EKAResNet: Enhancing ResNet with Kolmogorov–Arnold Network-Based Nonlinear Feature Mapping
Abstract
1. Introduction
- (1)
- The model integrates ResNet and KAN to leverage KAN’s strengths in nonlinear modeling. By introducing parameterizable B-spline basis functions to map input features, the model enhances ResNet’s feature representation capability for high-dimensional complex data, thereby improving classification accuracy.
- (2)
- The model replaces selected fully connected layers with KAN-FCM, introducing a dynamic feature adjustment mechanism through adaptive kernel functions. By employing piecewise polynomial interpolation (spline approximation) for feature mapping, this approach reduces computational complexity while maintaining effective feature representation.
2. Method
- (1)
- Input preprocessing: The input image undergoes initial convolution, normalization, and pooling operations. These steps convert raw pixel data into a structured feature representation, effectively compressing redundant information while strengthening local feature expression [6].
- (2)
- Feature extraction: The preprocessed features are processed through a module that employs residual connections. This mechanism directly propagates input information to subsequent layers, enhancing feature propagation efficiency and mitigating the vanishing gradient problem in deep networks [7].
- (3)
- Feature enhancement: The extracted high-dimensional features undergo efficient nonlinear transformation through piecewise polynomial interpolation, improving feature separability [8].
- (4)
- Classification: KAN-FCM replaces the traditional fully connected layer, reducing computational redundancy and improving efficiency [17].
| Algorithm 1: Generic pre-activation residual CNN with spline-enhanced classifier |
![]() |
2.1. Initial Feature Extraction
2.2. Feature Extraction
2.3. Feature Enhancement
2.4. KAN-FCM
3. Experimental Section
3.1. Experimental Environment
3.2. Dataset Introduction
3.3. Experimental Analysis
3.4. Ablation Experiment
4. Summarize
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010; Proceedings of Machine Learning Research: London, UK, 2010; Volume 9, pp. 249–256. [Google Scholar]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef]
- Hochreiter, S. The vanishing gradient problem during learning recurrent neural nets and problem solutions. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 1998, 6, 107–116. [Google Scholar] [CrossRef]
- Botalb, A.; Moinuddin, M.; Al-Saggaf, U.M.; Ali, S.S. Contrasting convolutional neural network (CNN) with multi-layer perceptron (MLP) for big data analysis. In Proceedings of the 2018 International Conference on Intelligent and Advanced System (ICIAS), Kuala Lumpur, Malaysia, 23–25 August 2018; pp. 1–5. [Google Scholar]
- Krichen, M. Convolutional neural networks: A survey. Computers 2023, 12, 151. [Google Scholar] [CrossRef]
- Borawar, L.; Kaur, R. ResNet: Solving vanishing gradient in deep networks. In Proceedings of the International Conference on Recent Trends in Computing (ICRTC 2022), Chandigarh, India, 9–10 December 2022; Springer Nature: Singapore, 2023; pp. 235–247. [Google Scholar]
- Cao, Y.; Li, X.; Feng, H.; Wang, T.; Zhang, J.; Liu, J. KANMixer: A Fully Linear Network with Multi-Scale Feature Awareness for Power Quality Classification Tasks. In Proceedings of the 2024 China Automation Congress (CAC), Xiamen, China, 1–3 November 2024; pp. 3341–3346. [Google Scholar]
