
Computation 2015, 3, 58-71; doi:10.3390/computation3010058

computation
ISSN 2079-3197

www.mdpi.com/journal/computation

Article

Visual Simulation of Soil-Microbial System Using
GPGPU Technology

Ruth E. Falconer †,* and Alasdair N. Houston †

SIMBIOS. School of Science, Engineering and Technology, Abertay University,

Dundee DD1 1HG, UK; E-Mail: al.houston@gmail.com

† These authors contributed equally to this work.

* Author to whom correspondence should be addressed; E-Mail: r.falconer@abertay.ac.uk;

Tel.: +44-1382-308458.

Academic Editor: James Dyke

Received: 13 August 2014 / Accepted: 21 January 2015 / Published: 27 February 2015

Abstract: General Purpose (use of) Graphics Processing Units (GPGPU) is a promising

technology for simulation upscaling; in particular for bottom–up modelling approaches

seeking to translate micro-scale system processes to macro-scale properties. Many existing

simulations of soil ecosystems do not recover the emergent system scale properties and this

may be a consequence of “missing” information at finer scales. Interpretation of model

output can be challenging and we advocate the “built-in” visual simulation afforded by

GPGPU implementations. We apply this GPGPU approach to a reaction–diffusion soil

ecosystem model with the intent of linking micro (micron) and core (cm) spatial scales to

investigate how microbes respond to changing environments and the consequences on soil

respiration. The performance is evaluated in terms of computational speed up, spatial

upscaling and visual feedback. We conclude that a GPGPU approach can significantly

improve computational efficiency and offers the potential added benefit of visual immediacy.

For massive spatial domains distribution over GPU devices may still be required.

Keywords: General Purpose (use of) Graphics Processing Units (GPGPU); mathematical

model; soil–microbe complex; X-Ray CT; reaction–diffusion

OPEN ACCESS

Computation 2015, 3 59

1. Introduction

Fungi are key components in soil ecosystems and recently soil fungal dynamics have been

attributed to C accumulation in boreal forests [1]. Given the central role fungi play in the biosphere the

development of a below ground fungal ecology will enhance our ability to predict the effect of

environmental changes on C sequestration. Central to the development of soil fungal ecology is an

understanding of how the physical environment, type and distribution of substrate affect modes of

fungal growth and activity. The mode of fungal growth is also determined by the physiological and

biochemical properties of the organism. Towards this we combine: A physiologically-based model of

fungal community dynamics, non-destructive quantification of the physical environment and a General

Purpose (use of) Graphics Processing Unit (GPGPU) approaches to simulate properties of the soil–fungal

system at scales driving the microbial dynamics. Such properties should be scalable such that model

output can be verified against experimentally measured properties of the system, such as evolved CO2,

biomass quantities and spatial extent. In the following sections, for completeness, the three

components of the simulation framework are presented which emphasizes the need for scalable models

and the application of commodity GPGPU technologies to soil ecosystem models which is the key

focus of this paper. The paper presents the stages for porting a serial reaction–diffusion model from a

reference CPU (Central Processing Unit) based implementation to the GPU (Graphics Processing

Unit), reflects upon how easy a task this was, discusses the benefits in terms of speed up and spatial up

scaling and presents some issues. The paper is written to appeal to the modeler who may consider

using GPGPU technologies to extend existing scientific models.

1.1. Spatially Explicit Reaction–Diffusion Physiologically-Based Model of Fungal Growth

The physiologically based model of fungal growth and interactions was developed with the aim of

understanding which processes mediate the response of fungi to environment under changing habitat

conditions. The reaction–diffusion system governing colony growth and interactions captures the

physiological process of uptake, translocation, biomass recycling and colony spread. We present the

model briefly below, please see [2–4] for full model details. Three biomass types are required to

support the theory of biomass recycling and for the model to simulate the plasticity of fungi in

response to the environment. Biomass recycling has been shown to be a unique feature of other

