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Abstract:

 In this paper, we consider a reduced computational model of methane hydrate formation in variable salinity conditions, and give details on the discretization and phase equilibria implementation. We describe three time-stepping variants: Implicit, Semi-implicit, and Sequential, and we compare the accuracy and efficiency of these variants depending on the spatial and temporal discretization parameters. We also study the sensitivity of the model to the simulation parameters and in particular to the reduced phase equilibria model.
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1. Introduction


Computational simulation of complex phenomena can provide answers to problems for which no experimental data or theoretical studies are available, but it requires robust, efficient, and accurate numerical models. The problem considered in this paper is of evolution of methane hydrate, which is an ice-like substance present in large amounts in subsea sediments, and which plays an important role both as a potential energy source and environmental hazard as well as in global climate studies [1,2].



In the paper [3] we introduced a reduced model for methane hydrate formation in variable salinity conditions and provided details on the equilibrium phase behavior adapted to a case study from Ulleung Basin. One of the advantages of this reduced model in contrast to fully comprehensive models such as in, e.g., [4], is that the reduced model is easy to implement and to extend, and is amenable to various analyses.



In this paper we describe the computational aspects of the model, with the emphasis placed on the variants of time-stepping. Our reduced model accounts for three components: water, methane, and salt, and two phases: aqueous, and solid (hydrate). Thus, it places in the general framework of multiphase multicomponent models such as those in [5,6,7] for which accuracy and efficiency have been studied extensively in the past decades. In particular, for the oil-water or black-oil models described e.g., in [8,9,10,11,12,13] the best practice is to use mass-conservative spatial schemes combined either with an implicit treatment of pressures and explicit treatment of saturations/concentrations, or with a fully implicit treatment of all phases and components. Typically, the computational complexity of implicit models is the highest, while other variants are easier to implement. In compositional models [14] with M components the pressure solver is complemented with M−1 transport equations solved for concentration of the selected M−1 species, and followed by flash, i.e., the equilibrium solver. The typical time scales of interest for reservoir simulation with these models are days to decades of production or environmental remediation. On the other hand, in [3] and here we are interested in long-term behavior and hydrate basin modeling, and it makes sense to assume that the pressures and temperatures are known and given by hydrostatic and geothermal distributions. Our models need only to resolve the interdependence between methane and water phase equilibria that depend on the presence of salt, and our time-stepping algorithms have different features than those for the oil-gas reservoir simulators.



We implement the interdependence between the components and phases as follows. The water-methane-salt equilibria are handled using the approach of nonlinear complementarity constraints, and are either tightly or loosely coupled to the salt mass conservation; their implementation is especially easy with the reduced phase behavior model adopted in [3]. We consider and compare three variants of time-stepping that realize these tight or loose couplings: the fully implicit (I), semi-implicit (SI), and sequential (SEQ) algorithms. The comparison that we carry out is intended to demonstrate the merits of these approaches, and guide the choice of a model.



In addition, in this paper we test the sensitivity of the approach to the assumed phase behavior model, as well as to various parameters defining the discretization. The latter is new and was not undertaken for the comprehensive model [4]. It is significant in that it guides the reader in the choice of optimal parameters and shows the robustness of the reduced model.



The paper is organized as follows. In Section 2 we briefly recall the model proposed in [3] including the phase behavior. In Section 3 we describe in detail the time-stepping variants and spatial discretization for that model. In Section 4 we compare the I, SI, and SEQ time-stepping variants, and in Section 5 we discuss the sensitivity of the model to the various parameters of the computational model. We conclude in Section 6.




2. Mathematical Model


In the last decade two classes of models for hydrates have been used to describe hydrate behavior in natural systems. These are the fully comprehensive equilibrium models such as [4], and the simpler conceptual models [2,15,16], in which simplified mechanisms for fluid equilibria and/or kinetics were assumed. The model presented in [3] and discussed here falls somewhere inbetween, and is a direct simplification of the comprehensive model in [4]. The simplicity of the reduced model allows for rigorous mathematical well-posedness analysis in the case of the diffusive transport in [17], and more general analysis in [18] for advective/diffusive transport.



We consider the transport of methane and salt in the sediment reservoir Ω⊂Rd,d=1,2,3. The notation used throughout is provided in Table 1. Each point x=(x1,x2,x3)∈Ω is at some depth [image: there is no content] below the sea surface, with the origin [image: there is no content] at the bottom of the Gas Hydrate Stability Zone (GHSZ). At the seafloor, i.e., at the top of the reservoir Ω, we have [image: there is no content] where L is the thickness of the hydrate zone. Next, at the seafloor, the depth of water above seafloor is the reference depth [image: there is no content], so the sea surface is at [image: there is no content]. We also set the coordinate z=D(x)-[image: there is no content]=D(x)-H measured in mbsf (meters below seafloor) which is used in other models [19]. In the general case of a 2D or 3D reservoir the bathymetry is variable, thus [image: there is no content] is measured relative to the (constant) sea surface rather than to the seafloor.



Table 1. Notation and definitions (kg/kg, per kg of liquid phase).



