+ T cell
NLn,8 NB,8 × (α/host_Ln) Cell count Mtb-specific LN Naïve CD8+ T cell
PLn,8 0 Cell count Mtb-specific LN Precursor CD8+ T cell

EMLn,8 0 Cell count Mtb-specific LN Effector Memory CD8+ T cell
CMLn,8 0 Cell count Mtb-specific LN Central Memory CD8+ T cell

NB,8 [255, 610] × λ Cell/mm3 Mtb-specific Blood Naïve CD8+ T cell
EB,8 0 Cell/mm3 Blood Effector CD8+ T cell

CMB,8 0 Cell/mm3 Blood Central Memory CD8+ T cell
EMB,8 0 Cell/mm3 Blood Effector Memory CD8+ T cell

NLn,nc4 NB,nc4 × (α/host_Ln) Cell count Non-Mtb-specific LN Naïve CD4+ T cell
CMLn,nc4 CMB,nc4 × (α/host_Ln) Cell count Non-Mtb-specific LN Central Memory CD4+ T cell

NB,nc4 [255, 610] × (1 − λ) Cell/mm3 Non-Mtb-specific Blood Naïve CD4+ T cell
EB,nc4 [47, 254] × (1 − λ) Cell/mm3 Non-Mtb-specific Blood Effector CD4+ T cell

CMB,nc4 [83, 300] × (1 − λ) Cell/mm3 Non-Mtb-specific Blood Central Memory CD4+ T cell
EMB,nc4 [50, 255] × (1 − λ) Cell/mm3 Non-Mtb-specific Blood Effector Memory CD4+ T cell
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Table 1. Cont.

Variable Value Units Description

NLn,nc8 BN,nc8 × (α/host_Ln) Cell count Non-Mtb-specific LN Naïve CD8+ T cell
CMLn,nc8 CMN,nc8 × (α/host_Ln) Cell count Non-Mtb-specific LN Central Memory CD8+ T cell

NB,nc8 [100, 672] × (1 − λ) Cell/mm3 Non-Mtb-specific Blood Naïve CD8+ T cell
EB,nc8 [43, 317] × (1 − λ) Cell/mm3 Non-Mtb-specific Blood Effector CD8+ T cell

CMB,nc8 [36, 262] × (1 − λ) Cell/mm3 Non-Mtb-specific Blood Central Memory CD8+ T cell
EMB,nc8 [11, 156] × (1 − λ) Cell/mm3 Non-Mtb-specific Blood Effector Memory CD8+ T cell

We examined the following 16 time points (shown as days post infection) during infection
progression, chosen to match the time points of the NHP blood data samples, namely 1, 10, 20, 30, 42,
50, 56, 60, 70, 84, 90, 100, 111, 140, 167 and 200 days. A list of outputs analyzed with the correspondent
sensitivity coefficients is shown in Tables 3–5, as well as in Figures 5–7.

2.6. Experimental Data: Non Human Primate Lung and Blood Data

For the purpose of model calibration both in the lung and blood compartments, we used the
dataset described in our recent work [19]. Briefly, for the blood compartment, a total of 58 cynomolgus
macaques (Macacca fasicularis) or non-human primates (NHPs) were previously infected with a low
dose of Mtb (Erdman strain, ~25–50 CFU). Blood samples were taken from 28 NHPs at the following
time-points: pre Mtb infection and at days 10, 20, 30, 42, 56, 90 (or M3, 3 months), 120 (or M4),
150 (or M5) and 180 (or M6) post infection. Levels of T cells were measured, and stratified by CD4+
and CD8+ memory sub-populations based on the surface markers on the cells (expression of CD45RA
and CD27, namely Naïve-N [CD45RA+ CD27+], Central Memory-CM [CD45RA− CD27+], Effector
Memory-EM [CD45RA− CD27−] and Terminally Differentiated-TD or Effector-E [CD45RA+ CD27−]).
For experimental data in the lung, numbers of granulomas and numbers of bacteria (referred
to as colony forming units, or CFUs) per granuloma were collected at necropsy from 43 NHPs.
See Supplementary Files 2 and 3.

3. Results

The results will be presented in two main parts. First we show how the updated model was
calibrated to the experimental data to ensure the model is appropriate for study. In the second part
we use uncertainty and sensitivity analysis methodologies applied to the comprehensive model to
investigate and predict mechanisms that drive infection and other outcomes during the interplay
between Mtb and the host.

