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Abstract: Local effective potential theory, both stationary-state and time-dependent, constitutes
the mapping from a system of electrons in an external field to one of the noninteracting fermions
possessing the same basic variable such as the density, thereby enabling the determination of the
energy and other properties of the electronic system. This paper is a description via Quantal Density
Functional Theory (QDFT) of the electron correlations that must be accounted for in such a mapping.
It is proved through QDFT that independent of the form of external field, (a) it is possible to map to a
model system possessing all the basic variables; and that (b) with the requirement that the model
fermions are subject to the same external fields, the only correlations that must be considered are
those due to the Pauli exclusion principle, Coulomb repulsion, and Correlation–Kinetic effects. The
cases of both a static and time-dependent electromagnetic field, for which the basic variables are the
density and physical current density, are considered. The examples of solely an external electrostatic
or time-dependent electric field constitute special cases. An efficacious unification in terms of electron
correlations, independent of the type of external field, is thereby achieved. The mapping is explicated
for the example of a quantum dot in a magnetostatic field, and for a quantum dot in a magnetostatic
and time-dependent electric field.

Keywords: electron correlations; local effective potential theory in electromagnetic fields;
quantal density functional theory; Kohn-Sham density functional theory; Runge-Gross density
functional theory

1. Introduction

This paper is concerned with the electron correlations within local effective potential theory
(LEPT) such as Kohn–Sham [1] (KS) and Quantal (Q) [2,3] density functional theory (DFT).
We begin with a brief description of the electron correlations that must be accounted for within
LEPT. The understanding and definitions of these electron correlations is achieved via the equations of
Quantal density functional theory (QDFT) [2,3]. QDFT is a description in terms of “classical” fields and
quantal sources based on the “Quantal Newtonian” second [4–6] and first [7–9] laws for each electron.
In this work, a comprehensive unification in terms of electron correlations is arrived at through QDFT
for electrons in the presence of both an external static and a time-dependent electromagnetic field.

As readers may be more familiar with KS–DFT and its various extensions, a brief description of
the ideas underlying QDFT is provided in the Appendix.

Stationary-ground-state LEPT such as Kohn–Sham (KS) [1] and QDFT constitute the mapping
from an interacting system of N electrons in an external electrostatic field E(r) = −∇v(r) to one of
noninteracting fermions, also in their ground state, with the same nondegenerate ground state density
ρ(r). The choice of density ρ(r) as the property of equivalence is governed by the fact that it constitutes
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a basic variable of quantum mechanics. According to the first Hohenberg–Kohn (HK) [10] theorem,
a basic variable is a gauge invariant property knowledge of which determines the wave functions of
the system. Thus, knowledge of the density ρ(r) uniquely determines the external scalar potential v(r)
to with a constant. With the kinetic and electron-interaction potential energy operators assumed to be
known, so is the Hamiltonian. Solution of the Schrödinger equation then leads to the wave functions
of the system for both ground and excited states. In the mapping, it is further assumed that the model
noninteracting fermions also experience the same external electrostatic field E(r). Hence, the local
effective potential of the model (S system) fermions vs(r) is written as vs(r) = v(r) + vee(r) , where
vee(r), the effective electron-interaction potential, is the component in which all the many-body effects
are incorporated. The electron correlations that the model system must account for via vee(r) are
those due to the Pauli exclusion principle and Coulomb repulsion. However, the potential must also
account for correlations which arise because of the difference in kinetic energies of the interacting and
model systems having the same density ρ(r), viz. the Correlation–Kinetic contribution. In KS–DFT,
the many-body correlations are all subsumed in the electron-interaction energy functional EKS

ee [ρ]

of the density, and thereby via its functional derivative, in the potential vee(r). Within QDFT, the
contributions of these correlations to both the potential vee(r) and the corresponding Pauli, Coulomb,
and Correlation–Kinetic components of the total energy E are separately delineated and explicitly
defined [2,3,7,8] (As a point of interest, we note that within QDFT [2,3], it is also possible to map the
interacting system in its ground state to a model system in an arbitrary excited state but with the same
ground state density ρ(r). The contribution to the corresponding potential vee(r) of correlations due
to the Pauli principle and Coulomb repulsion remain unchanged in each case. The difference in the
potentials is solely due to Correlation–Kinetic effects).