	
Symbol

	
Definition

	
Units/value






	
Data about reservoir and fluids




	
x=(x1,x2,x3)

	
Spatial coordinate

	
[m]




	
t

	
Time variable

	
[yr]




	
G

	
Gravitational acceleration

	
9.8 [image: there is no content]




	
[image: there is no content]

	
Depth of point x from sea level

	
[m]




	
[image: there is no content]

	
Seafloor depth

	
[m]




	

	
In 1D case [image: there is no content], [image: there is no content]

	




	
z=D(x3)-H

	
Depth below seafloor

	
[m]




	
(G)HSZ

	
(Gas) Hydrate stability zone

	




	
P

	
Pressure

	
[Pa,MPa]




	
[image: there is no content]

	
Hydrostatic gradient

	
≈[image: there is no content]Pa/m




	
T

	
Temperature

	
[K]




	
[image: there is no content]

	
Geothermal gradient

	
[K/m]




	
q

	
Darcy volumetric flux of liquid phase

	
[m/yr]




	
[image: there is no content]

	
Diffusivity of component C in the liquid phase

	
[[image: there is no content]/yr]




	

	
D0=10-9[image: there is no content]/s=3×10-2[image: there is no content]/yr

	




	
[image: there is no content]

	
Seawater density

	
1030 [image: there is no content]




	
[image: there is no content]

	
Hydrate density

	
925 [image: there is no content]




	
[image: there is no content]

	
Mass fraction of methane in hydrate phase

	
0.134 kg/kg




	
R=[image: there is no content][image: there is no content]/[image: there is no content]

	
Constant used for methane concentration

	
0.1203 kg/kg




	
ϕ0,ϕ=[image: there is no content]ϕ0

	
Porosity in Ω without/with hydrate present

	




	
K0,K

	
Permeability in Ω without/with hydrate present

	




	
[image: there is no content]

	
Seawater salinity

	
0.035 [kg/kg]




	
[image: there is no content]

	
Supply of methane (source/sink term)

	
[kg/kg/yr]




	
α

	
Parameter of the reduced model

	
[kg/kg]




	
Variables in the model




	
[image: there is no content],[image: there is no content]=1-[image: there is no content]

	
Void fraction of liquid and hydrate phases

	




	
[image: there is no content]

	
Mass fraction of methane (solubility) in liquid phase

	
[kg/kg]




	
[image: there is no content]

	
Mass fraction of salt (salinity) in liquid phase

	
[kg/kg]




	
[image: there is no content]

	
Mass concentration of methane and salt

	
[kg/kg]












In this paper as in [3] we assume that the conditions in Ω are favorable for hydrate presence and that Ω is entirely within the GHSZ, while the methane is supplied by advection and diffusion from beneath GHSZ. We also assume that [image: there is no content] is known and follows the geothermal gradient


T(x)=[image: there is no content]+(D(x)-[image: there is no content])[image: there is no content],



(1)




where [image: there is no content] is the temperature at some reference depth [image: there is no content] and [image: there is no content]≈const is the geothermal gradient; see [3] for experimental values. The pressure [image: there is no content] is assumed close to the hydrostatic


P(x)≈[image: there is no content](x):=[image: there is no content]|[image: there is no content]+[image: there is no content]G(D(x)-[image: there is no content])



(2)







Here [image: there is no content] is known at the reference depth [image: there is no content].



Finally, the actual porosity [image: there is no content] available to the liquid phase at x is [image: there is no content], where [image: there is no content] is the liquid phase saturation, i.e., void fraction of the liquid phase. The actual permeability [image: there is no content] in the presence of hydrate is an important property. However, it is not needed in the 1D model with a constant flux and an assumed hydrostatic pressure distribution.



2.1. Mass Conservation


In region Ω we have the following mass conservation equations for methane and salt components, respectively


∂ϕ0[image: there is no content]∂t-∇·[image: there is no content]∇[image: there is no content]+∇·(q[image: there is no content])=[image: there is no content]



(3a)






∂ϕ0[image: there is no content]∂t-∇·DS∇[image: there is no content]+∇·(q[image: there is no content])=0



(3b)




with the definitions


[image: there is no content]=[image: there is no content]χM+R(1-[image: there is no content]),



(3c)






[image: there is no content]=[image: there is no content][image: there is no content].



(3d)




where R is given in Table 1. The model is complemented by a pressure equation or q must be given; here we assume the latter. As we explain in [3], the Equation (3) arises as a special case of the first-principles comprehensive model in [4].



We see that in Equation (3) we have two mass conservation Equations (3a,b) with three unknowns that must be chosen from [image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content] and [image: there is no content]. To close the system we use the nonlinear complementarity constraint abbbreviated below as [NCC-M] phase constraint. We explain it below.




2.2. Phase Equilibria and [NCC-M] Constraint


The (maximum) amount [image: there is no content] of methane that can be dissolved in the liquid phase depends on the pressure P, temperature T, and the salinity [image: there is no content]. Equivalently, these variables determine the circumstances in which [image: there is no content]<1 and [image: there is no content]>0, i.e., when the hydrate phase can be present. In addition, [image: there is no content] determines how the total amount of methane [image: there is no content] is partitioned between the liquid and hydrate phases. This phase equilibrium is expressed concisely as a nonlinear complementarity constraint [NCC-M]


[image: there is no content]≤[image: there is no content],[image: there is no content]=1[image: there is no content]=[image: there is no content],[image: there is no content]≤1([image: there is no content]-[image: there is no content])(1-[image: there is no content])=0.



(3e)







In other words, if [image: there is no content](x,t) is small enough so that [image: there is no content]<[image: there is no content], then only the liquid phase is present [image: there is no content](x,t)=1, and [image: there is no content]=[image: there is no content] is the independent variable that describes how much methane is dissolved in the liquid. On the other hand, when the amount present [image: there is no content]≥[image: there is no content], the excess amount of methane above [image: there is no content] forms the hydrate phase with [image: there is no content]=1-[image: there is no content]>0, and [image: there is no content]<1 becomes the independent variable while [image: there is no content]=[image: there is no content]. This relationship has to be satisfied at every point [image: there is no content].