3.1. Model Calibration—Lung and Blood Compartments

Our granuloma models were developed, calibrated and validated using extensive data primarily
from NHPs and humans, and where lacking, from mice [21,24,25,34,36,38,39,41,63,64]. We calibrated
the current model to NHP experimental data in the lung (i.e., bacteria known as colony forming units,
or CFU per granuloma) and blood (memory T cell levels). Tables 1 and 2 show the ranges used to
generate our in silico dataset of 3000 model simulations of CFU dynamics in the lung as well as T cell
dynamics in the blood. Figure 3a shows our model calibration to experimental data on the number of
bacteria (given as CFU, or colony-forming-units) per granuloma from the lungs of NHPs [32,38,42].
GranSim also provides the ability to not only track temporal dynamics of cells and molecules but
also their spatial distribution, which can be validated directly by experimental data that are also
provided from NHP granulomas. This allows for comprehensive spatial and temporal investigation
of mechanisms driving the heterogeneity and variability that is observed in granuloma types and
their corresponding outcomes (see Figure 3b for examples of multiple in silico granuloma snapshots
taken from the 3000 simulations and Figure 3 from [36] for examples of a comparison between a lung
granuloma from an NHP with one generated from GranSim).
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data on NHP CFU/granuloma (with the solid red line representing the median, and the dotted red 
lines representing the min and max values in the NHP data). The median trajectories for both the 
NHP and in silico data are calculated including the granulomas that cleared infection (Mtb < 1), 
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the points in the time courses of panel (a) 
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measured in [36] (see Figure 4). Blood NHP experimental data are compared to median, 5th and 95th 
percentiles of our 3000 model simulations in the blood/LN compartments. Due to the limited and 
extremely variable NHP dataset that was available from the blood compartment, minimum and 
maximum ranges at each time point were chosen across all the subjects in order to establish the 
boundaries of our model simulations. Both the interpretation and accuracy of the measures of these 
different memory phenotypes in vitro are still being assessed (see [36] for a complete discussion of 
the uncertainty and variability associated with the NHP blood data and the current state-of-the-art 
in terms of cell profiling and Mtb-specificity). Currently the variability associated with each blood 
measure is not quantifiable experimentally (experiments by our collaborators are in progress in 
order to give us a better understanding of the experimental pure error for each blood assay). Thus, 
our major goal in calibrating blood dynamics was to ensure that our in silico simulations fell 
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Figure 3. Computational model calibration: LUNG. (a) Time courses of CFU per granuloma. In red are
shown NHP experimental data (median, max and min) for colony-forming-units (CFU)/granuloma
(see details in the Supplementary File 2. They are plotted here versus our in silico datasets (black) of
CFU/granuloma (lung compartment) from our computer simulations of 3000 granulomas coupled
to the blood and LN dynamics). The x-axis shows a time span of infection up to 200 days to match
the NHP blood data. The y-axis represents bacteria levels as CFU/granuloma. The in silico dataset
of time courses of CFU/granuloma generated in the lung compartment (black circles, with the black
solid line representing the median trajectory) are plotted together with experimental data on NHP
CFU/granuloma (with the solid red line representing the median, and the dotted red lines representing
the min and max values in the NHP data). The median trajectories for both the NHP and in silico data
are calculated including the granulomas that cleared infection (Mtb < 1), while the min trajectories
excluded them; (b) Two snapshots of in silico granuloma corresponding to the points in the time
courses of panel (a).

The current computational model was also calibrated with respect to blood T cell dynamics as
measured in [36] (see Figure 4). Blood NHP experimental data are compared to median, 5th and
95th percentiles of our 3000 model simulations in the blood/LN compartments. Due to the limited
and extremely variable NHP dataset that was available from the blood compartment, minimum and
maximum ranges at each time point were chosen across all the subjects in order to establish the
boundaries of our model simulations. Both the interpretation and accuracy of the measures of these
different memory phenotypes in vitro are still being assessed (see [36] for a complete discussion of
the uncertainty and variability associated with the NHP blood data and the current state-of-the-art
in terms of cell profiling and Mtb-specificity). Currently the variability associated with each blood
measure is not quantifiable experimentally (experiments by our collaborators are in progress in
order to give us a better understanding of the experimental pure error for each blood assay). Thus,
our major goal in calibrating blood dynamics was to ensure that our in silico simulations fell reasonably
within the general behavior of the data (e.g., medians), rather than reproducing its large variability
(e.g., min/max). Figure 4 illustrates how the model recapitulates the experimental data of host cell
classes. Specifically, the predictions for the median trajectories of the Central Memory phenotypes are
only affected for the maximum ranges. This can be explained by our uncertainty analysis assumptions.
We assumed, a priori, uniform probability density functions for all the parameters and initial conditions
that we varied (see Uncertainty Analysis section), thus we were forced to use conservative ranges for
the Central Memory initial conditions in order to place the model median initial condition close to the
median of the experimental data.
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about mechanisms playing key roles in immune protection, controlled inflammation, and in general 

Figure 4. Computational model calibration (blood compartment). NHP experimental data on blood
T cell phenotypes (see Supplementary File 3) are plotted here versus the in silico datasets of blood T
cell phenotypes (blood compartment), from our computer simulations of 3000 granulomas coupled
to the blood and LN dynamics. The x-axis shows a time span of infection up to 200 days to match
the NHP blood data. The y-axis represents cells/cm3. (a–h) In silico dataset of 3000 time courses
of 8 T cell classes generated in the blood compartment (black solid line [mean] and black dashed
lines [5th and 95th percentiles]) compared to experimental data on T cell phenotypes in the blood of
Mtb-infected NHPs (red dashed lines with red open circles, representing the min and max). For the
minimum and maximum of the NHP data we chose the lowest and highest values at any time point
across all the NHPs. In silico predictions are displayed as median (black solid line) and minimum and
maximum (dashed black lines). We show Naïve CD4+ T cells (a) and CD8+ T cells (e); Central Memory
CD4+ T cells (b) and CD8+ T cells (f); Effector CD4+ T cells (c) and CD8+ T cells (g) and Effector
Memory CD4+ T cells (d) and CD8+ T cells (h). The in silico data have been obtained by summing the
respective Mtb-specific and non Mtb-specific equations of the blood compartment of the computational
model [36].

3.2. Bacterial, CD4 and CD8 Proliferation Impact Infection Burden at the Granuloma Site

After the model was adequately calibrated to the experimental data, we used it to ask questions
about mechanisms playing key roles in immune protection, controlled inflammation, and in general
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adaptive immune response magnitude and timing during infection. Inflammation is associated with
an immune response that is mounted in response to an infection. Typically, once infection is reduced
and cleared, inflammation subsides. To adequately investigate mechanisms driving infection and
inflammation, we perform uncertainty and sensitivity analysis (US/A) on many outcomes of the model
(see Appendix B) at different times during the simulations, from the early onset (first 2 months), up to
200 days post infection. The results for the main mechanisms driving infection (e.g., total bacterial
burden, or infected cells) are shown in Table 2.

