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Abstract: General Purpose (use of) Graphics Processing Units (GPGPU) is a promising 

technology for simulation upscaling; in particular for bottom–up modelling approaches 

seeking to translate micro-scale system processes to macro-scale properties. Many existing 

simulations of soil ecosystems do not recover the emergent system scale properties and this 

may be a consequence of “missing” information at finer scales. Interpretation of model 

output can be challenging and we advocate the “built-in” visual simulation afforded by 

GPGPU implementations. We apply this GPGPU approach to a reaction–diffusion soil 

ecosystem model with the intent of linking micro (micron) and core (cm) spatial scales to 

investigate how microbes respond to changing environments and the consequences on soil 

respiration. The performance is evaluated in terms of computational speed up, spatial 

upscaling and visual feedback. We conclude that a GPGPU approach can significantly 

improve computational efficiency and offers the potential added benefit of visual immediacy. 

For massive spatial domains distribution over GPU devices may still be required. 

Keywords: General Purpose (use of) Graphics Processing Units (GPGPU); mathematical 

model; soil–microbe complex; X-Ray CT; reaction–diffusion 
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1. Introduction 

Fungi are key components in soil ecosystems and recently soil fungal dynamics have been 

attributed to C accumulation in boreal forests [1]. Given the central role fungi play in the biosphere the 

development of a below ground fungal ecology will enhance our ability to predict the effect of 

environmental changes on C sequestration. Central to the development of soil fungal ecology is an 

understanding of how the physical environment, type and distribution of substrate affect modes of 

fungal growth and activity. The mode of fungal growth is also determined by the physiological and 

biochemical properties of the organism. Towards this we combine: A physiologically-based model of 

fungal community dynamics, non-destructive quantification of the physical environment and a General 

Purpose (use of) Graphics Processing Unit (GPGPU) approaches to simulate properties of the soil–fungal 

system at scales driving the microbial dynamics. Such properties should be scalable such that model 

output can be verified against experimentally measured properties of the system, such as evolved CO2, 

biomass quantities and spatial extent. In the following sections, for completeness, the three 

components of the simulation framework are presented which emphasizes the need for scalable models 

and the application of commodity GPGPU technologies to soil ecosystem models which is the key 

focus of this paper. The paper presents the stages for porting a serial reaction–diffusion model from a 

reference CPU (Central Processing Unit) based implementation to the GPU (Graphics Processing 

Unit), reflects upon how easy a task this was, discusses the benefits in terms of speed up and spatial up 

scaling and presents some issues. The paper is written to appeal to the modeler who may consider 

using GPGPU technologies to extend existing scientific models. 

1.1. Spatially Explicit Reaction–Diffusion Physiologically-Based Model of Fungal Growth 

The physiologically based model of fungal growth and interactions was developed with the aim of 

understanding which processes mediate the response of fungi to environment under changing habitat 

conditions. The reaction–diffusion system governing colony growth and interactions captures the 

physiological process of uptake, translocation, biomass recycling and colony spread. We present the 

model briefly below, please see [2–4] for full model details. Three biomass types are required to 

support the theory of biomass recycling and for the model to simulate the plasticity of fungi in 

response to the environment. Biomass recycling has been shown to be a unique feature of other 

indeterminate organisms. Fungal biomass is assumed to comprise three components namely  

non-insulated (NIB), mobile biomass (IR) and insulated biomass (IB). The first component corresponds 

to the part of the fungi where growth and elongation of the hypha occurs. It contains a semi-permeable 

membrane that enables nutrient uptake. The nutrients taken up by the colony are transformed into 

mobile biomass, which is involved in nutrient translocation and biomass recycling [5]. The insulated 

biomass IB represents aged parts of the colony. Where there is insulated biomass, the resource base 

has typically been depleted, and the biomass can be spatially reallocated via recycling. Fungal colony 

dynamics result from the spatial and temporal dynamics of these three types of biomass, based on 

physiological processes: Uptake and respiration, growth and redistribution, and recycling. Where αn, 

αi, βn, βi and θ are the recycling parameters, π stands for the internal resource concentration in the 

mycelium (π = IR/(IB + NIB) ) and ζ is the insulation parameter (see [2]). Dir and Dnib are the diffusion 

parameters respectively for IR and NIB. Vdoc and Kdoc are the degradation and uptake parameters.  
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ξ stands for the cost of NIB sustainability and δ 	 is an efficiency parameter for uptake. These two 

parameters allow accounting for two sources of CO2 form fungal activity—see Box 1. 