In time-dependent LEPT, such as Runge–Gross (RG) [11] DFT or QDFT [4], the electrons are
subject to a time-dependent external field E(rt) = −∇v(rt). In this case, as proved by the RG
theorem [11], a basic variable is the density ρ(rt). Knowledge of the density ρ(rt) determines the
external potential v(rt) to within a time-dependent function, hence the Hamiltonian, and thereby the
wave function (as an important point of note, the RG theorem also proves the current density j(rt) to
be a basic variable). Once again, it is assumed that the model fermions are also subject to the same
external potential v(rt), and in traditional time-dependent LEPT, the mapping is such as to reproduce
solely the density ρ(rt). As shown by QDFT, the correlations that must be accounted for in this LEPT
are, of course, those due to the Pauli exclusion principle, Coulomb repulsion and Correlation–Kinetic
effects. However, there is, in general, an additional correlation [2,4–6] due to the difference in the
current densities of the interacting and noninteracting fermions, viz. the Correlation–Current–Density
effects, which must also be considered. In RG–DFT, these correlations are all subsumed in the
corresponding electron-interaction action functional ARG

ee [ρ] of the density and its functional derivative
vee(rt). Within QDFT, the separate contribution of all these correlations to the electron-interaction
potential vee(rt) is explicitly defined. Correlation–Current–Density effects do not contribute explicitly
to the (non-conserved) energy E(t), but do so implicitly via their contribution to vee(rt).

Finally, consider the case of N electrons in both an external electrostatic E(r) = −∇v(r) and
magnetostatic B(r) = ∇ × A(r) field (This case, and the corresponding basic variables [12], is
discussed in greater detail in the following section. Here, we focus on the correlations within
the corresponding LEPT). A QDFT [13] can be formulated in the traditional manner, i.e., via the
construction of both an effective scalar vs(r) and vector As(r) potential for the model S system.
The correlations that must be accounted for in this LEPT are those due to the Pauli exclusion principle,
Coulomb repulsion, and Correlation–Kinetic effects. However, in addition, Correlation–Magnetic
effects, i.e., correlations due to the difference in an internal magnetic field component of the interacting
and model systems must also be considered.

To summarize, we observe that the correlations in LEPT as presently construed, are a function
of the external potential. We provide here, via QDFT, a generalization of all LEPT such that the
only correlations that need to be accounted for are solely those due to the Pauli exclusion principle,
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Coulomb repulsion, and Correlation–Kinetic effects. This requires that the noninteracting fermions (a)
possess all the basic variables; and (b) be subject to the same external fields as those of the interacting
system. In Section 2, we prove this for the case of an external electrostatic and magnetostatic field,
a special case of which is stationary state KS–DFT and QDFT. In Section 3, the proof for an external
time-dependent electromagnetic field is provided, a special case of which is time-dependent RG–DFT
and QDFT. For the proof, we derive the “Quantal Newtonian” second law for electrons in an external
time-dependent electromagnetic field, as well as the law for the corresponding model S system
fermions (The derivation of these “Quantal Newtonian” laws is provided in Supplementary Material).
The stationary state case is explicated by the example of a harmonically confined quantum dot in
a magnetostatic field, and the time-dependent case via the quantum dot in a magnetostatic field
perturbed by a time-dependent electric field. Concluding remarks are made in Section 4.