Table 2. Significant Partial Rank Correlation Coefficients (PRCCs) for inflammation outcomes. List of
all the parameters/mechanisms (rows) that have a significant (i.e., p < 10−3) PRCC with respect to
outputs of the model that are directly related to some markers of infection (columns). See Appendix B
for a detailed description of the outcomes analyzed here. A + (or −) indicates a positive (or negative)
correlation between the parameter and the infection level outcome. The magnitude/strength of the
correlation is given by the number of + (or−). The table recapitulates, whenever possible, the dynamics
over time. The outputs with * are selected as examples to illustrate PRCC time courses (see Figure 5).
Ext Mtb means extracellular bacteria that is not inside DCs or macrophages, Tot Mtb means total
bacteria intracellular and extracellular, Gran size means actual measure of the granuloma diameter.
The parameters τ define thresholds for T cell recruitment at each vascular source (in terms of number
of molecules). The parameter λ represents the frequency of Mtb-specific Naïve T cells in the blood/LN
(see Appendix A for details on all the parameters listed below).

INFECTION (LUNG)

Parameters Tot Mtb * Ext Mtb Total Infected Macs * Total Infected DCs * Gran Size *

growthRateIntMtb + + + + + + + + + + 1

lungExitInterval + + +

τTγ−CC—chemokine threshold
for Tγ recruitment ++

τTreg−TNF—tumor necrosis factor (TNF)
threshold for Treg recruitment

k4—CD4+ T precursorproliferation − − − − − − − −

k13—CD8+ T precursorproliferation − − − − − − − − − − − − early + then
− − −

scalingMDC—Scaling to host
factor representing the number of

granulomas developing in the
whole lung at time of infection

k11—Naïve CD8+ T priming − − − − − − − − − −
% of Resident DCs + + −

λ − −
1 This PRCC is below 0.3, so it is not shown in Figure 5c.

US/A results support a key role for T cell priming and proliferation (in the lymph node) in
mounting a protective immune response to Mtb infection. In particular, by increasing CD8+ T cell
proliferation we can impact a large spectrum of host and pathogen immunological events, from total
levels of infection (e.g., bacterial numbers in the lungs, total infected cells, ...) and inflammation,
to granuloma size and how much central caseation is present in granulomas. Table 2 highlights
mechanisms/parameters that we found to be significantly associated with changes in infection
correlates, such as total numbers of infected macrophages or numbers of dendritic cells, total bacteria
numbers and granuloma size. Not surprisingly (as a positive control), higher bacterial numbers
and numbers of infected macrophages emerge from increasing bacterial growth rates (intracellular).
Increasing rates of CD4+ and CD8+ T cell proliferation, as well as rates of CD8+ T cell priming in
LN have a positive impact on total bacteria in lung (lower levels). The latter three mechanisms
exemplify the concept of inter-compartmental/inter-scale effects, where mechanisms operating in
one compartment/organ (LN in our case) are affecting outcomes in a different compartment/organ
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(lung in our case). On the other hand, the significant effect of bacterial growth rate on outcomes clearly
illustrates an intra-compartmental/intra-scale effect.

Figure 5 shows time courses of the sensitivity indexes (i.e., PRCCs) for some of the outputs
in Table 2. A vertical dotted line on the plots represents the early events (i.e., first 2 months post
infection). Some mechanisms/parameters have a significant PRCC only early on during infection
(e.g., intracellular bacterial growth rate in Figure 5a), while some elicit their regulatory effects only late
during infection (e.g., CD8+ T cell priming [k11] in Figure 5b). Interestingly, the CD8+ T cell precursor
proliferation rate [k13] changes their impact on the granuloma size over time (Figure 5d).
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Figure 5. Time courses for Partial Ranked Correlation Coefficient (PRCC) of mechanisms/parameters
affecting infection outcomes as they relate to Table 2. Each curve plotted is days post infection (up to
200 days) on the x-axis and PRCC values on the y-axis (that vary between −1 and 1). The PRCCs
plotted are only ones that were significant (i.e., p < 10−3) and with an absolute value greater than 0.3.
Outcomes shown are (a) total Mtb, (b) total infected macrophages, (c) total infected dendritic cells and
(d) granuloma size. Compare with Table 2 results. Parameter definitions: k4 [CD4+ T cell precursor
proliferation in the LN], k13 [CD8+ T cell precursor proliferation in the LN], τTγ−CC: chemokine
threshold for Tγ cells recruitment to the lung, τTreg−TNF: TNF threshold for Treg cells recruitment to
the lung, k11: Naïve CD8 priming (see Appendix A for details on the parameters).

3.3. Priming and Proliferation in the LN Drives Inflammation at the Site of Infection

Inflammation is when many immune cells and molecules are recruited and secreted at a site of
infection. This is a double-edged sword in most infections where the influx of mediators is helpful
to control infection; however, too much inflammation can cause damage to the host and so must
be tightly regulated. Here, we have many ways to represent inflammation in the model. Table 3
and Figure 6 showcase different outputs that we track over time that are associated with pro- and
anti-inflammatory events at the site of infection of the lung. Table 3 shows sensitivities associated to
total macrophage activation, total Pet Hot (a proxy for metabolically active sites as measured through
PET CT scan, see Figure 2 legend herein and for details [53,65]), tissue damage (caseation/necrosis),
a pro-inflammatory molecule (Tumor Necrosis Factor—TNF) and an anti-inflammatory molecule
(Interleukin 10—IL-10). Typically it is thought that inflammation in tuberculosis, and most diseases,
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is associated with infection. However Table 3 shows only a marginal direct effect of bacterial growth
rate on inflammation. This suggests the host is mediating most of the inflammation observed.Computation 2016, 4, 39 13 of 25 
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Figure 6. Partial Ranked Correlation Coefficient (PRCC) time courses of mechanisms/parameters
affecting inflammation outcomes. Each plot has days post infection (up to 200 days) on the x-axis
and PRCC values on the y-axis (between −1 and 1). The PRCCs plotted are the only ones that
resulted significant (i.e., p < 10−3) and with an absolute value greater than 0.3. Outcomes shown
are (a) total Pet Hot, (b) TNF, (c) IL-10 and (d) total activated macrophages. Parameter definitions:
τTγ−CC—chemokine threshold for Tγ recruitment, τTcyt−CC—chemokine threshold for Tcyt recruitment,
τTreg−CC—chemokine threshold for Treg recruitment, k2—Naïve CD4+ T cell priming, k4—CD4+ T cell
precursor proliferation, k13—CD8+ T cell precursor proliferation, k14—CD8+ T cell differentiation to
effector, k11—Naïve CD8+ T cell priming (see Appendix A for details on the parameters).