Box 1. System of equations defining fungal ecology. ∂DOC∂t = 	 NIB ∙ V ∙ DOCK + DOC∂IR∂t = 	 ∙ ∙ IR + NIB ∙ δ ∙ V ∙ DOC/ K + DOC ξ + NIB ∙ β ∙ π 		α ∙ π+IB ∙ β ∙ π α ∙ π 		∂NIB∂t = 	 ∙ ∙ NIB NIB ∙ β ∙ π α ∙ π ζ ∙ NIB	∂IB∂t = IB ∙ β ∙ π α ∙ π + 	ζ ∙ NIB	
	=	NIB ∙ ξ + 1 δ ∙ V ∙  

1.2. Imaging of Physical Soil Environment 

The microscale architecture of soil has been proposed to govern the soil biogeochemical processes 

observed or quantified at the macroscale [6–9]. To this end pore geometries at scales relevant to soil 

microbes (micron scale) should be explicitly accounted for in order to develop a mechanistic 

understanding of how microbial degradation is effected by biotic and abiotic factors and to develop an 

evidence base of how micro-scale soil processes translate to macro-scale soil properties. 

X-Ray CT (images in this study were obtained using model HMX 225 manufactured by XTek 

systems Ltd., UK) has proven a powerful tool to characterise pore geometry (Figure 1) at scales relevant 

to soil microbes with particular emphasis on bacteria [10,11] and has been used to characterize the 

effect of land management practices on soil architecture and subsequent microbial invasion [12,13]. 

Figure 1. Soil volumes quantified using X-Ray CT, gray pixels are solid, voxel resolution = 30 μm. 

1.3. Computational Challenges 

The combination of high definition voxel data describing a soil habitat with physiologically based 

reaction diffusion models presents a significant challenge. The computational cost of simulating 

meaningful interaction between genotype (parameters governing the microbial processes) and 
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environment is so great that conventional (scalar) programming strategies are simply not adequate. 

Parallelisation, in one form or another, is imperative to allow both initial exploratory investigation and 

subsequently to permit robust hypothesis testing (over many replicates). A typical X-Ray CT image 

may contain between 109 and 1010 voxel elements organised as a 3D Cartesian lattice. It is common 

practice to select, from within the high definition volume image, a region of interest that offers a fair 

representation of the physical sample. Motivation in this respect is the avoidance of any artefacts or 

anomalies resulting from physical sampling and imaging and also the need to control the size of the 

data “footprint” due to the associated simulation processing cost. For example a domain size of  

128 × 128 × 128 voxels has been used for the soil–microbe model (requiring data storage amounting to 

300 MBytes) in order to achieve an acceptable rate of simulation. This domain size corresponds to a 

physical volume of approximately 0.3 cm3 at a voxel resolution of 30 microns [6] whereas for useful 

prediction, the broader core scale of cm3 or more may be required. This is due to the goal of 

verification by physical experiment which is typically carried out at the core scale. Simulations need to 

operate at appropriate scales in order to accurately reproduce the observed, often emergent behaviours 

we wish to study [14]. 

In the past decade, many demanding computational problems have been addressed by distributing 

the processing workload over a computer cluster. This offers potentially good scalability of 

performance versus problem size but can be costly in terms of both development effort and the 

necessary resource infrastructure. Given unlimited access to a sufficiently large computer cluster, a 

naive “brute-force” problem decomposition (e.g., many spatial sub-domains of small uniform size, 

each allocated to one of many computers) may be practical. More generally, however, budget 

constraints lead to the need for efficiency which in turn leads to increased software complexity (e.g., 

dynamic load balancing) and hence more costly development and maintenance. The difficulty of 

efficiently distributing computation for a spatially complex simulation domain such as a soil image 

must not, in our opinion, be under-estimated. 

