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Abstract: A B-spline function is a series of flexible elements that are managed by a set of control
points to produce smooth curves. By using a variety of points, these functions make it possible to
build and maintain complicated shapes. Any spline function of a certain degree can be expressed as
a linear combination of the B-spline basis of that degree. The flexibility, symmetry and high-order
accuracy of the B-spline functions make it possible to tackle the best solutions. In this study, extended
cubic B-spline (ECBS) functions are utilized for the numerical solutions of the generalized nonlinear
time-fractional Klein–Gordon Equation (TFKGE). Initially, the Caputo time-fractional derivative
(CTFD) is approximated using standard finite difference techniques, and the space derivatives are
discretized by utilizing ECBS functions. The stability and convergence analysis are discussed for
the given numerical scheme. The presented technique is tested on a variety of problems, and the
approximate results are compared with the existing computational schemes.

Keywords: Caputo time-fractional derivative; extended cubic B-spline functions; nonlinear time-fractional
Klein–Gordon equation; stability and convergence

MSC: 41A15; 65D07; 35R11; 26A33; 65M22

1. Introduction

The Klein–Gordon equation was discovered by several authors, including Swedish
physicists Oskar Klein (1894–1977) and Walter Gordon (1893–1939) in 1926. The Klein–
Gordon nonlinear equation describes various mathematical problems in engineering and
science. The fractional Klein–Gordon Equation (FKGE) has important applications in rel-
ativistic physics, quantum mechanics, plasma physics, quantum field theory, nonlinear
optics, solid state physics, condensed matter physics, dispersive wave phenomena and soli-
tons. Many techniques have been implemented for solving Klein/sine–Gordon equations
effectively, such as the homotopy analysis, the Adomian decomposition and the variational
iteration methods [1–3]. In this paper, a Crank–Nicolson scheme is formulated to obtain
the numerical solutions of the TFKGE based on ECBS. The Caputo formula is employed
for temporal discretization, while the spatial derivative is discretized using ECBS. The
generalized nonlinear TFKGE is given as follows:
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∂αz(p, t)
∂tα

+ δ1z(p, t) + δ2h(z(p, t)) =
∂2z(p, t)

∂p2 + q(p, t), 1 < α ≤ 2, a ≤ p ≤ b, t ≥ 0, (1)

with the following initial conditions (ICs):

z(p, 0) = ϕ0(p),
∂z(p, 0)

∂t
= ϕ1(p), a ≤ p ≤ b

and the following boundary conditions (BCs):

z(a, t) = ψ0(t), z(b, t) = ψ1(t), t ≥ 0,

where δ1, δ2 are positive constants; h(z(p, t)) represents the nonlinear term; ∂αz(p,t)
∂tα denotes

the αth order CTFD; and q(p, t) is the force term.
Several analytical and numerical schemes for the TFKGE are available in the liter-

ature. In order to calculate the solutions of FKGEs, Golmankhaneh et al. [4] employed
the homotopy perturbation approach. By employing the variational iteration technique,
Batiha et al. [5] proposed an approximate solution to the sine-Gordon Equation (SGE).
Kurulay [6] presented the homotopy analysis technique to examine the nonlinear FKGEs.
The Haar wavelets approach was utilized by Hariharan [7] to solve the FKGEs. Hepson
et al. [8] proposed an exponential B-spline approach to calculate the solution of the KGE.
Dehghan et al. [9] found mathematical solutions for the fractional SGE and KGE that are
nonlinear by using an implicit radial basis functions (RBFs) meshless technique. For the
formulation and solution of the TFKGE, Zhang [10] used the variational iteration approach.
Chen et al. [11] established an effective numerical spectral methodology for the nonlin-
ear FKGEs. Nagy [12] presented a sinc-Chebyshev collocation technique to calculate the
solution of nonlinear FKGEs.