2.2.1. Data for [image: there is no content]


In the hydrate literature [4,20] there are tabulated data, or algebraic models, for how [image: there is no content] depends on P,T,[image: there is no content]. In addition, there may be dependence of Equation (3e) on the type of sediment [19,21] but this is out of scope here. In [3] we developed a particular approximation


[image: there is no content]≈[image: there is no content](x,[image: there is no content])≈[image: there is no content](x)+α(x)[image: there is no content],



(4)




in which the data [image: there is no content] and [image: there is no content] must be provided. This approximation Equation (4) includes as a special case the algebraic model in [19]. In [3] we describe how to obtain [image: there is no content] and [image: there is no content] by a fit to the lookup tables extracted from the well known phase equilibrium software CSMGem [22], and we calibrate them for the typical depth, temperature, and salinity conditions found in Ulleung Basin; see [3] and Section 5. As is well known, [image: there is no content] increases with depth, thus decreases with x. On the other hand, [image: there is no content] found with CSMGem is positive while the authors in [23] believe it should be negative; see [3] for details. In Section 5 we discuss the sensitivity of the model to the assumed profile of [image: there is no content].




2.2.2. Other Constraints


There are additional constraints that are not part of Equation (3) but are motivated by the physical meaning of the variables [image: there is no content],[image: there is no content], and [image: there is no content]. In particular, we must have [image: there is no content] or


[image: there is no content]≥0,[image: there is no content]≥0.



(5)







With some assumptions on [image: there is no content], the boundary and initial data, and small [image: there is no content],q one can prove that Equation (5) holds as a consequence of the maximum principle and other abstract analyses. (See [17] for the diffusive case and [18] for advective and diffusive transport case).



In more general circumstances one cannot prove that Equation (5) holds. In fact, a numerical model may readily produce [image: there is no content] increasing to 1 and beyond. This clearly is nonphysical, since even before the pores become plugged up and ϕ=[image: there is no content]ϕ0=0, all the flow and diffusion ceases, local pressures increase, and the sediment may break.



When Equation (5) is violated, a model more general than Equation (3) should be considered. In particular, such a model should include geomechanics and pore-scale effects; see, e.g., the conceptual model described in [21]. However, the analysis of such a model is presently out of scope. In the model discussed in this paper we terminate the simulation when Equation (5) does not hold.





2.3. Boundary and Initial Conditions


The model Equation (3) must be supplemented with appropriate initial conditions imposed on [image: there is no content] and [image: there is no content], and the boundary conditions on the fluxes or on the values of the transport variables [image: there is no content] and [image: there is no content]. In this paper we set


[image: there is no content](x,0)=NM0(x),[image: there is no content](x,0)=NS0(x),x∈Ω



(6a)






[image: there is no content](0,t)=[image: there is no content],[image: there is no content](L,t)=[image: there is no content]=0,t>0



(6b)






[image: there is no content](0,t)=[image: there is no content],[image: there is no content](L,t)=χlSL[image: there is no content],t>0



(6c)







The conditions Equation (6c) assign the seawater salinity at [image: there is no content] and some other salinity [image: there is no content] at HSZ known from observations. The conditions Equation (6b) assume some methane present at HSZ [image: there is no content], and that there is no methane in the ocean at [image: there is no content]. The choice consistent with Equation (4)


[image: there is no content]=[image: there is no content](0)+α(0)[image: there is no content]



(7)




allows the maximum possible amount of methane to be transported by advection and diffusion from underneath the HSZ.





3. Numerical Model


Now we provide details of the numerical model for Equation (3). We use mass-conservative spatial discretization based on cell-centered finite differences (FD) with harmonic averaging and a nonuniform structured spatial grid. An alternative discretization of the case [image: there is no content], with Finite Elements and mass lumping, was considered in [17], but it would not accommodate large advective fluxes and is not locally mass conservative. For time discretization we use operator splitting: we treat advection explicitly and diffusion implicitly as in [24,25,26]. The diffusion/equilibria handle two components and are organized in several time-stepping variants. In each variant we have to solve a linear or nonlinear system of equations; for the latter we use Newton (or semismooth Newton) iteration.



After the discretization of Equation (3), at each time step, one solves for the approximate values of the five unknowns [image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content]. (At this point we are not yet providing any notation specific to time steps or grid points). Note that Equation (3c) and Equation (3d) are merely the definitions of the terms used in the transport equations Equation (3a), Equation (3b) complemented by the phase equilibria Equation (3e). Thus we can eliminate and actually solve only for three variables [image: there is no content],[image: there is no content],[image: there is no content] the system of three equations which we write as


FM([image: there is no content],[image: there is no content],[image: there is no content])=0



(8a)






FS([image: there is no content],[image: there is no content],[image: there is no content])=0



(8b)






[image: there is no content]([image: there is no content],[image: there is no content],[image: there is no content])=0



(8c)







The details on discrete form of [image: there is no content] and [image: there is no content] which correspond to Equations (3a,b,e), respectively, are developed below. We discuss first the most difficult part of implementing Equation (3e), then we provide details of discretization of the transport equations. The system Equation (8) is nonlinear, and we discuss next the particular variants of the solvers and time-stepping variants.



3.1. Implementing Phase Constraint [NCC-M] in Fully Implicit Models


While it is well known how to discretize and solve advection-diffusion equations, implementing phase equilibria constraint Equation (3e) is challenging. There are practical approaches which have been successfully implemented [4,7]. In addition, approaches known from constrained optimization [27,28] have been recently applied; see [17,29].



In the first class of approaches, the constraint Equation (3e) can be rewritten using the notion of active/inactive sets [27]. In this approach at each time step and/or iteration, the (grid) points are identified as either those for which the first part of the inequality Equation (3e) holds, or those where the other complementary inequality must hold. Next, the mass conservation equations are specialized depending on the state of the primary unknowns, and are grouped together and solved for the particular active set of independent unknowns. In summary, in each time step and/or iteration of the nonlinear numerical solver, the solver changes the vector of unknowns depending on which variables need to be used. In consequence, not just the values, but also the sparsity structure of the Jacobian matrix change from iteration to iteration. This approach is known as variable switching [4,7] where at each gridpoint one identifies the appropriate independent variable depending on which of the inequalities holds.