Contrastingly, the prospect of harnessing “the power of a cluster” within a single local computer at 

modest operational cost is very appealing. Contemporary graphics accelerator devices (historically 

often referred to as “graphics cards” or “graphics boards”) of the type marketed for playing 3D 

computer games on desktop computers, can be used for this purpose. Such commodity devices are 

available at prices ranging from under a hundred to more than a thousand euros/dollars as dictated by 

performance and advanced features. Over the last decade, user-programmability of these devices has 

improved greatly, facilitating application to problems other than the synthesis of digital images. In the 

mid to high end of the price range, every device consists of one or more Graphics Processing Units 

(henceforth GPU) supported by a very high performance memory subsystem. It is this combination of 

highly parallel processing unit and fast memory that offers the potential for the GPU to significantly 

out-perform the CPU on some types of problem. In the following section we discuss the characteristics 

of a typical GPU and how it may be harnessed to accelerate the simulation of soil–microbe interaction. 

1.4. GPGPU 

The GPU has been used extensively in non-graphical applications and is particularly well suited to 

operating on scalar and vector fields represented by discrete Cartesian lattices of dimension three or 
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less, especially when the vector element count does not exceed four. The high degree of data 

parallelism offered by the GPU is easily exploited when computations on such a lattice are strictly 

localised i.e., when interaction is limited to nearest neighbour lattice sites. A class of application for which 

this is true, and one particularly relevant to soil ecosystem models, is the Reaction–Diffusion system. 

Reaction–Diffusion systems have been implemented on GPU for procedural texture generation, 

pollution dispersal and phase separation [15–17]. 

An added benefit of GPU-based computation is the relative ease and efficiency with which the 

graphics accelerator may be used to visualise the simulation as it progresses, permitting real-time 

interactive visual simulation. The complexity of Reaction–Diffusion systems constrained in structured 

soil environments make the model output difficult to comprehend and as such visualization has been 

proposed as a complementary approach to analysing and interpreting such data. Visual representations 

of simulated soil–microbe dynamics allow possible errors to be disclosed and enhance model 

verification. Furthermore by implementing the visualisation directly, great flexibility is realised in the 

mapping of multivariate spatial data to visual representations. Such an approach can be particularly 

beneficial during software development, when immediacy of visual feedback can enhance workflow. 

Contrastingly, the use of a more generic external software application for visualising such complex 

data may limit both flexibility and performance.  

In the following section, we introduce some concepts and terminology used within the remainder of 

the article. GPU computation is based on rapidly changing proprietary technologies, hence we attempt 

to provide an accessible and standardised view on which to base subsequent discussion. 

Technical Background 

Figure 2 (below) shows the schematic organisation of a CPU and GPU within a contemporary 

desktop computer. The CPU provides multiple processor cores, each supporting one or more threads of 

a process (i.e., a program in a state of execution). Each core internally supports various forms of 

parallel execution via “superscalar” design features that are transparent to the program (mer). This 

permits high performance execution without placing a burden on software development, but greatly 

increases the internal complexity of each core. Cache memory is a critical feature of the CPU due to 

the comparatively slow RAM (Random Access Memory) that is employed as system memory. Access 

to the system memory is shared between all processor cores and many other devices, including the GPU. 

An external high-performance GPU (in the form of a “video accelerator”) differs from the CPU by 

exposing parallelism to the software developer on a far greater scale. Within a single GPU there may 

be thousands of PE’s (Processing Elements) each executing a thread of the shader process, thus 

thousands of sites in a Cartesian lattice may be processed simultaneously. The PE’s are typically 

organised into blocks having some local memory and most importantly, a single shared CU (Control 

Unit) meaning that control flow is expected to be identical for all PE’s. Should control flow diverge 

within a PE block (i.e., conditional statements evaluate to locally different results across the block) 

then execution performance may suffer noticeably. The GPU is tightly coupled to video memory that 

offers orders of magnitude higher performance than system memory, (but may be somewhat limited in 

quantity due to financial considerations). This high performance video memory is critical in keeping 

large numbers of PE’s usefully employed without relying on a sophisticated hierarchy of cache 
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memory (a marked contrast with the CPU). Recent generations of GPU support double precision 

floating point arithmetic, allowing them to be applied more easily to a wide range of scientific problems. 