Table 3. Significant PRCCs for inflammation outcomes. List of all the parameters/mechanisms (rows)
that have a significant (i.e., p < 10−3) PRCC with respect to outputs of the model that are directly
related to inflammation (columns). See Appendix B for a detailed description of the outcomes analyzed
here. A + (or −) indicates a positive (or negative) correlation between the parameter and the outcome.
The magnitude/strength of the correlation is given by the number of + (or −). The table recapitulates,
whenever possible, the dynamics over time. The outputs with * are selected as examples to illustrate
PRCC time courses (see Figure 6). See Appendix A for details on the parameters listed below.

INFLAMMATION (LUNG)

PARAMETERS Total Activated
Macrophages Tot Pet Hot * Caseation/

Necrosis TNF * IL10 *

growthRateIntMtb + early 1 + + early

τTγ−CC—chemokine
threshold for Tγ recruitment − − early − early 1 + + +

τTcyt−CC—chemokine
threshold for Tcyt recruitment − − early − early then +

1 + + +

τTreg−CC—chemokine
threshold for Treg recruitment − 1 + and then 1 + + early − − −

k2—Naïve CD4 priming + + − early 1 + 1

k4—CD4+ T
precursor proliferation + + + + 1
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Table 3. Cont.

INFLAMMATION (LUNG)

PARAMETERS Total Activated
Macrophages Tot Pet Hot * Caseation/

Necrosis TNF * IL10 *

k13—CD8+ T
precursor proliferation − − − − − − + + + early

− late − − − − − −

k14—CD8+ T
differentiation—effector + 1 + 1

k11—Naïve CD8 priming − + + early
− late − 1 − 1

1 These PRCCs are below 0.3, so they are not shown in Figure 6.

While higher CD4+ T cell proliferation rates (i.e., k4) in the LN compartment are naturally
associated with higher levels of macrophage activation (i.e., a necessary step in macrophage activation),
higher CD8+ T cell proliferation rates (i.e., k13) have a general anti-inflammatory role, likely due to the
higher levels of killing of infected cells and lower levels of bacteria. However, the higher cytotoxicity,
likely associated with higher CD8+ T cell proliferation rates, results in greater tissue damage, as shown
by the strong positive correlation between k13 and higher levels of central caseation/necrosis within
granulomas. It is interesting to note how the levels of IL-10 (a typically anti-inflammatory molecule)
are strongly affected by the different effector T cell chemokine thresholds for recruitment at the site of
infection as compared to TNF, which is more of a pro-inflammatory molecule. Figure 6 shows a more
comprehensive picture of the impact of many of these mechanisms on inflammation dynamics during
infection, emphasizing the timing aspect as well: some are important early (e.g., chemokine threshold
for recruitment, Figure 6a,b) versus later in infection progression (e.g., k13 in Figure 6b–d).

3.4. T Cell Priming, Proliferation and Trafficking Determine the Timing and Magnitude of the Immune
Response at the Site of Infection and in the Blood

A protective immune response is one where not only is the bacteria cleared or strongly contained,
but where damage to the host, induced by too much inflammation, is controlled. Using our US/A,
we characterized key mechanisms driving a protective immune response at the site of infection by
tracking Mtb-specific T cells as well as dendritic cell dynamics in the lung (see Table 4). CD8+ T cell
proliferation (k13) shows up again with very strong correlations across all outcomes. It is interesting
to note how Tγ and Tcyt seem to be complementary: high CD8+ T cell proliferation rates mirror
lower levels of Tγ cells at the site of infection. Regulatory T cells (Tregs) are represented as a fraction
of Tγ in the model (for the details of the ODE system describing lymph node and blood dynamics,
see Supplementary File 1), thus both outcomes are affected by the same mechanism (e.g., k4—CD4
precursor proliferation). Tables 3 and 5 emphasize a key protective role for both cytotoxic T-cell and
Tγ-cell responses in the lung (Figure 7a,b). However, these results suggest a more comprehensive
role for CD8+ T cell priming and proliferation in regulating not only adaptive immune response
magnitude in the blood and at the site of infection, but also on DC stimulation/maturation and
trafficking. Mechanisms impacting blood outcomes are shown in Table 5 and Figure 7c,d. Here we
see how most of the mechanisms elicit their effect early during infection (first 2 months post infection,
as shown by the dotted vertical line in Figures 5–7), suggesting that the events happening right after
the onset of the infection can shape a more protective response in the long term (which is ideal in
a chronic infection such as tuberculosis).