indeterminate organisms. Fungal biomass is assumed to comprise three components namely

non-insulated (NIB), mobile biomass (IR) and insulated biomass (IB). The first component corresponds

to the part of the fungi where growth and elongation of the hypha occurs. It contains a semi-permeable

membrane that enables nutrient uptake. The nutrients taken up by the colony are transformed into

mobile biomass, which is involved in nutrient translocation and biomass recycling [5]. The insulated

biomass IB represents aged parts of the colony. Where there is insulated biomass, the resource base

has typically been depleted, and the biomass can be spatially reallocated via recycling. Fungal colony

dynamics result from the spatial and temporal dynamics of these three types of biomass, based on

physiological processes: Uptake and respiration, growth and redistribution, and recycling. Where αn,

αi, βn, βi and θ are the recycling parameters, π stands for the internal resource concentration in the

mycelium (π = IR/(IB + NIB)) and ζ is the insulation parameter (see [2]). Dir and Dnib are the diffusion

parameters respectively for IR and NIB. Vdoc and Kdoc are the degradation and uptake parameters.

Computation 2015, 3 60

ξ stands for the cost of NIB sustainability and δ 	 is an efficiency parameter for uptake. These two

parameters allow accounting for two sources of CO2 form fungal activity—see Box 1.

Box 1. System of equations defining fungal ecology. ∂DOC∂t = 	 NIB ∙ V ∙ DOCK + DOC∂IR∂t = 	 ∙ ∙ IR + NIB ∙ δ ∙ V ∙ DOC/ K + DOC ξ + NIB ∙ β ∙ π 		α ∙ π+IB ∙ β ∙ π α ∙ π 		∂NIB∂t = 	 ∙ ∙ NIB NIB ∙ β ∙ π α ∙ π ζ ∙ NIB	∂IB∂t = IB ∙ β ∙ π α ∙ π + 	ζ ∙ NIB	
	=	NIB ∙ ξ + 1 δ ∙ V ∙

1.2. Imaging of Physical Soil Environment

The microscale architecture of soil has been proposed to govern the soil biogeochemical processes

observed or quantified at the macroscale [6–9]. To this end pore geometries at scales relevant to soil

microbes (micron scale) should be explicitly accounted for in order to develop a mechanistic

understanding of how microbial degradation is effected by biotic and abiotic factors and to develop an

evidence base of how micro-scale soil processes translate to macro-scale soil properties.

X-Ray CT (images in this study were obtained using model HMX 225 manufactured by XTek

systems Ltd., UK) has proven a powerful tool to characterise pore geometry (Figure 1) at scales relevant

to soil microbes with particular emphasis on bacteria [10,11] and has been used to characterize the

effect of land management practices on soil architecture and subsequent microbial invasion [12,13].

Figure 1. Soil volumes quantified using X-Ray CT, gray pixels are solid, voxel resolution = 30 μm.

1.3. Computational Challenges

The combination of high definition voxel data describing a soil habitat with physiologically based

reaction diffusion models presents a significant challenge. The computational cost of simulating

meaningful interaction between genotype (parameters governing the microbial processes) and

Computation 2015, 3 61

environment is so great that conventional (scalar) programming strategies are simply not adequate.

Parallelisation, in one form or another, is imperative to allow both initial exploratory investigation and

subsequently to permit robust hypothesis testing (over many replicates). A typical X-Ray CT image

may contain between 109 and 1010 voxel elements organised as a 3D Cartesian lattice. It is common

practice to select, from within the high definition volume image, a region of interest that offers a fair

representation of the physical sample. Motivation in this respect is the avoidance of any artefacts or

anomalies resulting from physical sampling and imaging and also the need to control the size of the

data “footprint” due to the associated simulation processing cost. For example a domain size of

128 × 128 × 128 voxels has been used for the soil–microbe model (requiring data storage amounting to

300 MBytes) in order to achieve an acceptable rate of simulation. This domain size corresponds to a

physical volume of approximately 0.3 cm3 at a voxel resolution of 30 microns [6] whereas for useful

prediction, the broader core scale of cm3 or more may be required. This is due to the goal of

verification by physical experiment which is typically carried out at the core scale. Simulations need to

operate at appropriate scales in order to accurately reproduce the observed, often emergent behaviours

we wish to study [14].