In another equivalent approach one takes advantage of the semismooth “min” function as proposed in [29]. We recall that the function “min(u,v)” equals u if [image: there is no content] and v otherwise. We represent Equation (3e) in an equivalent way as


min([image: there is no content]-[image: there is no content],1-[image: there is no content])=0.



(9)







In [17] we showed that the “min” representation of Equation (3e) is equivalent to variable switching discussed above. With the “min” function approach, Equation (9) is a nonlinear equation in the variables [image: there is no content] and [image: there is no content], and it provides the fifth equation to complement Equations (3a)–(3d) that can be solved together for the five unknowns [image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content],[image: there is no content].



Since the function “min(u,v)” is piecewise linear and non-differentiable along [image: there is no content], it is also semismooth [28]. The theory of semismooth maps developed in [28] allows us then to analyze the solvability of the resulting nonlinear system of equations.



We found that the approach using Equation (9) is easy to implement and vectorize, and is modular, i.e., it does not require that we rewrite the complex logic of active/inactive sets whenever there is need to expand the logic or the physics in the model. The potential disadvantage of using Equation (9) is that the number of unknowns involved grows from two per grid point to three per grid point. In practice, however, this has minimal implications on the storage, since all the variables must be stored anyway. On the other hand, the size of the linear system that arises at each iteration when solving Equation (8) is by 50% larger than the size of that with explicit variable switching. However, the matrices in the linear systems corresponding to both approaches are sparse. An efficient implementation of the “min” approach in which sparsity is fixed, can outweigh the cost of the variable switching approach in which the pattern of sparsity varies from iteration to iteration.




3.2. Implementing Phase Constraints in Non-Implicit Models


Some of the time-stepping variants other than fully implicit require local nonlinear solvers called “flash”. These are invoked at each grid point ans solve a system simpler than Equation (3e) in which the values of one or of more of the variables are assumed known.



Simple flash. The simplest situation is when [image: there is no content] is known and we know [image: there is no content]. To determine [image: there is no content] and [image: there is no content] we simply use Equations (3e), (3c) to calculate


[image: there is no content]=[image: there is no content]-R[image: there is no content]-R=1,[image: there is no content]≤[image: there is no content](x,t),[image: there is no content]-R[image: there is no content](x,t)-R,[image: there is no content]>[image: there is no content](x).



(10)







Simple flash only is applicable if salinity is fixed because of the dependence of [image: there is no content] on [image: there is no content].



Two-variable flash. Given [image: there is no content],[image: there is no content] we can solve for the three unknowns [image: there is no content], [image: there is no content], [image: there is no content] using Equations (3c), (3d) and (9). The implementation is especially easy if Equation (4) is used. This flash solver typically takes 2 or 3 iterations to complete, but may fail when [image: there is no content] is close to 1.




3.3. Notation in Fully Discrete Model


The notation for discretization is straightforward. We find approximations to the relevant variables at discrete time steps [image: there is no content] The transport model Equation (3) advances the model variables from [image: there is no content] to [image: there is no content], with the time step τ=[image: there is no content]-[image: there is no content] considered uniform for simplicity. Also for simplicity, we consider the 1D reservoir [image: there is no content], where [image: there is no content] are the cells with the centers [image: there is no content] and uniform length h, and [image: there is no content]. We approximate [image: there is no content]([image: there is no content],[image: there is no content])≈[image: there is no content] and set [image: there is no content] to be a vector of [image: there is no content], with analogous notation applied to other variables.



We start by integrating each of the mass conservation equations over each [image: there is no content]. We show the calculations for methane; the ones for salt are analogous.



Accumulation and source terms. For each [image: there is no content] we calculate the approximation of accumulation and source terms as follows


∫[image: there is no content]ϕ0[image: there is no content](x,tn)dx≈ϕ0([image: there is no content])[image: there is no content]h.∫[image: there is no content][image: there is no content](x)dx≈hfM,i.



(11)







Advection terms. It suffices to consider only methane advection, since salt advection si treated the same way. We consider first the case [image: there is no content]. The advective flux


∫[image: there is no content]∇·(q[image: there is no content](x,tn))dx≈q(χlM,in-χlM,i-1n)



(12)




is handled by upwinding. Close to the inflow boundary at [image: there is no content], we set [image: there is no content] to the boundary value [image: there is no content]. If q<0, we replace the right hand side by χlM,i+1n-qχlM,in, and use the boundary condition [image: there is no content] on top of the reservoir.



Diffusion terms. For the spatially dependent diffusion coefficient [image: there is no content] and the variable [image: there is no content](x) we have, in a standard way [30,31]


-∫[image: there is no content]∇·[image: there is no content]∇[image: there is no content]dx≈-hDM,i+1/2(χlM,i+1-χlM,i)-DM,i-1/2(χlM,i-χlM,i-1)h2



(13)




where DM,i+1/2,DM,i-1/2 are found by harmonic averaging of the values DM,i,DM,i+1 and DM,i,DM,i-1, respectively. Close to the boundary we apply the discretization described in [32], e.g., at [image: there is no content] in place of [image: there is no content] we use the boundary value [image: there is no content], with [image: there is no content] set to [image: there is no content].



We also define the discrete diffusion matrix A with the entries defined so that h(A[image: there is no content])i is equal to the right hand side of Equation (13). In particular, [image: there is no content]. With Dirichlet boundary conditions A is symmetric and positive definite, as long as D>0. In 1d A is also tridiagonal. Further, since [image: there is no content] depends on ϕ0[image: there is no content] as in Table 1, the matrix A=A([image: there is no content]) depends on the local saturation values. Finally, since [image: there is no content]=DS and the type of boundary conditions on [image: there is no content] matches that for [image: there is no content], the matrix for salt equation is the same as that for methane.




3.4. Advection Step


The time-stepping variants considered in this paper are explicit in the advection. This allows development of higher-order schemes as well as avoids additional numerical diffusion associated with implicit treatment of advection [24,25,26]. With this step, we have to consider appropriate boundary conditions which in the operator splitting come from Equations (6b,c); in the advection step we can only impose the boundary condition on the inflow boundary.