Delaying trafficking of DCs to lymphatics and ultimately to the LN has a negative impact on all
the memory T cell phenotypes in the blood (see lungExitInterval and lymphExitInterval mechanisms
in Table 5 and Figure 7c,d). Again, this impact is important early during infection. Higher levels of
resident DCs in the lung before infection are also important in establishing a more protective role
for effector and effector memory T cell phenotypes in the blood (see Figure 7c,d). This latter result
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stresses again how early events are critical to establishing an effective and timely response during
Mtb infection.

Table 4. Significant PRCCs for lung adaptive immune response outcomes. List of all the
parameters/mechanisms (rows) that have a significant (i.e., p < 10−3) PRCC with respect to outputs
of the model that are directly related to the adaptive immune response elicited in the lung, the site
of infection (columns). See Appendix B for a detailed description of the outcomes analyzed here.
A + (or −) indicates a positive (or negative) correlation between the parameter and the outcome.
The magnitude/strength of the correlation is given by the number of + (or −). The table recapitulates,
whenever possible, the dynamics over time. The outputs with * are selected as examples to illustrate
PRCC time courses (see Figure 7a,b). See Appendix A for details on the parameters listed below.

ADAPTIVE IMMUNE RESPONSE (LUNG)

PARAMETERS
Mtb-Specific Tgam
(Pro-Inflammatory)

T Cells *

Mtb-Specific Tcyt
* (Cytotoxic)

T Cells

Recruited
Mtb-Specific

Treg

Recruited
Mtb-Specific

Tcyt

DC
Stimulated

DC
Exited
Lung

DC
Exited
Lymph

λ—Frequency of
Mtb-specific Naïve T
cells in the blood/LN

+ then − 1

k11—CD8 priming + + then −
k4—CD4

precursor proliferation + + + + +

k13—CD8
precursor proliferation − − + + + − − − + + − − − − − − − − −

k2—CD4 priming + + + early

% of Resident DCs + + + + + +

τTγ−CC—chemokine
threshold for

Tγ recruitment
+ + 1 + +

τTreg−CC—chemokine
threshold for

Treg recruitment
− − 1

1 These PRCCs are below 0.3, so they are not shown in Figure 7.

Table 5. Significant PRCCs for blood adaptive immune response outcomes. List of all the
parameters/mechanisms (rows) that have a significant (i.e., p < 10−3) PRCC with respect to outputs of
the model that are directly related to Mtb-specific Memory T cell phenotypes in the blood compartment
(columns). A + (or −) indicates a positive (or negative) correlation between the parameter and the
outcome. The magnitude/strength of the correlation is given by the number of + (or −). The table
recapitulates, whenever possible, the dynamics over time. The outputs with * are selected as examples
to illustrate PRCC time courses (see Figure 7c,d). See Appendix A for details for the parameters
listed below.

BLOOD OUTCOMES—Mtb-Specific T Cells

PARAMETERS Naïve
CD4

Effector
CD4 *

Central
Memory

CD4

Effector
Memory

CD4

Naïve
CD8

Effector
CD8 *

Central
Memory

CD8

Effector
Memory

CD8

lungExitInterval − − − early − − − early − − − early − − − early − − − early − − − early

lymph_ExitInterval − − − early − − − early − − − early − − − early − − − early − − − early

% of Resident DCs + + early + + early + + + early + + + early

Initial Conditions for Mtb−specific
Naïve CD4+ T cells—BLOOD + + +

Initial Conditions for Mtb-specific
Naïve CD8+ T cells—BLOOD + + + + + early

host_LN—Number of involved
lymph nodes in the host − − + + early

λ—Frequency of Mtb-specific
Naïve T cells in the blood/LN + + + + + + early + + early + + early + + + + + + early + + + early + + + early

k1—Naïve CD4 recruitment rate − − − + + + early + + early + + + early

k10—Naïve CD8 recruitment rate − − − + + + early + + + early + + + early
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Table 5. Cont.

BLOOD OUTCOMES—Mtb-Specific T Cells

PARAMETERS Naïve
CD4

Effector
CD4 *

Central
Memory

CD4

Effector
Memory

CD4

Naïve
CD8

Effector
CD8 *

Central
Memory

CD8

Effector
Memory

CD8

k2—Naïve CD4 priming − − − + + + early + + early + + + early + + + early + + + early + + + early

k11—Naïve CD8 priming − − − + + + early + + + early + + + early

k4—CD4 precursor proliferation + + + + + + + + +

k13—CD8 precursor proliferation + + + + + + + + +

k5—Precursor CD4 differentiation
to Effector rate + + +/−/+ − − − + + +/−/+

k14—CD8 differentiation to effector + + +/−/+ − − − + + + early

µ5—Mature DC half-life in the LN − − early
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Figure 7. Partial Ranked Correlation Coefficient (PRCC) time courses of mechanisms/parameters
affecting adaptive immune response in the lung and blood compartments. Each plot has days
post infection (up to 200 days) on the x-axis and PRCC values on the y-axis (between −1 and 1).
The PRCCs plotted are the only ones that resulted significant (i.e., p < 10−3) and with an absolute
value greater than 0.3. Outcomes shown are Mtb-specific Effector T cells in the lung ((a) CD4+ T cells
and (b) CD8+ T cells) and in the blood ((c) CD4+ T cells and (d) CD8+ T cells). Parameter definitions:
k2—Naïve CD4+ T cell priming, k4—CD4+ T cell precursor proliferation, k13—CD8+ T cell precursor
proliferation, k14—CD8+ T cell differentiation to effector, k11—Naïve CD8+ T cell priming, λ: Frequency
of Mtb-specific Naïve T cells in the blood/LN, µ5: half-life of Mature DCs in the LN (see Appendix A
for details on the parameters).