El-Sayed [13] employed the decomposition procedure to examine the KGE. The conver-
gence of the technique described in [13] was examined by Kaya and El-Sayed [14]. Cui [15]
used a compact fourth-order technique to determine the numerical solutions of the one-
dimensional SGE. The homotopy analysis technique has been utilized by Jafari et al. [16]
in order to solve the nonlinear KGE. Vong and Wang [17] provided a compact difference
method for two-dimensional FKGEs involving Neumann boundaries. For the computa-
tional estimation of the Cahn–Hilliard equation and the KGE, Jafari et al. [18] employed a
fractional sub-equation approach. Mohebbi et al. [19] used a high-order difference tech-
nique to study the linear TFKGEs. For nonlinear FKGEs, Vong and Wang [20] established a
higher-order compact approach. Recently, Yaseen et al. [21] used the cubic trigonometric
B-spline (CTBS) functions and approximated the solution of the nonlinear TFKGE. Kamran
et al. [22] approximated the solution of time fractional Phi-four equation which is a special
case of the TFKGE using CBS.

An iterative scheme was used by Fang et al. [23] to obtain the solution of the sine-
Gordon and KGEs. Sweilam et al. [24] used the Legendre pseudo spectral technique to find
the numerical solution of FKGEs. Abuteen et al. [25] proposed a numerical approach to
obtain the solution of nonlinear TFKGEs by employing the reduced differential transform
Scheme. To find the numerical solution of KGEs, the Taylor matrix technique was used by
Bülbül and Sezer [26]. Hesameddini and Fotros [27] presented the Adomian decomposition
scheme to acquire the solution of the time-fractional coupled KG Schrödinger equation.
Abbasbandy [28] presented the numerical solutions of the nonlinear KGE and nonlinear
PDE with power law nonlinearities using the variation iteration technique. Singh et al. [29]
applied the homotopy perturbation technique to obtain the solution of linear and nonlin-
ear KGEs.

The idea of splines was initially presented by Isaac Jacob Schoenberg in 1946. Carl
de Boor became inspired, collaborated with Schoenberg and developed a spline recursive
formula. The B-spline is widely used in engineering and mathematics. Polynomial splines
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are capable of approximating any continuous function over a finite interval with a high
accuracy. The spline approximations were initially described by Schoenberg in [30]. B-
spline interpolation is one of the numerical methods that numerous authors have developed
in recent years to solve fractional partial differential Equations (FPDEs).

In order to find numerical estimations of time FPDEs, CBS collocation methods were
employed by Shafiq et al. [31,32]. Hepson [33] generated the solution of the Kuramoto-
Sivashinsky equation via CTBS. Yadav et al. [34] investigated the numerical schemes
with the Atangana–Baleanu derivative in two different ways and used them to obtain the
solution of the advection–diffusion equation. The CBS finite element scheme was used by
Majeed et al. [35] to find the numerical solutions of time fractional fisher’s and Burgers’
equations. Mittal and Jain [36] proposed a collocation scheme based on modified CBS
to obtain the solution of the nonlinear Burgers’ equation. Tamsir et al. [37] utilized the
exponential modified CBS differential quadrature scheme to obtain the solutions of the
nonlinear Burgers’ equation.

To solve FPDEs, there are several numerical approaches. One of the simplest nu-
merical methods for estimating FPDE’s solutions at discrete points is the finite difference
approach. Therefore, it has been the preference for many researchers. The fact that the
problem’s solution is only determined at the selected points is a notable shortcoming in this
methodology. The spline estimate approach, which yields an approximate solution in the
form of an analytic curve up to a given smoothness, is used to address this limitation. As a
result, approximations can be attained more accurately at any point in the domain than
standard finite difference approaches. The main goal of this paper is to provide a numerical
technique for the generalized nonlinear TFKGE based on ECBS. The suggested method
discretizes the time-fractional derivative and the spatial derivatives using Caputo’s formula
and ECBS functions, respectively. The stability of the presented scheme is established, as
it is unconditionally stable. To ensure the accuracy of the scheme, a convergence analysis
is discussed. To acquire the theoretical results, numerical tests are conducted and the
results are compared with those that have already been provided in the literature. This
technique provides more accurate results than previous studies [19,21,38–40]. Furthermore,
the computational errors of the proposed problem are small when they compared to other
techniques. The comparison shows that our method is precise and efficient. To the best
of the authors’ knowledge, the proposed method is novel and has not been previously
described in the literature.