In the 1D case considered here [image: there is no content] implies that q is constant, thus the inflow boundary is determined by the sign of q. If q>0, the inflow bundary is at the bottom of the reservoir at [image: there is no content], otherwise it is at [image: there is no content]. In the advection step, we must know [image: there is no content] and [image: there is no content] on the inflow boundary, and we use here exactly two of Equations (6b,c).



The advection step is as follows. Given [image: there is no content] from previous time step, with the corresponding [image: there is no content], we can easily calculate [image: there is no content]


ϕ0[image: there is no content]-ϕ0[image: there is no content]τ+∇·(q[image: there is no content])=0



(14a)




where the terms [image: there is no content] are approximated by Equation (12). Rearranging Equation (14a) we obtain an explicit expression for the methane amount [image: there is no content] at the intermediate auxiliary time [image: there is no content]


ϕ0NM,in+1/2=ϕ0[image: there is no content]-qτhi(χM,in-χM,i-1n)=0.



(15)







As is well known, stability of this explicit advection scheme requires that


[image: there is no content]



(16)




via the well-known Courant-Friedrichs-Lévy (CFL) condition [33] adapted to porous media.



Advection scheme for [image: there is no content] is defined analogously to Equation (15).




3.5. Diffusion Step


Knowing [image: there is no content] and [image: there is no content] from the advection step, we solve the coupled diffusion/phase behavior system for [image: there is no content] and [image: there is no content] with the boundary conditions Equations (6b,c). To distinguish between the variants and avoid additional superscripts, we reserve the notation [image: there is no content] and [image: there is no content] for the solutions to the fully implicit variant I.



First we recall that with Equation (13) and matrix A we have the vector equation


[image: there is no content]



(17)







Note the time lagging of the dependence of matrix A on [image: there is no content].



For [image: there is no content] we have an equation analogous to Equation (17). Additionally, we need to account for [NCC-M]. This coupled system of two component diffusion and phase equilibria is solved with one of the three variants: fully implicit (I), semi-implicit (SI), and sequential (SEQ). See Figure 1 for graphical illustration of the operator splitting and different variants.


Figure 1. Illustration of time stepping variants.
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3.5.1. Variant (I): Fully Implicit


The fully implicit variant solves the coupled two-component diffusion/phase behavior system for [image: there is no content] as follows


ϕ0[image: there is no content]-ϕ0[image: there is no content]τ+AχlMn+1=fMn+1,



(18a)






[image: there is no content]=Sln+1χlMn+1+R(1-Sln+1).



(18b)







Here Equation (18b) provides the definition of NMn+1 needed in Equation (18a), and is directly implemented in the code. The two unknowns in Equation (18a) are Sln+1 and χlMn+1; these are connected to each other via Equations (9) and (4)


min([image: there is no content](x)+α(x)χlSn+1-χlMn+1,1-Sln+1)=0



(18c)




with the dependence on χlSn+1 defined directly by


ϕ0NSn+1-ϕ0NSn+1/2τ+AχlSn+1=0



(18d)






NSn+1=Sln+1χlSn+1



(18e)







The Equation (18) is solved using Newton’s method for (Sln+1,χlMn+1,χlSn+1), and the Jacobian of the system is a 3×3 sparse block matrix. Its form and particular pattern of sparsity depend on Equation (18c). Note that in Equation (18) we maintain full consistency of mass conservation between the time steps (up to the tolerance of nonlinear solver), as well as consistency of thermodynamic constraints.




3.5.2. Variant (SI): Semi-Implicit


The semi-implicit variant differs from Equation (18) in the treatment of [image: there is no content] in Equation (18c). We time-lag [image: there is no content] and remove the two-way coupling between the methane transport and salinity transport. Methane transport in this model is governed by


ϕ0NMn+1^-ϕ0NMn+1/2τ+AχlMn+1^=fMn+1,



(19a)






NMn+1^=Sln+1^χlMn+1^+R(1-Sln+1^).



(19b)






min([image: there is no content](x)+α(x)χlSn^-χlMn+1^,1-Sln+1^)=0.



(19c)




so that these equations are solved for (Sln+1^,χlMn+1^) using Newton’s method. The Jacobian of the system is a [image: there is no content] sparse block matrix.



Knowing Sln+1^ we can solve the system for χlSn+1^ which is linear


ϕ0NSn+1^-ϕ0NSn+1/2τ+AχlSn+1^=0,



(19d)






NSn+1^=Sln+1^χlSn+1^.



(19e)




while the mass conservation between the time steps is enforced in this variant, there is potential inconsistency in thermodynamic constraints introduced by the time-lagging in Equation (19c). To correct this, we follow up with the two-variable local flash solver which corrects the saturations and solubilities while keeping ([image: there is no content]^, and [image: there is no content]^) fixed.




3.5.3. Variant (SEQ): Sequential


The sequential variant is the simplest to implement and one can easily adapt an existing advection-diffusion code. The advantage of this variant is that each of the global algebraic systems is linear. The disdvantage is that the phase behavior is not fully coupled to the transport dynamics, and fine time-stepping may be needed to ensure accuracy.



The SEQ variant time-lags the saturation variable in the methane and salinity transport equations


ϕ0Sln˜χlMn+1,*˜-ϕ0[image: there is no content]τ+AχlMn+1,*˜=fMn+1-ϕR(1-Sln˜)τ,



(20a)






ϕ0Sln˜χlSn+1,*˜-ϕ0[image: there is no content]τ+AχlSn+1,*˜=0



(20b)







Note that the phase constraint is not imposed in Equation (20), and that the equations are not coupled. We solve them for the temporary unknowns χlMn+1,*˜,χlSn+1,*˜, and next we recalculate the mass concentrations corresponding to the new solubilities from Equations (19b,e)


NMn+1˜=Sln˜χlMn+1,*˜+R(1-Sln˜).