2. Case of External Static Electromagnetic Field

Consider a system of N electrons in a static external electric E(r) = −∇v(r) and magnetic
B(r) = ∇ × A(r) field, where v(r) and A(r) are the corresponding scalar and vector potentials,
respectively. The Schrödinger equation in atomic units (charge of electron −e, |e| = h̄ = m = 1)
together with the assumption of c = 1 is[

1
2 ∑

i

(
p̂i + A(ri)

)2
+

1
2 ∑′

i,j

1
|ri − rj|

+ ∑
i

v(ri)

]
Ψ(X) = EΨ(X), (1)

where the terms of the Hamiltonian are the physical kinetic T̂A, electron-interaction potential Û, and
external potential V̂ energy operators; {Ψ(X), E} the eigenfunctions and eigenvalues; X = x1, . . . , xN ;
x = rσ; (rσ) the spatial and spin coordinates of each electron.

In recent work [12], we have proved that the basic variables for the physical system described
above, in which the interaction of the magnetic field is solely with the orbital angular momentum, are
the nondegenerate ground state density ρ(r) and the physical current density j(r). The proof is for
uniform magnetic fields and for fixed electron number N and canonical angular momentum L. The
proof is rigorous in the original HK sense in that knowledge of {ρ(r), j(r)} uniquely determines the
potentials {v(r), A(r)} to within a constant and the gradient of a scalar function, respectively. Thereby,
the Hamiltonian is now known, and the wave functions of the system determined via solution of the
Schrödinger equation of Equation (1) (The proof has also been extended to the Schrödinger–Pauli
Hamiltonian, which additionally involves the interaction of the magnetic field with the spin angular
momentum. We do not consider that case here). The theorem extends the applicability of LEPT to yrast
states, which are states of lowest energy for fixed angular momentum—in particular, to harmonically
trapped electrons in the presence of a uniform perpendicular magnetic field [14].

The “Quantal Newtonian” first law for each electron for the above interacting system states that
the sum of the external F ext(r) and internal F int(r) fields experienced by each electron vanish [13,15]:

F ext(r) +F int(r) = 0. (2)

The law is valid for arbitrary gauge, and satisfies the continuity condition ∇ · j(r) = 0.
The external field is the sum of the electrostatic E(r) and Lorentz L(r) fields:

F ext(r) = E(r)−L(r) = −∇v(r)−L(r), (3)

where L(r) is defined in terms of the Lorentz “force” `(r) as L(r) = `(r)/ρ(r), with
ρ(r) =< Ψ(X)|ρ̂|Ψ(X) > the density; ρ̂(r) = ∑i δ(ri − r) the density operator; `(r) = j(r) × B(r);
j(r) =< ψ(X)|ĵ(r)|Ψ(X) > the physical current density; with ĵ(r) = 1

2i ∑k[∇rk δ(rk − r) + δ(rk −
r)∇rk ] + ρ̂(r)A(r) the physical current density operator.
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The internal field F int(r) is the sum of the electron-interaction Eee(r), kinetic Z(r), differential
density D(r), and internal magnetic I(r) fields:

F int(r) = Eee(r)−Z(r)−D(r)− I(r). (4)

These fields are defined in terms of the corresponding ‘forces’ eee(r), z(r), d(r), and i(r)
(each ‘force’ divided by the density ρ(r) constitutes the corresponding field). The “force” eee(r),
representative of electron correlations due to the Pauli exclusion principle and Coulomb repulsion, is
obtained via Coulomb’s law via its quantal source, the pair-correlation function P(rr′) : eee(r) =∫

dr′P(rr′)(r− r′)/|r− r′|3, with P(rr′) the expectation of the pair operator P̂(rr′) = ∑′i,j δ(ri −
r)δ(rj − r); the kinetic “force” z(r), representative of kinetic effects, is obtained from its quantal
source, the single-particle density matrix γ(rr′) : zα(r) = 2 ∑β∇βtαβ(r), where the kinetic energy
tensor tαβ(r) = (1/4)[∂2/∂r′α∂r′′β + ∂2/∂r′β∂r′′α ]γ(r′r′′)|r′=r′′=r with γ(rr′) the expectation of the

operator γ̂(rr′) = Â + iB̂, Â = 1
2 ∑j[δ(rj − r)Tj(a) + δ(rj − r′)Tj(−a)], B̂ = − i