The rest of this paper is organized as follows: basic concepts are given in Section 2.
In Section 3, the numerical technique based on ECBS functions is expounded. In
Sections 4 and 5, the stability and convergence of the scheme are examined, respectively. In
Section 6, our numerical findings are contrasted with those that were previously provided
in [19,21,38–40]. The paper concludes with some intriguing remarks, which are expressed
in Section 7.

2. Basic Definitions

Definition 1. The Caputo time-fractional derivative of order α is defined as follows [41]:

∂αz(p, t)
∂tα

=

{
1

Γ(s−α)

∫ t
0

∂sz(p,r)
∂ts (p − r)s−α−1dr, s − 1 < α < s,

∂sz(p,t)
∂ts , s = α,

(2)

where s is the smallest integer exceeding α.
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Definition 2. Let the interval [0, T] be partitioned into M equal sub-intervals of length ∆t = T
M

determined by the knots tm = m∆t, m = 0, 1, · · · , M. The CTFD ∂αz(p,t)
∂tα is discretized as

follows [21]:

∂α

∂tα
z(p, tm+1) = β0

m

∑
u=0

λu
(
z(p, tm+1−u)− 2z(p, tm−u) + z(p, tm−1−u)

)
+ Rm+1

τ

= β0

m

∑
u=0

λu(zm+1−u − 2zm−u + zm−1−u) + Rm+1
τ , (3)

where zm = z(p, tm), β0 = 1
(∆t)αΓ[3−α]

, λu = (u + 1)2−α − u2−α and Rm+1
τ is the truncation

error. Khader and Adel [42] showed that Rm+1
τ ≤ Kzτ3−α, where Kz is a constant.

Lemma 1. The coefficients λu = (u+ 1)2−α − u2−α in Equation (3) fulfill the following properties:

• λu > 0 and λ0 = 1, u = 1 : 1 : m,
• λ0 > λ1 > λ2 > · · · > λm and λm → 0 as m → ∞,

•
m−1
∑

u=0
(λu − λu+1) + λm = 1.

3. Description of the Scheme

Suppose that [a, b] is partitioned into N uniform sub-intervals of size h = b−a
N with

knots pj = p0 + jh, j = 0, 1, 2, · · · , N. The ECBS functions are defined as follows [43]:

ϕj(p, ν) =
1

24h4



4h(1 − ν)(p − pj)
3 + 3ν(p − pj)

4, p ∈ [pj, pj+1),
(4 − ν)h4 + 12h3(p − pj+1) + 6h2(2 + ν)(p − pj+1)

2

−12h(p − pj+1)
3 − 3ν(p − pj+1)

4, p ∈ [pj+1, pj+2),
(4 − ν)h4 + 12h3(pj+3 − p) + 6h2(2 + ν)(pj+3 − p)2

−12h(pj+3 − p)3 − 3ν(pj+3 − p)4, p ∈ [pj+2, pj+3),
4h(1 − ν)(pj+4 − p)3 + 3ν(pj+4 − p)4, p ∈ [pj+3, pj+4),
0, otherwise,

(4)

where j = −1 : 1 : N + 1, ν ∈ [−8, 1], is serving as a free parameter and p is a variable
taking real values. For ν ∈ [−8, 1], similar characteristics, like convex hull, geometrical
invariability and symmetry, are shared by the CBS and ECBS functions. The symmetry
and convex hull features guarantee the numerical stability of these functions. For ν = 0,
the ECBS is reduced to the standard CBS. Let z(p, t) and Z(p, t) be the exact and numerical
solutions of Equation (1), respectively. In terms of the above expression, the numerical
solution Z(p, t) can be approximated as