4. Discussion

A key step to mounting a protective immune response to Mtb and to most bacterial infection is
represented by CD4+ and CD8+ T cell priming in lymph nodes. Facilitating migration of dendritic
cells from the site of infection to the lymphatics, as well as enhancing trafficking of CD4+ and CD8+
effector T cells from the blood to the site of infection represent an important mechanism that could
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impact TB granuloma formation and function, and ultimately determine the outcome of TB infection
in the host.

This study takes a multi-compartmental approach to studying antigen presentation, T cell priming,
differentiation and trafficking in the context of TB granuloma formation. To better address these
mechanisms, we built a new cell type, namely dendritic cell, into our existing multi-compartmental
agent-based model of TB granuloma formation in the lung coupled to blood and lymph node
dynamics [36]. This new model formulation allows us to better represent and investigate the impact of
dendritic cell dynamics [20,22] on important aspects of immunity: antigen presentation, T cell priming,
memory T cell generation, and ultimately into TB infection progression.

We successfully calibrated the model with non-human primate (NHP) experimental data on
granulomas and bacterial levels in the lung, as well as longitudinal measures of memory T cell levels
in the blood. The model is also able to recapitulate typical spatial distribution of cells within NHP
granulomas in the lung (see Figure 3 in [36]).

The main conclusion of this study is that early events after initial Mtb infection are critical to
establishing a timely and effective response. Although IFN-γ, macrophage activation and CD4+ T
cells are necessary for mounting a protective response to Mtb [66], our results highlight an equally
relevant role for CD8+ T cells, as suggested in previous experimental and modeling studies [67–69].
We show how we can lower bacterial burden and inflammation at the site of infection by enhancing
either CD4+ or CD8+ T cell proliferation in the lymph node early on during infection (i.e., within the
first 2 months). In some cases CD4+ and CD8+ T cells complement each other to achieve protection.
For example, high CD8+ T cell proliferation rates in the lymph node result in overall lower levels of
effector CD4+ T cells at the granuloma site (i.e., Tγ cells at the site of infection). In other words a larger
cytotoxic T cell response (achieved by higher CD8+ T cell proliferation rates) can compensate for lower
levels of Tγ cells at the site of infection.

Overall, T cell proliferation in the LN and T cell trafficking to the lung determine both the timing
and magnitude of adaptive response at the site of infection and in the blood. Thus, identifying drugs
that would enhance these processes could assist in the treatment of infection, as has been suggested in
tumors [70].

By introducing dendritic cells into the model, we are able to better control both timing and
magnitude of the mechanisms driving the adaptive T cell responses. In fact, we can negatively
impact memory T cell phenotypes (both CD4+ and CD8+) by simply delaying dendritic cell trafficking
to the draining lymph node. However, this outcome can only be achieved in the early stages of
infection. This conclusion reinforces the working hypothesis that the best protective response to Mtb
infection has to be mounted very early; otherwise the best outcome that can be achieved is a controlled
chronic infection.

In the current model formulation, we describe cellular dynamics in the lymph node and blood
compartments with a sufficient level of detail by a temporal-only representation (i.e., ODE system).
However, with the introduction of dendritic cells in the model as agents, we are now working on
implementing different subsets of Mtb-specificity in an ABM formulation of LNs [40,71] that can
be used to replicate current vaccine clinical trials [72], as well as to test innovative immunotherapy
strategies already used in cancer [73,74] but within the context of TB infection. It is this pairing of
mathematical and computer modeling with experimental studies that has the greatest potential to
push scientific discovery to the next level.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-3197/4/4/39/s1.
Supplementary File 1: System of ordinary differential equations describing LN-blood dynamics of the computational
model; Supplementary File 2: Lung data; Supplementary File 3: Blood data.
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The following abbreviations are used in this manuscript:

TB tuberculosis
Mtb Mycobacterium tuberculosis
LN lymph node

Appendix A

List of parameters and ranges for the computational model. Listed are the baseline parameter
values used in the lymph node (LN), blood, and ordinary differential equation (ODE) compartments
along with definitions and references to the values we chose. Those parameters marked with a *
indicate they were calculated based upon the initial conditions of the system and the corresponding
LN efflux term. These parameters were not varied during Latin hypercube sampling (LHS) experiments
as they were constrained by a corresponding LN efflux parameter and the assumption that our initial
conditions meet system homeostasis.

Parameter Value Units Description Reference

α 5.6 × 105 µL Conversion factor from Blood to Ln
(max. blood volume) Estimated and [36]

host_Ln [1, 50] count Number of involved lymph nodes
in the host Estimated

λ [10−5, 10−3] “”
Frequency of Mycobacterium

tuberculosis (Mtb)-specific Naïve T
cells in the blood/LN

[75–77]

scalingMDC [5, 15] Count

Scaling to host factor representing
the number of granulomas

developing in the whole lung at
time of infection

[52]

Sn4 * NLN,4 × (α/host_Ln) Cell/µL * day Thymic output of Naïve
CD4+ T cells

Estimated from
Uncertainty Analysis

Sn8 * NLN,8 × (α/host_Ln) Cell/µL * day Thymic output of Naïve
CD8+ T cells

Estimated from
Uncertainty Analysis

hs1 25 Cell count Naïve CD4+ T cell recruitment half
saturation

Estimated from
Uncertainty Analysis

hs4 10 Cell count Precursor CD4+ T cell proliferation
half saturation

Estimated from
Uncertainty Analysis

hs5 10 Cell count Precursor CD4+ T cell
differentiation half saturation

Estimated from
Uncertainty Analysis

hs8 40 Cell count Central Memory CD4+ T cell
recruitment half saturation

Estimated from
Uncertainty Analysis

hs10 25 Cell count Naïve CD8+ T cell recruitment half
saturation

Estimated from
Uncertainty Analysis

hs11 10 Cell count Naïve CD8+ T cell priming
half saturation

Estimated from
Uncertainty Analysis

hs13 10 Cell count Precursor CD8+ T cell proliferation
half saturation

Estimated from
Uncertainty Analysis

hs14 10 Cell count Precursor CD8+ T cell
differentiation half saturation

Estimated from
Uncertainty Analysis

hs17 157 Cell count Central Memory CD8+ T cell
recruitment half saturation

Estimated from
Uncertainty Analysis
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Parameter Value Units Description Reference