Communication between the CPU and GPU may be direct (e.g., changes to an internal GPU setting 

made by a process executing on the CPU) whereas application data is transferred using buffers 

allocated within system memory. Direct (synchronous) communication expends processing capacity 

for both CPU and GPU whereas buffered (asynchronous) communication is mainly limited by system 

memory performance. In order to maximise the throughput of an application, it is advisable to reduce 

CPU-GPU communication as far as possible, especially regarding large application data which should 

be transferred only when absolutely necessary. 

 

Figure 2. Overview of GPU and CPU organization. 

In this paper we present the application of GPGPU technologies for computation and visualisation 

to an existing model of soil–fungi dynamics to extend the spatial scales of the computational domain, 

to speed up the computation and to aid in understanding and communication of system studied through 

tight coupling of the simulation and visualisation. Results of the GPGPU implementation were 

collected for single and double precision (declared as float and double in the C language family).  

The success of the parallelised version was assessed in terms of computation time and also the 

accuracy of results. We conclude with a performance evaluation to evaluate the effectiveness of the 

GPGPU implementation. 

2. Materials and Methods 

2.1. Serial CPU Implementation 

Typically reaction diffusion models are solved using a structured grid that maps to the computational 

domain. The model is executed on the CPU (Figure 3a) and is sequential in operation. In the  
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non-optimized, naive CPU serial implementation 3D scalar fields with double precision are allocated 

and initialised that store the state variables described in Box 1. For the desired number of iterations 

(1000) the uptake, translocation, recycling and diffusion/spread algorithms are applied sequentially to 

each voxel of the 3D grid using a triple for loop and a single thread/process (Figure 3a). The duration 

of the simulation is determined by the time the biomass approaches the simulation boundaries  

(1000 iterations). Double buffering is applied to maintain data integrity. Compute time is up to 6 min 

with double precision. The serial version was run on the following hardware 16GB RAM and Intel (g) 

Xeon (R) CPU E3. 

 

 

Figure 3. (a) Serial CPU version of soil–fungal dynamic; (b) GPU implementation of  

soil–fungal dynamic decomposed into thread groups with each thread group accessing 

shared memory and upon which access to threads are synchronised. 
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2.2. GPU Implementation 

Grid based computation maps well to GPUs and the state variables (Box 1) are implemented as 

numeric data within a grid cell, and the algorithm steps are the computational kernels or shaders 

operating on grid cell data. The DirectX API (Application Programming Interfaces) is known to offer 

efficient inter-operability with computation and graphics and was selected for this reason, as immediacy 

of visual feedback was a key objective, together with familiarity of the API via 3D graphics 

programming [18]. A thread executing shader code is invoked for each grid cell, thus the total number 

of such invocations per iteration (and per shader) is equal to the number of voxels in the 3D spatial 

domain. Figure 3b outlines how parallel computations can accelerate soil–microbe dynamics. In the 

parallel approach the computations are distributed across thread groups, and threads within a thread 

group execute concurrently. Thread Group Shared Memory is an efficient local storage feature, useful 

for sharing intermediate calculations between neighbouring grid cells. Thread synchronization is 

required immediately after loading data to shared memory to ensure data integrity. The number of 

threads per group is context dependent and a scalability study is required to determine the optimal 

arrangement [18].The author of [18] suggests that, due to the graphics hardware, threads in a  

group should be a multiple of 32, and that 128 threads per group is a reasonable starting point for 

scalability analysis. 

For the GPU implementation the sequence of operations (Figure 4) includes firstly initialising the 

graphics and computation API (DirectX 11), and secondly verifying the capabilities of the graphics 

card (some may not support compute functionality, double precision or even basic floating point 

operations). Next the shader source code is compiled for the graphics card and the data buffers (the  

3D scalar fields of Box 1) in RAM are initialised by the CPU. Once the GPU buffers have been both 

defined and activated, then the contents of these buffers are transferred from RAM to VRAM  

(Video RAM). The data accessed by a shader thread executing on the GPU is defined in the form of a 

1D unstructured buffer in VRAM, but this usage is semantically identical to that of the 3D scalar field 

located in RAM. The data is subsequently activated (bound) to the GPU pipeline awaiting an 

activated/bound shader to operate on the data. 