Z(p, t) =
N+1

∑
j=−1

ρm
j (t)ϕj(p, ν), (5)

where ρm
j (t) are the control points. Due to the local support property of the ECBS, only

ϕj−1(p), ϕj(p) and ϕj+1(p) survive, so that the approximation Zm
j at the nodes (pj, tm) is

given by

Z(pj, tm) = Zm
j =

j+1

∑
u=j−1

ρm
u (t)ϕu(p). (6)



Computation 2024, 12, 80 5 of 21

The initial and BCs are used to determine the time-dependent unknowns ρm
u (t).

The values of Z(p, t), Zp(p, t) and Zpp(p, t) at the nodes are computed as follows:
Z(pj, tm) = Zm

j = k1ρm
j−1 + k2ρm

j + k1ρm
j+1,

Zp(pj, tm) = (Zm
j )p = −k3ρm

j−1 + k3ρm
j+1,

Zpp(pj, tm) = (Zm
j )pp = k4ρm

j−1 + k5ρm
j + k4ρm

j+1,

(7)

where k1 = 4−ν
24 , k2 = 8+ν

12 , k3 = 1
2h , k4 = 2+ν

2h2 and k5 = −2+ν
h2 .

Implementation of the Scheme

Using Equation (3) together with the Crank–Nicolson scheme, Equation (1) can be
expressed in discretized form as

β0

m

∑
u=0

λu(zm+1−u − 2zm−u + zm−1−u) + δ1

(
zm+1 + zm

2

)
+ δ2h(zm) =

(zm+1)pp + (zm)pp

2
+ qm+1, (8)

which simplifies to

δ1

2
zm+1 − 1

2
(zm+1)pp =

1
2
(zm)pp −

δ1

2
zm − β0

m

∑
u=0

λu(zm+1−u − 2zm−u + zm−1−u)− δ2h(zm) + qm+1, (9)

where m = 0, 1, 2, . . . , M.
It is noticed that the term z−1 arises if m = 0 or u = m. To handle this term, IC is used

to obtain

z0
t =

z1 − z−1

2∆t
,

which reduces to
z−1 = z1 − 2∆tz0

t or z−1 = z1 − 2∆tϕ1(p).

The summation term on the right-hand side of Equation (9) can be written as

m

∑
u=0

λu(zm+1−u − 2zm−u + zm−1−u) = zm+1 − zm −
m−1

∑
u=0

(λu − λu+1)(zm−u − zm−1−u) + λmz1 − 2λm∆tϕ1(p)− λmz0, (10)

Thus, Equation (9) becomes

δ1

2
zm+1 − 1

2
(zm+1)pp =

1
2
(zm)pp −

δ1

2
zm − β0(zm+1 − zm −

m−1

∑
u=0

(λu − λu+1)(zm−u − zm−1−u)

+λmz1 − 2λm∆tϕ1(p)− λmz0)− δ2h(zm) + qm+1,(
β0 +

δ1

2

)
zm+1 − 1

2
(zm+1)pp =

(
β0 −

δ1

2

)
zm +

1
2
(zm)pp + β0

m−1

∑
u=0

(λu − λu+1)(zm−u − zm−1−u)

−β0λmz1 + 2β0λm∆tϕ1(p) + β0λmz0 − δ2h(zm) + qm+1.

(11)

For a full discretized form, we put the approximation Zm
j and its necessary deriva-

tives (7) into (9) to obtain

δ1
2
(k1ρm+1

j−1 + k2ρm+1
j + k1ρm+1

j+1 )− 1
2
(k4ρm+1

j−1 + k5ρm+1
j + k4ρm+1

j+1 )