k1 [5 × 10−3, 1] day−1 Naïve CD4+ T cell
recruitment rate

Estimated from
Uncertainty Analysis

k2 [10−6, 10−1] day−1 Naïve CD4+ T cell Priming rate Estimated from
Uncertainty Analysis

k3 [10−7, 10−2] day−1 Central Memory CD4+ T cell
reactivation rate

Estimated from
Uncertainty Analysis

k4 [10−2, 1.2] day−1 Precursor CD4+ T cell
proliferation rate

Estimated from
Uncertainty Analysis

k5 [0.01, 0.75] day−1 Precursor CD4+ T cell
differentiation to Effector rate

Estimated from
Uncertainty Analysis

k6 0.001 day−1 Precursor CD4+ T cell
differentiation to Central Memory

Estimated from
Uncertainty Analysis

k7 [0.05, 0.75] day−1 Effector CD4+ T cell differentiation
to Effector Memory

Estimated from
Uncertainty Analysis

k8 [0.1, 0.5] day−1 Central Memory CD4+ T cell
recruitment rate

Estimated from
Uncertainty Analysis

k10 [5 × 10−3, 1] day−1 Naïve CD8+ T
recruitment cell rate

Estimated from
Uncertainty Analysis

k11 [10−6, 10−1] day−1 Naïve CD8+ T cell priming rate Estimated from
Uncertainty Analysis

k12 [10−7, 10−2] day−1 Central Memory CD8+ T cell
reactivation rate

Estimated from
Uncertainty Analysis

k13 [10−2, 1.2] day−1 Precursor CD8+ T cell
proliferation rate

Estimated from
Uncertainty Analysis

k14 [0.01, 0.75] day−1 Precursor CD8+ T cell
differentiation to Effector rate

Estimated from
Uncertainty Analysis

k15 0.001 day−1 Precursor CD8+ T cell
differentiation to Central Memory

Estimated from
Uncertainty Analysis

k16 [0.05, 0.75] day−1 Effector CD8+ T cell differentiation
to Effector Memory

Estimated from
Uncertainty Analysis

k17 [0.05, 0.75] day−1 Central Memory CD8+ T cell
recruitment rate

Estimated from
Uncertainty Analysis

µ1 0.2 day−1 Effector CD4+ T cell death rate [19,20,22,23,36]

µ2 0.04 day−1 Effector Memory CD4+ T
cell death rate [19,20,22,23,36]

µ3 0.2 day−1 Effector CD8+ T cell death rate [19,20,22,23,36]

µ4 0.04 day−1 Effector Memory CD8+ T
cell death rate [19,20,22,23,36]

µ5 [0.1, 1] day−1 APC death rate [19,20,22,23,36]

µ6 0.1 day−1 Precursor CD4+ T cell death rate [19,20,22,23,36]

µ7 0.1 day−1 Precursor CD8+ T cell death rate [19,20,22,23,36]

µ8 * 3.93 × 10−4 day−1 Naïve CD4+ T cell death rate

µ9 * 2.27 × 10−4 day−1 Naïve CD8+ T cell death rate

ρ1 3 × 108 Cell count Precursor carrying capacity [19,20,22,23,36]

Wp4 0.735 “” Weight factor for Precursor CD4+ T
in CD8+ T cell priming

Estimated from
Uncertainty Analysis

ξ1 * ξ2 × (NLn,nc4/NB,nc4)/α day−1 Naïve CD4 Lymph Influx

ξ2 [0.6, 1] day−1 Naïve CD4 Lymph Efflux Estimated from
Uncertainty Analysis

ξ3 [2, 5] day−1 Effector CD4 Lymph Efflux Estimated from
Uncertainty Analysis

ξ4 * ξ5 × (CMLn,nc4/CMB,nc4)/α day−1 Central Memory CD4 Lymph Influx

ξ5 0.489 day−1 Central Memory CD4 Lymph Efflux Estimated from
Uncertainty Analysis

ξ6 [2, 5] day−1 Effector Memory CD4 Lymph Efflux Estimated from
Uncertainty Analysis

ξ7 * ξ8 × (NLn,nc8/NB,nc8)/α day−1 Naïve CD8 Lymph Influx

ξ8 [0.6, 1] day−1 Naïve CD8 Lymph Efflux Estimated from
Uncertainty Analysis
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Parameter Value Units Description Reference

ξ9 [2, 5] day−1 Effector CD8 Lymph Efflux Estimated from
Uncertainty Analysis

ξ10 * ξ11 × (CMLn,nc8/CMB,nc8)/α day−1 Effector CD8 Lymph Influx

ξ11 [2, 5] day−1 Central Memory CD8 Lymph Efflux Estimated from
Uncertainty Analysis

ξ12 [2, 5] day−1 Effector Memory CD8 Lymph Efflux Estimated from
Uncertainty Analysis

proliferationTime 8 h Doubling time for cognate
T cells in the lung [40,71]

maxDivisions 4 - - Max number of divisions for
T cells in the lung [40,71]

τTγ−CC [1, 20] # molecules Chemokine threshold
for Tγ recruitment

Estimated from
Uncertainty Analysis

τTγ−TNF [1, 5] # molecules Tumor necrosis factor (TNF)
threshold for Tγ recruitment