The appropriate shader/kernel (computation or rendering) is also activated (bound) and the shader 

will operate on the currently activated data either for computation or rendering. The compute shader is 

invoked for each thread which uses an index to map into the data stream and applies the uptake, 

translocation, recycling and spread calculations. Synchronisation is necessary in the translocation and 

spread processes as diffusion is implemented to ensure all threads in a group reach a certain state before 

proceeding with the other reaction functions (uptake, translocation and recycling). The application of 

the shader to the numeric data within a grid cell generates updated numeric data which becomes the 

input to the next step. This cyclic process is illustrated in right hand side of Figure 4—GPU and VRAM 

section. Periodically data is transferred from GPU to CPU to test for mass conservation. The compute 

shader is deactivated and the rendering shader is activated together with the data it requires for 

rendering the result of the computation. The rendering uses the result of the compute shader as input, 

the 1d unstructured buffer is copied into a 3D texture where the three biomass types are mapped to  

r, g, b channels of a 3D texture. The parallel version was run using the following hardware (NVIDIA 

GeForce GTX 650 Ti with 1024 MB VRAM, Nvidia, Santa Clara, CA, USA). 
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Figure 4. Sequence of events for GPU computation of soil–microbe model. 

3. Results and Discussion 

Scalability analysis was conducted investigating the effect of thread group size on time to compute 

and the frames rendered per second. For structured grid problems like Reaction–Diffusion problems 

the number of threads required is known, equal to the number of voxels in the computational domain, 

but how many threads to allocate per group should be tuneable and determined on a case by case basis 

via scalability analysis [17,19] (illustrated in Figure 5). As suggested by [17] 128 threads per group 

was used for the lower limit and incremented by 256 up to the maximum number of threads per group 

(1028). The number of threads allocated was a multiple of the warp size (32 for NVIDEA hardware). 

With increasing threads per group better performance is achieved, this may seem obvious but it is 

recommended to undertake the scalability analysis as it is not always the case. 1028 threads per group was 

selected for the study. 
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Figure 5. Bar chart showing scalability analysis of # threads per group, the thread group 

topology is presented in square brackets, on FPS and time to compute. 

The cost of data movement from GPU to CPU, and rendering the simulation output was 

investigated by determining the compute time with increasing frequency of data transfer and the draw 

frequency. Table 1 shows the time to compute and frames per second (fps) based on draw rate and data 

transfer from GPU to CPU frequency. The time to compute accounts for all the CPU and GPU run 

time for the GPU results which include memory transfer time between CPU and GPU as a function of 

transfer frequency. The results highlights that resources used for rendering is negligible and is reflected 

in the simplicity of the renderer. Transferring data from CPU to GPU is costly effecting both time to 

compute and fps and should be done minimally. 

Table 1. Time elapsed and fps as a function of draw rate and data transfer from GPU to 

CPU for single precision. 

Draw Rate 50 50 50 10 1 

GPU → CPU 50 10 1 50 50 
FPS 24 24 6 24 24 

Time elapsed(s) 50.85 57.96 143.12 50.8 55.98 

Results collected focus on the accuracy of the GPU implementations measured by relative error 

with respect to the CPU implementation being the true value and the GPU (float and double) being 

approximated values (Figure 6). Figure 6 shows little difference between single and double precision 

in terms of solution accuracy of numerical scheme recovering the conservation of mass. The relative 

error increases with time as its cumulative and plateaus as no more calculations are conducted as the 

simulation is space limited; this may have consequences for running longer term simulations when the 

computational domain is larger and is replenished as the error will continue to grow. Figure 7 depicts 

time to compute (n = 5) and highlights the difference between GPU implementations. The figure 

shows that the GPU single precision was fastest followed by double precision. Figure 8 shows the 

rendered simulation output which is displayed in real-time, which can be queried as the simulation 

proceeds, providing the immediacy in visual feedback as required. 
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Figure 6. Relative error for the GPU implementation with single (open circles) and double 

precision (stars). 