2 ∑j[δ(rj − r)Tj(a)−
δ(rj − r′)Tj(−a)], with Tj(a) a translation operator such that Tj(a)ψ(. . . rj . . .) = ψ(. . . rj + a, . . .);
the differential density ‘force’, representative of the density is d(r) = − 1

4∇∇2ρ(r), the quantal source
being the density ρ(r); and internal magnetic force i(r) whose quantal source is the current density
j(r) : iα(r) = ∑β∇β Iαβ(r), Iαβ(r) = [jα(r)Aβ(r) + jβ(r)Aα(r)]− ρ(r)Aα(r)Aβ(r). The components of
the total energy E—the kinetic, electron-interaction, internal magnetic, and external—can each be
expressed in integral virial form in terms of the respective fields [13].

We next map the interacting system to one of noninteracting fermions possessing the same basic
variables {ρ(r), j(r)}, the same electron number N, and orbital angular momentum L. We assume
the model fermions experience the same external fields E(r) = −∇v(r) and B(r) = ∇ × A(r).
The corresponding model S system LEPT differential equation is then

{1
2
[p̂i + A(r)]2 + vs(r)

}
φi(x) = εiφi(x) ; i = 1, . . . , N, (5)

with
vs(r) = v(r) + vee(r), (6)

and where all the many-body effects are incorporated in the effective electron-interaction potential
vee(r). The wave function of the S system is the Slater determinant Φ{φi} of the orbitals φi(x);
the density and physical current density are the expectations ρ(r) =< Φ{φi}|ρ̂(r)|Φ{φi} >=

∑σ ∑i φ?
i (rσ)φi(rσ) and j(r) =< Φ{φi}|ĵ(r)|Φ{φi} >.

The mapping to the model system possessing the same basic variables {ρ(r), j(r)} ensure the
constancy [12] of both the electron number N and orbital angular momentum L.

With the above assumption, the “Quantal Newtonian” first law for the S system is then

F ext(r) +F int
s (r) = 0, (7)

where F ext(r) is the same as Equation (3), and the internal field F int
s (r) is

F int
s (r) = −∇vee(r)−Z s(r)−D(r)− I(r). (8)

Here, the kinetic field Z s(r) is defined in a manner similar to that of the interacting system
but in terms of the Dirac density matrix γs(rr′) =< Φ{φi}|γ̂(rr′)|Φ{φi} >= ∑σ ∑i φ?

i (rσ)φi(r′σ).
The differential density D(r) and internal magnetic I(r) field components remain the same as in
Equation (4).
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On comparing the “Quantal Newtonian” laws of Equations (2) and (7), we see that the effective
electron-interaction potential vee(r) is the work done to move a model fermion from a reference point
at infinity to its position at r in the force of a conservative effective field F eff(r):

vee(r) = −
∫ r

∞
F eff(r′) · d`′, (9)

where
F eff(r) = Eee(r) +Z tc(r), (10)

with the Correlation–Kinetic field defined as

Z tc(r) = Z s(r)−Z(r). (11)

Note that since ∇×F eff(r) = 0, the work done vee(r) is path-independent. The total energy E as
obtained from the S system is

E = ∑
i

εi −
∫

ρ(r)vee(r)dr + Eee + Tc, (12)

where the electron-interaction energy Eee is

Eee =
∫

ρ(r)r · Eee(r)dr, (13)

and the Correlation–Kinetic Tc energy is

Tc =
1
2

∫
ρ(r)r ·Z tc(r)dr. (14)

For completeness, we note [2,3] that the electron-interaction field Eee(r) can be decomposed in
terms of its Hartree EH(r), Pauli E x(r), and Coulomb E c(r) components. This is accomplished
by writing the pair–correlation density g(rr′) = P(rr′)/ρ(r) = ρ(r′) + ρxc(rr′), where ρxc(rr′)
is the Fermi-Coulomb hole: ρxc(rr′) = ρx(rr′) + ρc(rr′), with the Fermi hole defined as
ρx(rr′) = −|γs(rr′)|2/2ρ(r), and the Coulomb hole ρc(rr′) defined thereby. The density, Fermi, and
Coulomb hole charge distributions then constitutes the quantal sources of the fields EH(r), E x(r), and
E c(r) as determined via Coulomb’s law.