In the past decade, many demanding computational problems have been addressed by distributing

the processing workload over a computer cluster. This offers potentially good scalability of

performance versus problem size but can be costly in terms of both development effort and the

necessary resource infrastructure. Given unlimited access to a sufficiently large computer cluster, a

naive “brute-force” problem decomposition (e.g., many spatial sub-domains of small uniform size,

each allocated to one of many computers) may be practical. More generally, however, budget

constraints lead to the need for efficiency which in turn leads to increased software complexity (e.g.,

dynamic load balancing) and hence more costly development and maintenance. The difficulty of

efficiently distributing computation for a spatially complex simulation domain such as a soil image

must not, in our opinion, be under-estimated.

Contrastingly, the prospect of harnessing “the power of a cluster” within a single local computer at

modest operational cost is very appealing. Contemporary graphics accelerator devices (historically

often referred to as “graphics cards” or “graphics boards”) of the type marketed for playing 3D

computer games on desktop computers, can be used for this purpose. Such commodity devices are

available at prices ranging from under a hundred to more than a thousand euros/dollars as dictated by

performance and advanced features. Over the last decade, user-programmability of these devices has

improved greatly, facilitating application to problems other than the synthesis of digital images. In the

mid to high end of the price range, every device consists of one or more Graphics Processing Units

(henceforth GPU) supported by a very high performance memory subsystem. It is this combination of

highly parallel processing unit and fast memory that offers the potential for the GPU to significantly

out-perform the CPU on some types of problem. In the following section we discuss the characteristics

of a typical GPU and how it may be harnessed to accelerate the simulation of soil–microbe interaction.

1.4. GPGPU

The GPU has been used extensively in non-graphical applications and is particularly well suited to

operating on scalar and vector fields represented by discrete Cartesian lattices of dimension three or

Computation 2015, 3 62

less, especially when the vector element count does not exceed four. The high degree of data

parallelism offered by the GPU is easily exploited when computations on such a lattice are strictly

localised i.e., when interaction is limited to nearest neighbour lattice sites. A class of application for which

this is true, and one particularly relevant to soil ecosystem models, is the Reaction–Diffusion system.

Reaction–Diffusion systems have been implemented on GPU for procedural texture generation,

pollution dispersal and phase separation [15–17].

An added benefit of GPU-based computation is the relative ease and efficiency with which the

graphics accelerator may be used to visualise the simulation as it progresses, permitting real-time

interactive visual simulation. The complexity of Reaction–Diffusion systems constrained in structured

soil environments make the model output difficult to comprehend and as such visualization has been

proposed as a complementary approach to analysing and interpreting such data. Visual representations

of simulated soil–microbe dynamics allow possible errors to be disclosed and enhance model

verification. Furthermore by implementing the visualisation directly, great flexibility is realised in the

mapping of multivariate spatial data to visual representations. Such an approach can be particularly

beneficial during software development, when immediacy of visual feedback can enhance workflow.

Contrastingly, the use of a more generic external software application for visualising such complex

data may limit both flexibility and performance.

In the following section, we introduce some concepts and terminology used within the remainder of

the article. GPU computation is based on rapidly changing proprietary technologies, hence we attempt

to provide an accessible and standardised view on which to base subsequent discussion.