Estimated from
Uncertainty Analysis

τTCyt−CC [1, 20] # molecules Chemokine threshold
for Tcyt recruitment

Estimated from
Uncertainty Analysis

τTCyt−TNF [1, 5] # molecules TNF threshold for Tcyt recruitment Estimated from
Uncertainty Analysis

τTreg−CC [1, 10] # molecules Chemokine threshold
for Treg recruitment

Estimated from
Uncertainty Analysis

τTreg−TNF [1, 5] # molecules TNF threshold for Treg recruitment Estimated from
Uncertainty Analysis

ProbKillMac [0.05, 0.21] probability Probability of Tcyt to kill Macs [19,20,22,23,36]

probKillMacCleanly [0.15, 0.31] probability Probability of Tcyt to kill Macs and
all their intracellular Mtb load [19,20,22,23,36]

probApoptosisFasFasL [0.001, 0.02] probability Probability of undergoing
apotposis induced by Tγ [19,20,22,23,36]

lungExitInterval [6, 144] 10 min
Time it takes a stimulated

dendritic cell (DC) to exit the lung
through lymphatics

[19,20,22]

lymphaticsExitInterval [6, 40] 10 min
Time a DC takes to traffic through

the lymphatics and reach the
lymph node (LN)

[19,20,22]

percentOfMacInitNumber [0.05, 0.25]
%, and used

as probability
as well

Percentages of DCs that populates
the grid initially (calculated as
a percentage of initial resident

macrophages). It is also used for
recruitment on new DC into the
grid, at the time a macrophage

is recruited

[20,22]

growthRateIntMtb [1.0029, 1.0035] 10 min Doubling time of intracellular Mtb [23]

growthRateExtMtb [1.00124, 1.0014] 10 min Doubling time of extracellular Mtb [23]

Appendix B

List of all the outcomes of interest analyzed during our uncertainty and sensitivity analysis.

Outcome of Interest Compartment Definition

Inflammation

‘TotalMr’ Lung Total Resting Macrophages
‘TotalDCellMr’ Lung Total Unstimulated Dendritic Cells

‘TotalMa’ Lung Total Activated Macrophages
‘TotPethot’ Lung Total Pet Hot reading from the PET-CT scan

‘NrCaseated’ Lung Number of caseated compartments in the granuloma
‘TNF’ Lung Tumor Necrosis Factor molecues
‘IL10’ Lung Interlukin 10 molecules
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Outcome of Interest Compartment Definition

Infection

‘TotMtb’ Lung Total Mycobacterium tuberculosis (Mtb) burden
‘IntMtb’ Lung Intracellular Mtb burden
‘ExtMtb’ Lung Extracellular Mtb burden

‘repExtMtb’ Lung Extracellular replicating Mtb burden
‘NonReplExtMtb’ Lung Extracellular non-replicating Mtb burden

‘TotalMi’ Lung Total Infected Macrophages
‘TotalMci’ Lung Total Chronically Infected Macrophages

‘TotalDCellMi’ Lung Total Infected Dendritic Cells
‘TotalDCellMci’ Lung Total Chronically Infected Dendritic Cells

‘LesionSize’ Lung Diameter of the granuloma lesion

Adaptive Immune Response Compartment Definition

‘TγCognate’ Lung Number of Mtb-specific Tγ cells present in the lung
‘TcytCognate’ Lung Number of Mtb-specific Tcyt cells present in the lung

‘TgamRecruitedCognate’ Lung Number of Mtb-specific Tγ cells recruited to the lung
‘TcytRecruitedCognate’ Lung Number of Mtb-specific Tcyt cells recruited to the lung

‘DCellStimulated’ Lung Number of Dendritic Cells that have been stimulated
‘DCellExitedLung’ Lung→lymphatics Number of Dendritic Cells that have left the lung upon stimulation

‘DCellExitedLymphatics’ Lymphatics→LN Number of Dendritic Cells that have left the lymphatics to enter the lymph node
‘BlN4C’ Blood Concentration of Mtb-Specific Naïve CD4+ T cells
‘BlE4C’ Blood Concentration of Mtb-Specific Effector CD4+ T cells

‘BlCM4C’ Blood Concentration of Mtb-Specific Central Memory CD4+ T cells
‘BlEM4C’ Blood Concentration of Mtb-Specific Effector Memory CD4+ T cells
‘BlN8C’ Blood Concentration of Mtb-Specific Naïve CD8+ T cells
‘BlE8C’ Blood Concentration of Mtb-Specific Effector CD8+ T cells

‘BlCM8C’ Blood Concentration of Mtb-Specific Central Memory CD8+ T cells
‘BlEM8C’ Blood Concentration of Mtb-Specific Effector Memory CD8+ T cells

‘APC’ Lymph node Number of Dendritic Cells in the Lymph Node [LN]
‘LnN4C’ Lymph node Number of Mtb-Specific Naïve CD4+ T cells
‘LnP4C’ Lymph node Number of Mtb-Specific Precursor CD4+ T cells
‘LnE4C’ Lymph node Number of Mtb-Specific Effector CD4+ T cells

‘LnCM4C’ Lymph node Number of Mtb-Specific Central Memory CD4+ T cells
‘LnEM4C’ Lymph node Number of Mtb-Specific Effector Memory CD4+ T cells
‘LnN8C’ Lymph node Number of Mtb-Specific Naïve CD8+ T cells
‘LnP8C’ Lymph node Number of Mtb-Specific Precursor CD8+ T cells
‘LnE8C’ Lymph node Number of Mtb-Specific Effector CD8+ T cells

‘LnCM8C’ Lymph node Number of Mtb-Specific Central Memory CD8+ T cells
‘LnEM8C’ Lymph node Number of Mtb-Specific Effector Memory CD8+ T cells
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