=
1
2
(k4ρm

j−1 + k5ρm
j + k4ρm

j+1)−
δ1
2
(k1ρm

j−1 + k2ρm
j + k1ρm

j+1)− β0

m

∑
u=0

λu[(k1ρm+1−u
j−1

+ k2ρm+1−u
j + k1ρm+1−u

j+1 )− 2(k1ρm−u
j−1 + k2ρm−u

j + k1ρm−u
j+1 ) + (k1ρm−1−u

j−1 + k2ρm−1−u
j

+ k1ρm−1−u
j+1 )]− δ2h(k1ρm

j−1 + k2ρm
j + k1ρm

j+1),

After rearranging the above equation, it yields
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(
δ1

2
k1 −

1
2

k4

)
ρm+1

j−1 +

(
δ1

2
k2 −

1
2

k5

)
ρm+1

j +

(
δ1

2
k1 −

1
2

k4

)
ρm+1

j+1

=

(
− δ1

2
k1 +

1
2

k4

)
ρm

j−1 +

(
− δ1

2
k2 +

1
2

k5

)
ρm

j +

(
− δ1

2
k1 +

1
2

k4

)
ρm

j+1 − β0

m

∑
u=0

λu[k1(ρ
m+1−u
j−1 (12)

− 2ρm−u
j−1 + ρm−1−u

j−1 ) + k2(ρ
m+1−u
j − 2ρm−u

j + ρm−1−u
j ) + k1(ρ

m+1−u
j+1 − 2ρm−u

j+1 + ρm−1−u
j+1 )]

− δ2h(k1ρm
j−1 + k2ρm

j + k1ρm
j+1),

This is a linear system of N + 1 equations in N + 3 unknowns. We require two additional
equations, which are deducible from the provided boundary conditions to arrive at a
unique solution. Thus, we have a diagonal system of dimension (N + 3)× (N + 3), which
is distinctively solvable by any appropriate numerical approach.

4. The Stability Analysis

This section demonstrates the stability of the presented scheme (12). By utilizing the
von Neumann approach, we first linearize the term h(z) by setting h(z) = k0z, where k0 is
a constant [44]. It is adequate to give the stability analysis of the suggested approach (12)
for the force-free situation (q = 0) as in [45]. The suggested scheme’s linearized form is
then provided by(

δ1

2
k1 −

1
2

k4

)
ρm+1

j−1 +

(
δ1

2
k2 −

1
2

k5

)
ρm+1

j +

(
δ1

2
k1 −

1
2

k4

)
ρm+1

j+1 =

(
− δ1

2
k1 +

1
2

k4

)
ρm

j−1

+

(
− δ1

2
k2 +

1
2

k5

)
ρm

j +

(
− δ1

2
k1 +

1
2

k4

)
ρm

j+1 − β0

m

∑
u=0

λu

(
k1(ρ

m+1−u
j−1 − 2ρm−u

j−1 + ρm−1−u
j−1 ) (13)

+ k2(ρ
m+1−u
j − 2ρm−u

j + ρm−1−u
j ) + k1(ρ

m+1−u
j+1 − 2ρm−u

j+1 + ρm−1−u
j+1 )

)
− δ2k0(k1ρm

j−1

+ k2ρm
j + k1ρm

j+1),

which reduces to(
1
2
(δ1k1 − k4)

)
ρm+1

j−1 +

(
1
2
(δ1k2 − k5)

)
ρm+1

j +

(
1
2
(δ1k1 − k4)

)
ρm+1

j+1

=

(
1
2
(−δ1k1 + k4 − 2δ2k0k1)

)
ρm

j−1

+

(
1
2
(−δ1k2 + k5 − 2δ2k0k2)

)
ρm

j +

(
1
2
(−δ1k1 + k4 − 2δ2k0k1)

)
ρm

j+1 (14)

− β0

m

∑
u=0

λu

(
k1(ρ

m+1−u
j−1 − 2ρm−u

j−1 + ρm−1−u
j−1 ) + k2(ρ

m+1−u
j − 2ρm−u

j

+ ρm−1−u
j ) + k1(ρ

m+1−u
j+1 − 2ρm−u

j+1 + ρm−1−u
j+1 )

)
.