(21)






NSn+1˜=Sln˜χlSn+1,*˜.



(22)







To keep these consistent with Equation (9), we invoke the nonlinear two variable flash solver. Its input are the mass concentrations NMn+1˜,NSn+1˜, and its output are the final new values of solubilities χlMn+1˜,χlSn+1˜, and saturations Sln+1˜ which satisfy the discrete version of Equation (9) plus the mass concentration definitions


min([image: there is no content](x)+α(x)χlSn+1˜-χlMn+1˜,1-Sln+1˜)=0



(23)






NMn+1˜=Sln+1˜χlMn+1˜+R(1-Sln+1˜)



(24)






NSn+1˜=Sln+1˜χlSn+1˜



(25)







The flash solver for Equations 23–25 provides the consistency between the mass-related variables and thermodynamic constraints. However, the mass conservation between time steps is not strictly enforced due to time-lagging.






4. Comparison of Performance of the Time Stepping Variants


In this section we evaluate the accuracy, robustness and computational complexity of the proposed I, SI, and SEQ variants of hydrate models using realistic scenarios of methane hydrate formation in typical sediments. We also give details on what time steps appear reasonable, and how to choose discretization parameters.



In oil-gas reservoir simulation the fully implicit algorithms implement directly the backward Euler formula. The fully implicit formulations are usually the most accurate, but also most complex to implement. In turn, sequential and semi-implicit variants are typically less accurate but, at least in principle, they have smaller computational complexity per time step, and are easier to implement than the fully implicit algorithms. Typically, the results of non-implicit schemes converge to those of fully implicit models as [image: there is no content]. In fact, non-implicit variants may require small τ in in order to resolve, e.g., complicated phase equilibria, heterogeneity, or complex well behavior; the use of small τ somewhat erases the benefits of small computational cost per time step. The non-implicit variants may still have advantages in the easiness of implementation.



The computational experiments we set up to test the variants I, SI, and SEQ are built from the following base case similar to those in [3] for the methane hydrate and salinity conditions in Ulleung Basin.



We set [image: there is no content] with [image: there is no content] m, and use uniform porosity [image: there is no content]. We vary q from large [image: there is no content] m/yr for which advection dominates, to the case where diffusion is dominant and [image: there is no content] m/yr. We assume that advection and diffusion provide the only transport mechanisms and that [image: there is no content]=0=fS, that is, the only sources of methane are from upward fluxes. For thermodynamics we use the reduced model Equation (4) and [NCC-M] constraint is implemented with Equation (9). Unless otherwise specified, we use the data [image: there is no content] and [image: there is no content] calibrated for Ulleung Basin and shown in [3] and Section 5 with the same boundary and initial conditions. We use zero initial conidtions for methane, and assume that the initial distribution of salinities varies linearly between the boundary conditions [image: there is no content] and [image: there is no content]. We run simulations until T=105yr=100Kyr, or until [image: there is no content] reaches the unphysical values close to 1.



Discretization parameters are chosen as follows. We use [image: there is no content] with [image: there is no content] in the base case. The time step is subject to the CFL constraint Equation (16). In particular for [image: there is no content] the largest time step τCFL≈78yr.



For illustration of the base case in Figure 2 we show the evolution of [image: there is no content] and [image: there is no content] for the case q=0.01m/yr, with small τ=1yr. In this case of strong advective flux the hydrate forms quickly and fills up the domain. These results are similar to those in [3] and more generally to the test cases in [4]. The evolution of salinity shows that there is a boundary layer close to the outflow which forms around T=10K and remains unchanged afterwards.


Figure 2. Evolution of hydrate saturation and of salinity for the base case. (left) Plot of [image: there is no content], (right) Plot of [image: there is no content]. Variable [image: there is no content] equals [image: there is no content] at these times and is not shown.
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4.1. Accuracy of the Time-Stepping Variants and Choice of Time Step


Here we study the sensitivity to τ which can guide its choice. In general, one wants to use small enough τ obeying the upper bound (16) and such that its further decrease does not have much influence. However, small τ means large number [image: there is no content] of time steps; this is significant in hydrate basin simulations since [image: there is no content] may be easily [image: there is no content] or more. Further, as suggested by our experience from oil-gas reservoir simulations [10,11,13], we expect that for small τ the results of the three variants I, SI, SEQ are very similar, and that for large τ they differ.



In Figure 3 we present the plots of [image: there is no content] obtained for different τ. Quantitative information supporting these observations is included in Table 2. (We do not present details concerning the evolution of [image: there is no content] since the results differ by less than 0.01% in each case.) We notice that the results corresponding to [image: there is no content] and the variants I, SI, and SEQ are essentially indistinguishable; this degree of closeness is more than expected. In addition, the results corresponding to the largest advection step [image: there is no content] and to the variants I, SI and SEQ are close to each other as well; they tend to overpredict those for [image: there is no content].


Figure 3. Plots of [image: there is no content] for different time steps τ (denoted on figure by [image: there is no content]), and different time-stepping variants fully implicit (I), semi-implicit (SI), and sequential (SEQ). (left) Plots over the full range of depth and [image: there is no content] are essentially indistinguishable. (right) The zoom of the left plot shows a small sensitivity to the choice of time step and of the model variant.
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Table 2. Maximum hydrate saturation [image: there is no content] obtained with different model variants and time steps at T=10K and T=25K, all parameters as in base case.