Technical Background

Figure 2 (below) shows the schematic organisation of a CPU and GPU within a contemporary

desktop computer. The CPU provides multiple processor cores, each supporting one or more threads of

a process (i.e., a program in a state of execution). Each core internally supports various forms of

parallel execution via “superscalar” design features that are transparent to the program (mer). This

permits high performance execution without placing a burden on software development, but greatly

increases the internal complexity of each core. Cache memory is a critical feature of the CPU due to

the comparatively slow RAM (Random Access Memory) that is employed as system memory. Access

to the system memory is shared between all processor cores and many other devices, including the GPU.

An external high-performance GPU (in the form of a “video accelerator”) differs from the CPU by

exposing parallelism to the software developer on a far greater scale. Within a single GPU there may

be thousands of PE’s (Processing Elements) each executing a thread of the shader process, thus

thousands of sites in a Cartesian lattice may be processed simultaneously. The PE’s are typically

organised into blocks having some local memory and most importantly, a single shared CU (Control

Unit) meaning that control flow is expected to be identical for all PE’s. Should control flow diverge

within a PE block (i.e., conditional statements evaluate to locally different results across the block)

then execution performance may suffer noticeably. The GPU is tightly coupled to video memory that

offers orders of magnitude higher performance than system memory, (but may be somewhat limited in

quantity due to financial considerations). This high performance video memory is critical in keeping

large numbers of PE’s usefully employed without relying on a sophisticated hierarchy of cache

Computation 2015, 3 63

memory (a marked contrast with the CPU). Recent generations of GPU support double precision

floating point arithmetic, allowing them to be applied more easily to a wide range of scientific problems.

Communication between the CPU and GPU may be direct (e.g., changes to an internal GPU setting

made by a process executing on the CPU) whereas application data is transferred using buffers

allocated within system memory. Direct (synchronous) communication expends processing capacity

for both CPU and GPU whereas buffered (asynchronous) communication is mainly limited by system

memory performance. In order to maximise the throughput of an application, it is advisable to reduce

CPU-GPU communication as far as possible, especially regarding large application data which should

be transferred only when absolutely necessary.

Figure 2. Overview of GPU and CPU organization.

In this paper we present the application of GPGPU technologies for computation and visualisation

to an existing model of soil–fungi dynamics to extend the spatial scales of the computational domain,

to speed up the computation and to aid in understanding and communication of system studied through

tight coupling of the simulation and visualisation. Results of the GPGPU implementation were

collected for single and double precision (declared as float and double in the C language family).

The success of the parallelised version was assessed in terms of computation time and also the

accuracy of results. We conclude with a performance evaluation to evaluate the effectiveness of the

GPGPU implementation.

2. Materials and Methods

2.1. Serial CPU Implementation

Typically reaction diffusion models are solved using a structured grid that maps to the computational

domain. The model is executed on the CPU (Figure 3a) and is sequential in operation. In the

Computation 2015, 3 64

non-optimized, naive CPU serial implementation 3D scalar fields with double precision are allocated

and initialised that store the state variables described in Box 1. For the desired number of iterations

(1000) the uptake, translocation, recycling and diffusion/spread algorithms are applied sequentially to

each voxel of the 3D grid using a triple for loop and a single thread/process (Figure 3a). The duration

of the simulation is determined by the time the biomass approaches the simulation boundaries

(1000 iterations). Double buffering is applied to maintain data integrity. Compute time is up to 6 min

with double precision. The serial version was run on the following hardware 16GB RAM and Intel (g)

Xeon (R) CPU E3.

Figure 3. (a) Serial CPU version of soil–fungal dynamic; (b) GPU implementation of

soil–fungal dynamic decomposed into thread groups with each thread group accessing

shared memory and upon which access to threads are synchronised.