- Reinhardt, E.; Ramakrishnan, D.; Gleyzer, S. Sinekan: Kolmogorov-arnold networks using sinusoidal activation functions. Front. Artif. Intell. 2025, 7, 1462952. [Google Scholar] [CrossRef] [PubMed]
- Bodner, A.D.; Tepsich, A.S.; Spolski, J.N.; Pourteau, S. Convolutional kolmogorov-arnold networks. arXiv 2024, arXiv:2406.13155. [Google Scholar]
- Zheng, L.N.; Zhang, W.E.; Yue, L.; Xu, M.; Maennel, O.; Chen, W. Free-Knots Kolmogorov-Arnold Network: On the Analysis of Spline Knots and Advancing Stability. arXiv 2025, arXiv:2501.09283v1. [Google Scholar]
- Ji, T.; Hou, Y.; Zhang, D. A comprehensive survey on Kolmogorov Arnold networks (KAN). arXiv 2024, arXiv:2407.11075. [Google Scholar] [CrossRef]
- Scabini, L.F.; Bruno, O.M. Structure and performance of fully connected neural networks: Emerging complex network properties. Phys. A Stat. Mech. Its Appl. 2023, 615, 128585. [Google Scholar] [CrossRef]
- Chou, Y.C.; Chen, C.C. Improving deep learning-based polyp detection using feature extraction and data augmentation. Multimed. Tools Appl. 2023, 82, 16817–16837. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Y.; Ren, Y.; Jiang, H.; Du, G.; Zhang, J.; Li, J. An automated detection of epileptic seizures EEG using CNN classifier based on feature fusion with high accuracy. BMC Med. Inform. Decis. Mak. 2023, 23, 96. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Qiu, H.; Hou, G.; Fan, P. An overview of hyperspectral image feature extraction, classification methods and the methods based on small samples. Appl. Spectrosc. Rev. 2023, 58, 367–400. [Google Scholar] [CrossRef]
- Sahin, V.H.; Oztel, I.; Yolcu Oztel, G. Human monkeypox classification from skin lesion images with deep pre-trained network using mobile application. J. Med. Syst. 2022, 46, 79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhou, J.; Zhang, W.; Lin, Z.; Yao, J.; Polat, K.; Alhudhaif, A. ReX-Net: A reflectance-guided underwater image enhancement network for extreme scenarios. Expert Syst. Appl. 2023, 231, 120842. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Z. A improved pooling method for convolutional neural networks. Sci. Rep. 2024, 14, 1589. [Google Scholar] [CrossRef]
- Yin, T.; Chen, H.; Yuan, Z.; Wan, J.; Liu, K.; Horng, S.J.; Li, T. A robust multilabel feature selection approach based on graph structure considering fuzzy dependency and feature interaction. IEEE Trans. Fuzzy Syst. 2023, 31, 4516–4528. [Google Scholar] [CrossRef]
- Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146. [Google Scholar]
- Chen, Y.; Xia, R.; Yang, K.; Zou, K. DARGS: Image inpainting algorithm via deep attention residuals group and semantics. J. King Saud Univ. Comput. Inf. Sci. 2023, 35, 101567. [Google Scholar] [CrossRef]
- Cao, L.; Li, J.; Chen, S. Multi-target segmentation of pancreas and pancreatic tumor based on fusion of attention mechanism. Biomed. Signal Process. Control 2023, 79, 104170. [Google Scholar] [CrossRef]
- Xie, C.; Shao, Z.; Zhao, N.; Du, Y.; Du, L. An efficient CNN inference accelerator based on intra-and inter-channel feature map compression. IEEE Trans. Circuits Syst. Regul. Pap. 2023, 70, 3625–3638. [Google Scholar] [CrossRef]