	
τ

	
SEQ

	
SI

	
I






	

	
T=10K




	
78

	
0.177208

	
0.182844

	
0.182844




	
70

	
0.176441

	
0.181803

	
0.181803




	
50

	
0.176834

	
0.181267

	
0.181267




	
25

	
0.177841

	
0.180908

	
0.180908




	
10

	
0.178834

	
0.180736

	
0.180736




	
5

	
0.179238

	
0.180688

	
0.180688




	
1

	
0.180183

	
0.180651

	
0.180651




	

	
T=25K




	
78

	
0.456162

	
0.463925

	
0.463925




	
70

	
0.456803

	
0.464271

	
0.464271




	
50

	
0.45644

	
0.462797

	
0.462797




	
25

	
0.457708

	
0.462438

	
0.462438




	
10

	
0.458886

	
0.462266

	
0.462266




	
5

	
0.459731

	
0.462218

	
0.462218




	
1

	
0.460878

	
0.462181

	
0.462181














In addition, we see that the model SEQ is potentially the most sensitive of all three to τ close to the boundaries and in areas with larger methane gradients. (This suggests the need for adaptive gridding). In addition, as τ decreases, the results tend to converge to the value for [image: there is no content]. Further decrease of τ (not shown here) does not influence the solution much, thus [image: there is no content] appears as the smallest sensible choice for this [image: there is no content].




4.2. Robustness and Efficiency of the Variants


Above we established that the simulated hydrate saturation values do not seem to significantly depend on the time step τ or on the variant of time stepping. Next we consider the robustness of the variants and in particular, how they handle difficult physical circumstances such as when [image: there is no content] is large due to large advective fluxes.



In Table 3 we report on the performance of the nonlinear solver, tested intentionally without any fine-tuning such as line-search. We see that between T=25K and T=50K all variants I, SI, SEQ struggle when [image: there is no content]. The model I appears somewhat more robust than the other two and it can simulate the hydrate evolution up to higher values.



Table 3. Robustness of nonlinear solvers depending on the variant and the time step for the simulations of the base case between T=25K and T=50K. The robustness is assessed by checking which solver variant is more prone or more robust to failing in the difficult modeling circumstances close to unphysical. We report the critical value [image: there is no content] obtained before the solver fails, and on the number [image: there is no content] of iterations. When [image: there is no content] is denoted by “-”, this means the solver did not complete. For SEQ model, [image: there is no content] denotes the number of flash iterations. For the SI and I models, [image: there is no content] denotes the number of global Newton iterations.



	
τ

	
SEQ

	
SI

	
I






	

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
78

	
0.75833

	
-

	
0.767473

	
-

	
0.773341

	
-




	
70

	
0.772449

	
-

	
0.782752

	
-

	
0.781435

	
-




	
50

	
0.806955

	
-

	
0.817198

	
-

	
0.817198

	
-




	
25

	
0.873396

	
-

	
0.880766

	
-

	
0.880766

	
-




	
10

	
0.925712

	
2

	
0.932267

	
2

	
0.932267

	
3




	
5

	
0.926744

	
2

	
0.93222

	
2

	
0.93222

	
3












Dependence of the results on q. Next, it is known that the advective fluxes are the hardest physically to handle for hydrate systems, since they provide the source for the fastest hydrate formation.



To test our solvers, we consider the advection-dominated case with large and moderate q, down to the purely diffusive case with [image: there is no content]. In Figure 4 we present the plots of hydrate saturations at T=31K for different fluxes q. In addition, in Table 4 we report the time [image: there is no content] when the computational model I predicts that maxx[image: there is no content](x,[image: there is no content])≈0.5. We also report the values [image: there is no content] and [image: there is no content] also for the variants SI and SEQ.


Figure 4. Hydrate saturation at T=31K when different advective fluxes are assumed. For [image: there is no content] for which high saturation is attained already at T=25K we do not show the plot at T=31K.
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Table 4. The time T when max[image: there is no content]≈0.5 depending on q, for the base case for each time-stepping variant, respectively, [image: there is no content],[image: there is no content],[image: there is no content]. Here we use [image: there is no content].


	q
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	0.1
	13917
	13917
	13972



	0.01
	27014
	27014
	27091



	0.005
	28629
	28629
	28691



	0.0001
	30568
	30568
	30587



	1e−08
	30614
	30614
	30624









We see that the variants I and SI report essentially the same values. In fact, a close inspection reveals that the model results differ in less than 0.001% between I and SI for the time steps we used in our implementation. This experiment shows again the robustness of all variants with respect to q, with a slight advantage of the implicit variants.



Computational time and the choice of time step. Finally, we evaluate the computational complexity of the variants, and this is done by comparing the wall clock times for our MATLAB implementation. In order to compare the solvers on equal footing, no additional code vectorization is implemented, but the code takes advantage of the natural MATALB vector data types. In Table 5 we report the wall clock time.


Table 5. Comparison of computational wall clock time [image: there is no content] for the three model variants and different time steps, for the base case and T=25K.


	τ
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	1
	591.801
	439.806
	441.394



	10
	60.2528
	44.0688
	47.6352



	50
	11.8322
	8.81442
	9.63327



	78
	7.55206
	5.655
	6.08011









In general, one expects that for the same time step τ the SEQ model is faster than SI and I, since SEQ only uses global linear solvers and local nonlinear flash routines. However, we see that all solvers require similar amounts of computational time, with a slight advantage of model SI. This may be due to the lack of vectorization applied in local flash routines, while the global linear solvers are naturally vectorized in MATLAB. In addition, the SEQ solver computes more local variables than SI and I.







Since with uniform τ the total computational time scales proportionally to the number of time steps, the choice of τ balances the desired accuracy and computational time. For the case considered here it seems that the time step [image: there is no content] may be the best practical choice.



The efficiency of the solvers may be very different in 2d or 3d simulations, and we intend to report on these in the future.







5. Sensitivity to Physical and Coputational Parameters


For a computational model it is crucial to determine what discretization parameters one should use for a given model. In addition, it is important to investigate the sensitivity of the model to the data on [image: there is no content] in Equation (4).