Computation 2015, 3 65

2.2. GPU Implementation

Grid based computation maps well to GPUs and the state variables (Box 1) are implemented as

numeric data within a grid cell, and the algorithm steps are the computational kernels or shaders

operating on grid cell data. The DirectX API (Application Programming Interfaces) is known to offer

efficient inter-operability with computation and graphics and was selected for this reason, as immediacy

of visual feedback was a key objective, together with familiarity of the API via 3D graphics

programming [18]. A thread executing shader code is invoked for each grid cell, thus the total number

of such invocations per iteration (and per shader) is equal to the number of voxels in the 3D spatial

domain. Figure 3b outlines how parallel computations can accelerate soil–microbe dynamics. In the

parallel approach the computations are distributed across thread groups, and threads within a thread

group execute concurrently. Thread Group Shared Memory is an efficient local storage feature, useful

for sharing intermediate calculations between neighbouring grid cells. Thread synchronization is

required immediately after loading data to shared memory to ensure data integrity. The number of

threads per group is context dependent and a scalability study is required to determine the optimal

arrangement [18].The author of [18] suggests that, due to the graphics hardware, threads in a

group should be a multiple of 32, and that 128 threads per group is a reasonable starting point for

scalability analysis.

For the GPU implementation the sequence of operations (Figure 4) includes firstly initialising the

graphics and computation API (DirectX 11), and secondly verifying the capabilities of the graphics

card (some may not support compute functionality, double precision or even basic floating point

operations). Next the shader source code is compiled for the graphics card and the data buffers (the

3D scalar fields of Box 1) in RAM are initialised by the CPU. Once the GPU buffers have been both

defined and activated, then the contents of these buffers are transferred from RAM to VRAM

(Video RAM). The data accessed by a shader thread executing on the GPU is defined in the form of a

1D unstructured buffer in VRAM, but this usage is semantically identical to that of the 3D scalar field

located in RAM. The data is subsequently activated (bound) to the GPU pipeline awaiting an

activated/bound shader to operate on the data.

The appropriate shader/kernel (computation or rendering) is also activated (bound) and the shader

will operate on the currently activated data either for computation or rendering. The compute shader is

invoked for each thread which uses an index to map into the data stream and applies the uptake,

translocation, recycling and spread calculations. Synchronisation is necessary in the translocation and

spread processes as diffusion is implemented to ensure all threads in a group reach a certain state before

proceeding with the other reaction functions (uptake, translocation and recycling). The application of

the shader to the numeric data within a grid cell generates updated numeric data which becomes the

input to the next step. This cyclic process is illustrated in right hand side of Figure 4—GPU and VRAM

section. Periodically data is transferred from GPU to CPU to test for mass conservation. The compute

shader is deactivated and the rendering shader is activated together with the data it requires for

rendering the result of the computation. The rendering uses the result of the compute shader as input,

the 1d unstructured buffer is copied into a 3D texture where the three biomass types are mapped to

r, g, b channels of a 3D texture. The parallel version was run using the following hardware (NVIDIA

GeForce GTX 650 Ti with 1024 MB VRAM, Nvidia, Santa Clara, CA, USA).

Computation 2015, 3 66

Figure 4. Sequence of events for GPU computation of soil–microbe model.

3. Results and Discussion

Scalability analysis was conducted investigating the effect of thread group size on time to compute

and the frames rendered per second. For structured grid problems like Reaction–Diffusion problems

the number of threads required is known, equal to the number of voxels in the computational domain,

but how many threads to allocate per group should be tuneable and determined on a case by case basis

via scalability analysis [17,19] (illustrated in Figure 5). As suggested by [17] 128 threads per group

was used for the lower limit and incremented by 256 up to the maximum number of threads per group

(1028). The number of threads allocated was a multiple of the warp size (32 for NVIDEA hardware).

With increasing threads per group better performance is achieved, this may seem obvious but it is

recommended to undertake the scalability analysis as it is not always the case. 1028 threads per group was

selected for the study.