The QDFT equations for the local potential vee(r) and total energy E show that for electrons in an
external static electric and magnetic field it is (a) possible to map to a model system of noninteracting
fermions possessing the same basic variables {ρ(r), j(r)}; and (b) that the only correlations that
need to be considered in the mapping are those of the Pauli exclusion principle, Coulomb repulsion,
and Correlation–Kinetic effects.

To elucidate the above, we consider the mapping from the ground state of the two-dimensional
two-electron quantum dot in a magnetic field [16,17] to one of noninteracting fermions possessing
the same {ρ(r), j(r)} also in its ground state. The external scalar potential in the Hamiltonian of
Equation (1) is then v(r) = 1

2 ω2
0r2 with ω0 the harmonic frequency. The ground ψ0(r1r2) [13]

state wave function of the quantum dot in the symmetric gauge A(r) = 1
2 B(r) × r, is ψ0(r1r2) =

C0e−Ω(R2+ 1
4 r2)(1 + r), where R = (r1 + r2)/2, r = |r1 − r2|, C0 = Ω

3
2 /π[2 + Ω +

√
2πΩ]

1
2 , Ω =

√
keff,

the effective force constant keff = ω2
0 + ω2

L = 1 with ωL = B/2 the Larmor frequency. In Figure 1a, we
plot the components Eee(r) and Z tc(r) of the effective field F eff(r) of Equation (10). In this example,
the fields Eee(r) and Z tc(r) are separately conservative. Thus, in Figure 1b, we plot the potentials
Wee(r) and Wtc(r), which are, respectively, the work done in the fields Eee(r) and Z tc(r). The sum
of Wee(r) and Wtc(r) is the local effective electron-interaction potential vee(r), which is also plotted
in Figure 1b. The local potential vee(r) then generates single-particle orbitals, which lead to the
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same {ρ(r), j(r)} as that of the interacting system quantum dot. As a consequence of the reduction in
dimensionality, Correlation–Kinetic effects are significant: E = 3.000000, Eee = 0.818401, Tc = 0.105212,
Tc/E = 3.5%, Tc/Eee = 12.9%. A similar mapping [18] from an excited state of the quantum dot can
be accomplished. Once again, it is observed that Correlation–Kinetic effects play a significant role.

Figure 1. Fields and potentials of the model noninteracting fermions in their ground state for the
mapping from a quantum dot in a magnetic field also in a ground state: (a) the electron-interaction
(Pauli–Coulomb) Eee(r) and Correlation–Kinetic Z tc (r) fields; (b) the local effective electron-interaction
potential vee(r) and its Pauli–Coulomb Wee(r) and Correlation–Kinetic Wtc (r) components.

Finally, we note that the sole presence of an external electrostatic field E(r) = −∇v(r) with the
density ρ(r) as the basic variable, constitutes the special case of Kohn–Sham theory. The expressions
for {vee(r), E} remain the same. Hence, the electron correlations that must be accounted for in the
mapping to the corresponding model system of density ρ(r) are also the same [2,3].