 

Figure 7. Time elapsed (n = 5) for GPU versions for a simulation with 1000 iterations. 

(a) (b) 

Figure 8. (a) Microbial biomass growing in the soil structure; (b) view of the soil pore 

volume together with the distribution of the types of biomass—green is NIB, red is IR and 

blue is IN biomass. The dominant biomass type is displayed per voxel. 
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4. Conclusions 

The paper set out to present the stages for porting a serial CPU-based Reaction–Diffusion model to 

the GPU. The software required to perform general set-up, loading resource files, etc., is much the 

same in either case, but there is additional initialisation and management required in the case of the 

GPU. The transformation of CPU based Reaction–Diffusion simulation code into a GPU compute 

kernel is not difficult and, by liberating the simulation model from the “baggage” of explicit nested 

iteration, tends to clarify and highlight the essential features of a model implementation. Contrasting 

with this is the effort required to set up the infrastructure necessary for compute kernel execution, 

which is more challenging and has a steep learning curve. The results are promising in terms of 

computational performance, showing a 21 times speedup relative to the single threaded CPU model 

reference point, following some limited tuning of GPU data handling i.e., transferring data between 

CPU and GPU less frequently. This speed up is still achieved while simultaneously presenting 

approximately 30 fps interactive 3D visualisation of simulation output that is captured at intervals of 

50 iterations. We emphasise that this visualisation uses only the simplest 3D rendering techniques so 

as not to impact noticeably on system performance. Nonetheless, the ability to directly observe the 

simulation evolving is extremely helpful for understanding the interplay of the state variables in a 

spatially complex environment such as soil. 

In terms of increasing spatial scale, a GPU implementation improves practicality by significantly 

reducing the burden of computation time, but is intrinsically limited by the quantity of video memory 

provided within the GPU device (typically 2 to 4 GBytes for commodity devices at the time of 

writing). Consequently very large spatial domains must be distributed across multiple GPUs such that 

communication via the relatively slow system memory does not become a limiting factor. Such 

distribution must be explicitly managed by the application, a non-trivial task that has not been 

addressed within the present study. With respect to accuracy and robustness of the translation to GPU 

computation, differences between single and double precision were not apparent over the time scales 

and model conditions assessed. Under these conditions, the results of GPU simulation compared well 

with those of the CPU but we stress that one cannot expect the output from such different devices to 

match exactly. Despite improving compliance with the widely accepted IEEE-754 standard [20] for 

floating point arithmetic, the ordering of machine instructions can affect numerical evaluation through 

truncation and rounding of intermediate results. Just as different compilers and optimisation settings 

may produce slightly different results on a single CPU, the translation of a compute kernel into GPU 

executable code provides no guarantees of end-to-end precision over a complex calculation. As this 

translation is implemented within GPU device driver software, it is proprietary to the GPU 

manufacturer and may be subject to change in the event that device drivers are updated. Further issues 

may stem from the API layer acting as intermediary between the application and the drivers, e.g., 

DirectCompute is known to presently restrict floating point division operations to single precision and 

does not support FMA (Fused Multiply Add) instructions. These are factors that may contribute to the 

lack of clear differences between single and double precision implementations. 

The Microsoft Direct3D API was selected based on previous experience in 3D image synthesis, but 

this familiarity was perhaps not the best motivation. For many reasons including control over 

precision, scalability, quality of documentation and availability of community support, other API’s 
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such as OpenCL (Open Computing Language) and CUDA (Compute Unified Device Architecture) 

may have be more appropriate choices. Despite such issues, the performance improvement realised for 

intermediate spatial scales has been rewarding in itself as the scope of simulation experiments, i.e., the 

capability to investigate a wider range of model parameters, is now significantly enhanced. This is a 

key aspect of the application to environmental research, in which we seek to understand the interaction 

between genotype trait and habitat under a wide range of environmental conditions. 
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