CPU & RAM (System Memory) GPU & VRAM (Video Memory)

Operating
SystemMycoCompute()

• Initialise API

• Enum. Dev’s and Cap’s

• Load Shader Source

• Build Shader Executable
• Initialise CPU data:
- load files

• Initialise GPU data:
- create GPU buffers

(A & B)
- bind (exclusive access)
- transfer (RAM to VRAM)

• Bind Shader Exec.
- dispatch thread groups
-8M threads dispatched
-one thread per spatial
location

• Process per time step:
- Apply shader to buffer A
- Swap buffers A and B
• Unbind A and B

• Acquire and save GPU
computation results:
- bind, transfer, unbind
- analyse & report
- save files

• Release resources

Device
Driver &

Firmware
API
Inst.

Shdr.
Exec.Data

Buffer

Comp.
Buffer

A

RAM to VRAM data transfer

Active Shdr.
Exec. for

each thread
Define data

Uptake
Translocation
Synchronise

Recycling
Spread

Synchronise

Comp.
Buffer

B

activation

VRAM to RAM data transfer

Double
Buffered

Processing
Iteration

Computation 2015, 3 67

Figure 5. Bar chart showing scalability analysis of # threads per group, the thread group

topology is presented in square brackets, on FPS and time to compute.

The cost of data movement from GPU to CPU, and rendering the simulation output was

investigated by determining the compute time with increasing frequency of data transfer and the draw

frequency. Table 1 shows the time to compute and frames per second (fps) based on draw rate and data

transfer from GPU to CPU frequency. The time to compute accounts for all the CPU and GPU run

time for the GPU results which include memory transfer time between CPU and GPU as a function of

transfer frequency. The results highlights that resources used for rendering is negligible and is reflected

in the simplicity of the renderer. Transferring data from CPU to GPU is costly effecting both time to

compute and fps and should be done minimally.

Table 1. Time elapsed and fps as a function of draw rate and data transfer from GPU to

CPU for single precision.

Draw Rate 50 50 50 10 1

GPU → CPU 50 10 1 50 50
FPS 24 24 6 24 24

Time elapsed(s) 50.85 57.96 143.12 50.8 55.98

Results collected focus on the accuracy of the GPU implementations measured by relative error

with respect to the CPU implementation being the true value and the GPU (float and double) being

approximated values (Figure 6). Figure 6 shows little difference between single and double precision

in terms of solution accuracy of numerical scheme recovering the conservation of mass. The relative

error increases with time as its cumulative and plateaus as no more calculations are conducted as the

simulation is space limited; this may have consequences for running longer term simulations when the

computational domain is larger and is replenished as the error will continue to grow. Figure 7 depicts

time to compute (n = 5) and highlights the difference between GPU implementations. The figure

shows that the GPU single precision was fastest followed by double precision. Figure 8 shows the

rendered simulation output which is displayed in real-time, which can be queried as the simulation

proceeds, providing the immediacy in visual feedback as required.

Computation 2015, 3 68

Figure 6. Relative error for the GPU implementation with single (open circles) and double

precision (stars).

Figure 7. Time elapsed (n = 5) for GPU versions for a simulation with 1000 iterations.

(a) (b)

Figure 8. (a) Microbial biomass growing in the soil structure; (b) view of the soil pore

volume together with the distribution of the types of biomass—green is NIB, red is IR and

blue is IN biomass. The dominant biomass type is displayed per voxel.

Computation 2015, 3 69

4. Conclusions

The paper set out to present the stages for porting a serial CPU-based Reaction–Diffusion model to

the GPU. The software required to perform general set-up, loading resource files, etc., is much the

same in either case, but there is additional initialisation and management required in the case of the

GPU. The transformation of CPU based Reaction–Diffusion simulation code into a GPU compute

kernel is not difficult and, by liberating the simulation model from the “baggage” of explicit nested

iteration, tends to clarify and highlight the essential features of a model implementation. Contrasting

with this is the effort required to set up the infrastructure necessary for compute kernel execution,

which is more challenging and has a steep learning curve. The results are promising in terms of

computational performance, showing a 21 times speedup relative to the single threaded CPU model

reference point, following some limited tuning of GPU data handling i.e., transferring data between

CPU and GPU less frequently. This speed up is still achieved while simultaneously presenting

approximately 30 fps interactive 3D visualisation of simulation output that is captured at intervals of

50 iterations. We emphasise that this visualisation uses only the simplest 3D rendering techniques so

as not to impact noticeably on system performance. Nonetheless, the ability to directly observe the

simulation evolving is extremely helpful for understanding the interplay of the state variables in a

spatially complex environment such as soil.