- Mou, L.; Xiao, X.; Cao, W.; Li, W.; Chen, X. Efficient and accurate capsule networks with b-spline-based activation functions. In Proceedings of the 2024 International Conference on New Trends in Computational Intelligence (NTCI), Shanghai, China, 18–20 October 2024; pp. 201–205. [Google Scholar]
- Ta, H.T. BSRBF-KAN: A combination of B-splines and Radial Basis Functions in Kolmogorov-Arnold Networks. arXiv 2024, arXiv:2406.11173. [Google Scholar]
- Liu, Z.; Wang, Y.; Vaidya, S.; Ruehle, F.; Halverson, J.; Soljačić, M.; Tegmark, M. KAN: Kolmogorov-arnold networks. arXiv 2024, arXiv:2404.19756. [Google Scholar]
- Cheon, M. Kolmogorov-arnold network for satellite image classification in remote sensing. arXiv 2024, arXiv:2406.00600. [Google Scholar] [CrossRef]
- Chen, K.; Chen, B.; Liu, C.; Li, W.; Zou, Z.; Shi, Z. Rsmamba: Remote sensing image classification with state space model. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Yu, R.C.; Wu, S.; Gui, J. Residual Kolmogorov–Arnold Network for Enhanced Deep Learning. arXiv 2024, arXiv:2410.05500. [Google Scholar]
- Yang, X.; Wang, X. Kolmogorov–Arnold Transformer. arXiv 2024, arXiv:2409.10594. [Google Scholar]
- Woo, S.; Kim, D.; Park, J.; Lee, J.; Kweon, I.S. ConvNeXt V2: Co-Designing and Scaling ConvNets with Masked Autoencoders. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 18–22 June 2023; pp. 16133–16142. [Google Scholar]







| Network | Accuracy (%) |
|---|---|
| ResNet101 | 95.75 ± 0.32 |
| WideResNet-28-10 | 95.65 ± 0.56 |
| ResNetKAN | 95.20 ± 0.38 |
| KAT-Small | 95.50 ± 0.64 |
| ConvNeXtV2-Tiny | 94.80 ± 0.86 |
| EKAResNet | 95.84 ± 0.26 |
| Network | Accuracy (%) |
|---|---|
| ResNet101 | 79.08 ± 1.21 |
| WideResNet-28-10 | 78.64 ± 0.58 |
| ResNetKAN | 79.43 ± 1.33 |
| KAT-Small | 78.30 ± 0.68 |
| ConvNeXtV2-Tiny | 78.70 ± 2.21 |
| EKAResNet | 80.06 ± 0.55 |
| Network | Number of Parameters |
|---|---|
| ResNet101 | 42.70M |
| WideResNet-28-10 | 36.54M |
| ResNetkan | 51.06M |
| KAT-Small | 21.75M |
| ConvNeXtV2-Tiny | 27.94M |
| EKAResNet | 36.20M |
| Idx | Number of Layers | Grid-Size | Spline-Order | Accuracy (%) |
|---|---|---|---|---|
| 1 | ✔✔ | ✔✔✔ | ✔✔ | 80.06 ± 0.55 |
| 2 | ✔ | ✔✔✔ | ✔✔ | 79.32 ± 0.52 |
| 3 | × | × | × | 78.85 ± 0.60 |
| 4 | ✔✔ | ✔✔ | ✔✔ | 79.58 ± 0.50 |
| 5 | ✔✔ | ✔✔✔✔ | ✔✔ | 79.85 ± 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, Z.; Wu, T.; Zhang, W.; Chen, J.; Chen, H.; Liu, X.; Liu, Z. EKAResNet: Enhancing ResNet with Kolmogorov–Arnold Network-Based Nonlinear Feature Mapping. Computation 2025, 13, 248. https://doi.org/10.3390/computation13110248
Dang Z, Wu T, Zhang W, Chen J, Chen H, Liu X, Liu Z. EKAResNet: Enhancing ResNet with Kolmogorov–Arnold Network-Based Nonlinear Feature Mapping. Computation. 2025; 13(11):248. https://doi.org/10.3390/computation13110248
Chicago/Turabian StyleDang, Zhiming, Tonghua Wu, Wulin Zhang, Jianxin Chen, Huanlin Chen, Xuan Liu, and Zirui Liu. 2025. "EKAResNet: Enhancing ResNet with Kolmogorov–Arnold Network-Based Nonlinear Feature Mapping" Computation 13, no. 11: 248. https://doi.org/10.3390/computation13110248
APA StyleDang, Z., Wu, T., Zhang, W., Chen, J., Chen, H., Liu, X., & Liu, Z. (2025). EKAResNet: Enhancing ResNet with Kolmogorov–Arnold Network-Based Nonlinear Feature Mapping. Computation, 13(11), 248. https://doi.org/10.3390/computation13110248