Computation 2016, 4, 30 7 of 11

3. Case of External Time-Dependent Electromagnetic Field

Consider next a system of N electrons, in an external time-dependent electric field
E(y) = −∇v(y); y = rt, in the presence of an electromagnetic field B(y) = ∇ × A(y),

E(y) = −∇Φ(y)− ∂A(y)/∂t, with {v(y), φ(y)} scalar and A(y) vector potentials (a special case is
when the electric field E(y) is static, i.e., E(y) = E(r) = −∇v(r)). The corresponding time-dependent
Schrödinger equation is then[

1
2 ∑

i

(
p̂i + A(y)

)2
+

1
2 ∑′

i,j

1
|ri − rj|

+ ∑
i

(
v(yi)−Φ(yi)

)]
Ψ(Xt) = i

∂Ψ(Xt)
∂t

, (15)

where the terms of the Hamiltonian are the physical kinetic TA, electron-interaction potential Û,
and external scalar potential V̂ energy operators; yi = rit, and Ψ(Xt) the wave function.

It has been proved [19,20] that for the physical system described by the above Hamiltonian,
the basic variables are the density ρ(y) and the physical current density j(y). Thus, knowledge of
{ρ(y), j(y)} uniquely determines the external scalar potentials to within a time-dependent function,
and the vector potential to within the gradient of a scalar function of time, and thereby the Hamiltonian
and the wave function. The properties {ρ(y), j(y)} are also the basic variables for the special case
when the only external field is E(y) = −∇v(y). This then corresponds to the Runge–Gross [11]
theorem (we note that the proofs given in [19,20] are different).

The “Quantal Newtonian” second law for each electron for the system of Equation (15) is (see
Supplementary Material for the Derivation)

F ext(y) +F int(y) = J (y), (16)

where the response of the electron to the external F ext(y) and internal F int(y) fields is the current
density field J (y) = (1/ρ(y))∂j(y)/∂t. Here, the density ρ(y) and physical current density j(y) are
the expectations of the density and current density operators defined previously taken with respect
to the wave function Ψ(Xt). The law is gauge invariant and derived using the continuity equation
∇ · j(y) + ∂ρ(y)/∂t = 0. The external field F ext(y) is

F ext(y) = E(y)−L(y)− E(y) (17)

= −∇v(y)−L(y) +∇Φ(y) +
∂A(y)

∂t
, (18)

where the Lorentz field L(y) = `(y)/ρ(y), with the Lorentz “force” `(y) = j(y)× B(y).
The internal field F int(y) is

F int(y) = Eee(y)−Z(y)−D(y)− I(y), (19)

where the component fields Eee(y), Z(y), D(y), I(y) are defined as in the previous section
but from time-dependent quantal sources obtained via the wave function Ψ(Xt) (a special
case [4] of the ‘Quantal Newtonian’ second law of Equation (16) corresponds to an external field
F ext(y) = E(y) = −∇v(y). The term I(y) is then absent from Equation (19)).

In mapping to the model S system such that it possesses the same basic variables {ρ(y), j(y)},
we again assume the noninteracting fermions are subject to the same external fields as those of the
electrons. The LEPT differential equation for the single-particle orbitals φj(y) is then[

1
2
(
p̂ + A(y)

)2
+ vs(y)

]
φj(y) = i

∂φj(y)
∂t

; j = 1, . . . , N, (20)

with
vs(y) = v(y)−Φ(y) + vee(y), (21)
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where all the many-body effects are incorporated into the local effective electron-interaction potential
vee(y). The S system wave function is the Slater determinant Φ{φj} of these orbitals.

For the above described model system, the “Quantal Newtonian” second law is (see
Supplementary Material for the Derivation)

F ext(y) +F int
s (y) = J s(y) = J (y). (22)

Here, the S system current density field J s(y) = (1/ρ(y))∂js(y)/∂t, with js(y) the current
density defined as the expectation of the operator ĵ(y) taken with respect to the determinant Φ{φj}.
The last equality of Equation (22) follows from the equivalence of {ρ(y), j(y)} of the interacting system
to {ρ(y), js(y)} of the model system.

The internal field F int
s (y) is

F int
s (y) = −∇vee(y)−Z s(y)−D(y)− I(y). (23)

The kinetic field Z s(y) is defined as in the previous section but in terms of the time-dependent
Dirac density matrix γs(rr′t) =< Φ{φj}|γ̂(rr′)|Φ{φj} >= ∑σ ∑j φ?

j (rt)φj(r′t). The remaining fields
D(y) and I(y) are the same as in Equation (19).