In terms of increasing spatial scale, a GPU implementation improves practicality by significantly

reducing the burden of computation time, but is intrinsically limited by the quantity of video memory

provided within the GPU device (typically 2 to 4 GBytes for commodity devices at the time of

writing). Consequently very large spatial domains must be distributed across multiple GPUs such that

communication via the relatively slow system memory does not become a limiting factor. Such

distribution must be explicitly managed by the application, a non-trivial task that has not been

addressed within the present study. With respect to accuracy and robustness of the translation to GPU

computation, differences between single and double precision were not apparent over the time scales

and model conditions assessed. Under these conditions, the results of GPU simulation compared well

with those of the CPU but we stress that one cannot expect the output from such different devices to

match exactly. Despite improving compliance with the widely accepted IEEE-754 standard [20] for

floating point arithmetic, the ordering of machine instructions can affect numerical evaluation through

truncation and rounding of intermediate results. Just as different compilers and optimisation settings

may produce slightly different results on a single CPU, the translation of a compute kernel into GPU

executable code provides no guarantees of end-to-end precision over a complex calculation. As this

translation is implemented within GPU device driver software, it is proprietary to the GPU

manufacturer and may be subject to change in the event that device drivers are updated. Further issues

may stem from the API layer acting as intermediary between the application and the drivers, e.g.,

DirectCompute is known to presently restrict floating point division operations to single precision and

does not support FMA (Fused Multiply Add) instructions. These are factors that may contribute to the

lack of clear differences between single and double precision implementations.

The Microsoft Direct3D API was selected based on previous experience in 3D image synthesis, but

this familiarity was perhaps not the best motivation. For many reasons including control over

precision, scalability, quality of documentation and availability of community support, other API’s

Computation 2015, 3 70

such as OpenCL (Open Computing Language) and CUDA (Compute Unified Device Architecture)

may have be more appropriate choices. Despite such issues, the performance improvement realised for

intermediate spatial scales has been rewarding in itself as the scope of simulation experiments, i.e., the

capability to investigate a wider range of model parameters, is now significantly enhanced. This is a

key aspect of the application to environmental research, in which we seek to understand the interaction

between genotype trait and habitat under a wide range of environmental conditions.

Author Contributions

Ruth Falconer designed the experiments, implemented the code, undertook the analysis and

co-authored the paper. Alasdair Houston supported design and implementation of code and

experiments and co-authored the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Clemmensen, K.E.; Bahr, A.; Ovaskainen, O.; Dahlberg, A.; Ekblad, A.; Wallander, H.; Stenlid, J.;

Finlay, R.D.; Wardle, D.A.; Lindahl, B.D. Roots and associated fungi drive long-term carbon

sequestration in boreal forest. Science 2013, 339, 1615–1618.

2. Falconer, R.E.; Bown, J.L.; White, N.A.; Crawford, J.W. Biomass recycling and the origin of

phenotype in fungal mycelia. Proc. Biol. Sci. 2005, 272, 1727–1734.

3. Cazelles, K.; Otten, W.; Baveye, P.C.; Falconer, R.E. Soil fungal dynamics: Parameterisation and

sensitivity analysis of modelled physiological processes, soil architecture and carbon distribution.

Ecol. Modell. 2013, 248, 165–173.

4. Falconer, R.E.; Houston, A.; Otten, W.; Baveye, P.C. Emergent Behavior of Soil Fungal

Dynamics: Influence of Soi. J. Soil Sci. 2012, 177, 111–119.