Discretization parameters. As the discretization parameters [image: there is no content] and the numbers of cells [image: there is no content]=Lh and time steps increase, it is expected that the numerical solutions of a PDE model converge to the analytical ones in an appropriate sense dictated by the theoretical numerical analysis. The convergence studies for the purely diffusive one component case of Equation (3) in [17] suggest to vary τ wit h either linearly or faster, and to consider various metrics of convergence in appropriate functional spaces. For the present case with significant advection q and variable salinity, we expect the rates to be inferior of the approximate O(h+τ) rates observed in [17]. The theoretical analysis is underway and will be presented elsewhere.



Here we choose [image: there is no content] and the implicit model; in Figure 5 and Table 6 we present the evidence which confirms that as h decreases, the results seem to converge. At the same time it is obvious that the convergence in saturations is quite rough, as observed earlier in [34].


Figure 5. Hydrate saturation for different [image: there is no content] and h denoted by dx. See Table 6 for the related quantitative information extracted from the simulations.
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Table 6. Accuracy and complexity of the computational model depending on [image: there is no content], with the time step τ adjusted to vary linearly with h. As the quantity of interest depending on [image: there is no content] we show the saturation values at T=25K. This table complements the plots in Figure 5.


	[image: there is no content]
	h
	τ
	max[image: there is no content]
	Wall-Clock Time





	10
	15.9
	10
	0.453079
	5.6533



	25
	6.36
	4
	0.455525
	32.644



	50
	3.18
	2
	0.459280
	121.411



	100
	1.59
	1
	0.462181
	489.101



	200
	0.795
	0.5
	0.465253
	2301.53













The question then is what choice of h and τ balance the conflicting need to decrease the computational time as well as to increase the accuracy, while maintaining an adequate model resolution. From the results presented, we suggest that [image: there is no content] or [image: there is no content]=50 corresponding to the discretization in space h≈1m and in time τ≈1yr are a good choice, since they appear to keep the simulation results within the uncertainty envelope that might not be verifiable experimentally.



However, the sensitivity to τ and h at the boundaries needs to be addressed by a more accurate and adaptive formulation especially if nonhomogeneous sediments and/or additional physics are considered.



Sensitivity to the parameters of the reduced model Equation (4). There is large uncertainty as to what [image: there is no content] one should use. In particular, there may be an error associated with the look-up table process of finding α described in [3] and due to the lack of information on salinity. More broadly, in a comprehensive model [image: there is no content] depends on the unknown pressure and temperature values, and possibly rock type, thus further variability and uncertainty of [image: there is no content] should be expected.



We set up therefore test cases to assess this sensitivity. We dub the values of [image: there is no content] obtained for Ulleung Basin in [3] the “true” [image: there is no content]. Next we simulate the hydrate formation with [image: there is no content] with c=1,c=10 and [image: there is no content]. Furthermore, we consider a constant value equal to the average of the true [image: there is no content], and another [image: there is no content] which randomly perturbs [image: there is no content]. The different cases of α are shown in Figure 6, with the corespnding [image: there is no content] which we calculated, for illustration purposes, assuming [image: there is no content]=[image: there is no content]. In Figure 7 we show the profiles of [image: there is no content] at T=25K coresponding to the different [image: there is no content].


Figure 6. Parameter [image: there is no content] as a function of depth used in Section 5 (left) and the corresponding [image: there is no content] computed from Equation (4) and assuming χLS≈[image: there is no content] (right). On right the plot of [image: there is no content] is also shown. The base case from Ulleung Basin [3] in both plots is denoted with circles. The other cases correspond to [image: there is no content], [image: there is no content], the average of [image: there is no content], and to a randomly perturbed [image: there is no content]. The plots for [image: there is no content] are out of range and are not fully included.
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Figure 7. Hydrate saturation for different coefficients α. The figure on the (right) is a zoomed in version of that on the (left).
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Comparing the hydrate saturation for [image: there is no content] and [image: there is no content] shown in Figure 7 to the base case with [image: there is no content] we see that since [image: there is no content] is significantly higher when [image: there is no content], somewhat less hydrate forms. On the other hand, a randomly pertubed [image: there is no content] gives [image: there is no content] with large local variation, and this is reflected in the corresponding hydrate saturation. This significant sensitivity appears to be of qualitative nature, and requires further studies.




6. Conclusions


In this paper we described the details of the discretization and implementation of a reduced methane hydrate model with variable salinity and significant advection proposed in [3]. We carried out several convergence and parameter studies to show that the model is robust and computationally sound. Studies of this type have not been provided for the simplified or the comprehensive implicit hydrate models from literature, but are crucial to guide the implementation and to inspire further theoretical and algorithmic developments.



In particular, we defined several time stepping variants: implicit I, semi-implicit SI, and sequential SEQ, which were tested and compared using realistic reservoir data from [3]. We found, somewhat surprisingly, that the I and SI variants give almost identical results; this may be explained by only a mild dependence of the model on the salinity variable whose treatment differs in I and SI. Furthermore, in the current implementation and 1d test cases there is no significant advantage in one variant over the others as concerns accuracy, robustness, or efficiency. Still, the I model appears as expected somewhat most robust, while SEQ is the easiest to implement by modifying standard advection-diffusion solvers. We also demonstrated the apparent convergence of the solutions when [image: there is no content], and determined practical choices of [image: there is no content]. In addition, there is apparent need for grid and model refinement near the boundaries.



Furthermore, we demonstrated the small sensitivity of the reduced thermodynamics model proposed in [3] to the particular value of the coefficient α as long as it is qualitatively close to the one from the reservoir data and is monotone. However, a randomly perturbed and nonmonotone α reveals large sensitivity, and we plan to investigate the reasons further.



Our future work includes theoretical and practical studies of the model convergence as well as its efficiency. There is further need to study additional sets of realistic data and thermodynamics models, and to consider extensions to more complex physical problems.
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