Hence, on comparing the “Quantal Newtonian” second law of Equations (16) and (22), the
potential vee(y) is then the work done at each instant of time, to move the model fermion from some
reference point at infinity to its position at r in the force of a conservative effective field F eff(y):

vee(y) = −
∫ r

∞
F eff(y′) · d`′, (24)

where
F eff(y) = Eee(y) +Z tc(y), (25)

with Eee(y) the electron-interaction, and Z tc(y) the Correlation–Kinetic field defined as Z tc(y) =

Z s(y)−Z(y). As ∇×F eff(y) = 0, the work done vee(y), at each instant of time, is path-independent.
The QDFT equations for the above LEPT once again show that the only correlations that

need to be accounted for are those due to the Pauli exclusion principle, Coulomb repulsion,
and Correlation–Kinetic effects.

The expression for vee(y) of Equation (24) remains the same for the special case when the external
potential is solely E(y) = −∇v(y). This then means that the correlations that must be accounted for
in the corresponding mapping to the model system are also the same.

For harmonically confined electrons in a magnetostatic field B(r) = ∇×A(r), perturbed by a
time-dependent electric field E(t), the corresponding wave function referred to as the Generalized
Kohn Theorem, has been recently derived [21]. It is comprised of a phase factor times the unperturbed
wave function in which the coordinates of each electron are translated by a value that satisfies the
classical equation of motion (In the absence of the harmonic external potential, the wave function
reduces to the Kohn Theorem [22] wave function. In the absence of the external magnetic field,
the wave function reduces to the Harmonic Potential Theorem [23] wave function). Hence, if the
unperturbed wave function is known, the time evolution of all properties is known. Observables
represented by non-differential Hermitian operators, such as the density ρ(y) then correspond to the
unperturbed value translated by a time-dependent function. Thus, the example of the QDFT mapping
of the quantum dot in a magnetostatic field given in the previous section is equally representative of
the case when the time-dependent field E(t) is additionally present. In this example, both the density
ρ(y) and physical current density j(y) satisfy the above translational property. The results of Figure 1
correspond to t = 0 (the case of the quantum dot in a time-dependent electromagnetic field is not
provided because the corresponding wave function has not yet been derived).
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4. Conclusions

The conclusions of this work, arrived at via QDFT, are the following: (a) in traditional LEPT, one
maps a system of electrons in external time-independent or time-dependent electromagnetic fields, to
one of noninteracting fermions possessing the same density ρ(r) or ρ(y), a basic variable. However,
what is proved here is that, within QDFT, it is possible and efficacious to map to a model system
such that it possesses all the same basic variables. In the presence of both an electric and magnetic
field, the basic variables are the density {ρ(r); ρ(y)} and physical current density {j(r); j(y)} (the
reason for treating the time-independent and time-dependent cases separately is because, for the
former, in addition to the constraint of fixed electron number, there is the constraint of fixed canonical
angular momentum). External fields that are solely either electrostatic or time-dependent electric
fields for which the basic variables are ρ(r) or ρ(y) constitute a special case; (b) in order to map to
such a model system, the external fields experienced by the interacting electrons and noninteracting
fermions must be the same. Hence, within QDFT, it is only the effective S system scalar potential
vs(r), or equivalently the effective electron-interaction potential vee(r) in which all the many-body
effects are incorporated that must be determined (In traditional LEPT (see e.g., [19]), although one also
assumes the model fermions are subject to the same external fields, both an effective scalar vs(r) and
vector As(r) (containing an additional electron-interaction component) potential must be obtained);
(c) finally, given the requirement that the noninteracting fermions possess the same basic variables
and are subject to the same external fields, then, irrespective of the form of external field, the only
many-body correlations that must be accounted for in the mapping to the model system are those due
to the Pauli exclusion principle, Coulomb repulsion, and Correlation–Kinetic effects. This provides a
unification of all LEPT in terms of the electron correlations that must be considered. It also provides
a considerable simplification in that Correlation–Current–Density and Correlation–Magnetic effects
need no longer be addressed. Additionally, in three-dimensional, high density, low-electron-correlation
systems, Correlation–Kinetic effects are usually small. For such systems, these effects can therefore
be ignored in a first approximation. On the other hand, in lower dimensional systems and in the low
density, high-electron-correlation Wigner regime, these effects play a significant role [24,25] and must
be considered.