5. Falconer, R.E.; Bown, J.L.; White, N.A.; Crawford, J.W. Biomass recycling: A key to efficient

foraging by fungal colonies. Oikos 2007, 116, 1558–1568.

6. Manzoni, S.; Porporato, A. Soil carbon and nitrogen mineralization: Theory and models across

scales. Soil Biol. Biochem. 2009, 41, 1355–1379.

7. Dungait, J.A.J.; Hopkins, D.W.; Gregory, A.S.; Whitmore, A.P. Soil organic matter turnover is

governed by accessibility not recalcitrance. Glob. Chang. Biol. 2012, 18, 1781–1796.

8. Otten, W.; Pajor, R.; Schmidt, S.; Baveye, P.C.; Hague, R.; Falconer, R.E. Combining X-Ray CT

and 3D printing technology to produce microcosms with replicable, complex pore geometries.

Soil Biol. Biochem. 2012, 51, 53–55.

9. Crawford, J.W.; Deacon, L.; Grinev, D.; Harris, J.A.; Ritz, K.; Singh, B.K.; Young, I. Microbial

diversity affects self-organization of the soil-microbe system with consequences for function.

J. R. Soc. Interface 2012, 9, 1302–1310.

Computation 2015, 3 71

10. Wolf, A.B.; Vos, M.; de Boer, W.; Kowalchuk, G.A. Impact of matric potential and pore size

distribution on growth dynamics of filamentous and non-filamentous soil bacteria. PLoS One

2013, 8, e83661.

11. Raynaud, X.; Nunan, N. Spatial ecology of bacteria at the microscale in soil. PLoS One 2014,

9, e87217.

12. Pajor, R.; Falconer, R.; Hapca, S.; Otten, W. Modelling and quantifying the effect of heterogeneity

in soil physical conditions on fungal growth. Biogeosci. Discuss. 2010, 7, 3477–3501.

13. Kravchenko, A.; Falconer, R.E.; Grinev, D.; Otten, W. Fungal colonization in soils with different

management histories: Modeling growth in three-dimensional pore volumes. Ecol. Appl. 2011, 21,

1202–1210.

14. Falconer, R.E.; Bown, J.L.; McAdam, E.; Perez-Reche, P.; Sampson, A.T.; van den Bulcke, J.;

White, N.A. Modelling fungal colonies and communities: Challenges and opportunities.

IMA Fungus 2010, 1, 155–159.

15. Molnár, F.; Izsák, F.; Mészáros, R.; Lagzi, I. Simulation of reaction–diffusion processes in three

dimensions using CUDA. Chemom. Intell. Lab. Syst. 2011, 108, 76–85.

16. Richmond, P.; Walker, D.; Coakley, S.; Romano, D. High performance cellular level agent-based

simulation with FLAME for the GPU. Brief. Bioinform. 2010, 11, 334–347.

17. Sanderson, A.R.; Meyer, M.D.; Kirby, R.M.; Johnson, C.R. A framework for exploring numerical

solutions of advection–reaction–diffusion equations using a GPU-based approach. Comput. Vis. Sci.

2008, 12, 155–170.

18. Fung, J. DirectCompute Lecture Series 210: GPU Optimizations and Performance. Available online:

http://channel9.msdn.com/Blogs/gclassy/DirectCompute-Lecture-Series-210-GPU-Optimizations-

and-Performance (accessed on 2 February 2015).

19. NVIDIA Corporation; Harris, M. Mapping Computational Concepts to GPUs. In GPU Gems 2:

Programming Techniques for High-Performance Graphics and General-Purpose Computation,

1st ed.; Fernando, M., Pharr, R., Eds.; Addison Wesley: Boston, MA, USA, 2005.

20. Whitehead, N.; Fit-Florea, A. Precision & Performance: Floating Point and IEEE 754 Compliance

for NVIDIA GPUs; Technical Report, rn (A+ B) 21 (2011) 1-1874919424; NVIDIA: Santa Clara,

CA, USA, 2011.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