Supplementary Materials: Supplementary files are available online at http://www.mdpi.com/2079-3197/
4/3/30/s1.
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Appendix Brief Summary of Quantal Density Functional Theory

The Quantal density functional theory (QDFT) described in this work is based on recent
developments in Schrödinger theory and the fundamental theorems of density functional theory.
Consider a system of N electrons in an external static or time-dependent electromagnetic field F ext(y)
(the coordinate y could be either y = r, or y = rt, as the case may be). QDFT maps this system of
electrons as described by the Schrödinger equation to one of noninteracting fermions possessing the
same basic variables. A basic variable is a gauge invariant property, knowledge of which uniquely
determines the wave function of the system. For the quantum-mechanical systems described, the basic
variables are the density ρ(y) and the physical current density j(y).

The next step is the description of Schrödinger theory from the perspective of the individual
electron. This perspective is described via the “Quantal Newtonian” second and first laws, which
are the equations of motion of the single electron in the sea of electrons in the external field
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F ext(y). These laws are in terms of “classical” fields that pervade all space, and whose sources
are quantum-mechanical expectations of Hermitian operators taken with respect to the wave function
Ψ(Y) (with Y = X or Y = Xt). In addition to the external field F ext(y), there is an internal field F int(y)
experienced by each electron. The internal field F int(y) is comprised of components representative of
properties of the system such as the correlations due to the Pauli exclusion principle and Coulomb
repulsion, the density, kinetic effects, and an internal magnetic field component. There is then the
response of the electron to all the fields described by a current density field J (y) (in summing over all
the electrons, the contribution of the internal field F int(y) vanishes, thereby leading to Ehrenfest’s
theorem). The energy E and the nonconserved energy E(t), and their components can be written in
integral virial form in terms of the individual fields.

With the assumption of the existence of a noninteracting fermion model system possessing the
same basic variables {ρ(y), j(y)}, and the assumption of the model fermions experiencing the same
external field F ext(y), one then derives the corresponding “Quantal Newtonian” second law. The
resulting internal field F int

s (y) now contains a field involving the local electron-interaction potential
vee(y) in which all the many-body effects are incorporated. It also contains the fields corresponding
to the density, kinetic effects, and an internal magnetic field component. The density and internal
magnetic field components are the same as those of the interacting system by the assumptions above.
The kinetic field differs as can be understood from the Heisenberg uncertainty principle. There is
finally the response of the model fermion represented by the field J s(y), which is also equivalent to
J (y) of the interacting system, as the currents densities j(y) are also assumed to be the same.

As F ext(y) experienced by the electron and the model fermion is the same, equating the
corresponding “Quantal Newtonian” laws then leads to the potential vee(y) being the work done by
the model fermion in a conservative effective field. This field is the sum of the electron-interaction
field representative of Pauli and Coulomb correlations, and the Correlation–Kinetic field, which arises
from the difference in the kinetic fields. Note that the expression for the potential vee(y) is explicitly
defined and solely in terms of these electron correlations of the system. Additionally, irrespective of
the form of external field, whether it be static or time-dependent, the correlations are the same. Finally,
the electron interaction and Correlation–Kinetic components of the energy E, E(t) can be expressed in
terms of the respective fields.

The most general derivation of the “Quantal Newtonian” second law is given in Supplementary
Material. For further derivations of the individual quantal sources and fields, approximation methods
and applications, we refer the reader to [2,3].
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