In this study, the Fourier growth factor is assumed as ξm
j , with ξ̃m

j serving as an

approximation. Define Υm
j = ξm

j − ξ̃m
j , which, on substitution, leads to
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(
1
2
(δ1k1 − k4)

)
Υm+1

j−1 +

(
1
2
(δ1k2 − k5)

)
Υm+1

j +

(
1
2
(δ1k1 − k4)

)
Υm+1

j+1

=

(
1
2
(−δ1k1 + k4 − 2δ2k0k1)

)
Υm

j−1 +

(
1
2
(−δ1k2 + k5 − 2δ2k0k2)

)
Υm

j +

(
1
2
(−δ1k1 + k4 (15)

− 2δ2k0k1)

)
Υm

j+1 − β0

m

∑
u=0

λu

(
k1(Υm+1−u

j−1 − 2Υm−u
j−1 + Υm−1−u

j−1 ) + k2(Υm+1−u
j − 2Υm−u

j

+ Υm−1−u
j ) + k1(Υm+1−u

j+1 − 2Υm−u
j+1 + Υm−1−u

j+1 )

)
.

The ICs satisfied by the above error equation are as follows:

Υ0
j = ϕ1(pj), (Υt)

0
j = ϕ2(pj), j = 1 : 1 : N (16)

and the boundary conditions are

Υm
0 = ψ1(tm), Υm

N = ψ2(tm), m = 0 : 1 : M. (17)

Define the grid function as

Υm =

{
Υm

j , pj − h
2 < p ≤ pj +

h
2 , j = 1 : 1 : N − 1,

0, a ≤ p ≤ a + h
2 or b − h

2 ≤ p ≤ b.

The Fourier expansion for Υm(p) can be expressed as

Υm(p) =
∞

∑
n=−∞

ζm(n)e
i2πnp
(b−a) , m = 0(1)M,

where

ζm(n) =
1

b − a

∫ b

a
Υn(p)e

−i2πnp
(b−a) dp.

Let
Υm = [Υm

1 , Υm
2 , · · · , Υm

N−1]
T

and establish the norm

∥Υm∥2 =

( N−1

∑
j=1

h|Υm
j |2
) 1

2

=

( ∫ b

a
|Υm(p)|2dp

) 1
2

.

By Parseval’s equality, we have

∫ b

a
|Υm(p)|2dp =

∞

∑
n=−∞

|ζm(n)|2,

which implies that

∥Υm∥2
2 =

∞

∑
n=−∞

|ζm(n)|2. (18)

Assume that the solutions to Equations (15)–(17) are of the form

Υm
j = ϱmeiσjr, where σ ∈ [−π, π] and i =

√
−1.

Equation (15) can be solved by substituting the above expression as
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(
1
2
(δ1k1 − k4)

)
(eiσ(j−1)r + eiσ(j+1)r)ϱm+1 +

(
1
2
(δ1k2 − k5)

)
ϱm+1eiσjr

=

(
1
2
(−δ1k1 + k4 − 2δ2k0k1)

)
(eiσ(j−1)r + eiσ(j+1)r)ϱm +

(
1
2
(−δ1k2 + k5 − 2δ2k0k2)

)
ϱmeiσjr

− β0

m

∑
u=0

λu
(
k1(ϱ

m+1−u − 2ϱm−u + ϱm−1−u)eiσ(j−1)r + k2(ϱ
m+1−u − 2ϱm−u + ϱm−1−u)eiσjr

+ k1(ϱ
m+1−u − 2ϱm−u + ϱm−1−u)eiσ(j+1)r).

Now, dividing the above equation by eiσjr, we obtain(
(

1
2
(δ1k1 − k4))(e−iσr + eiσr) + (

1
2
(δ1k2 − k5))

)
ϱm+1 =

(
(

1
2
(−δ1k1 + k4

− 2δ2k0k1))(e−iσr + eiσr) + (
1
2
(−δ1k2 + k5 − 2δ2k0k2))

)
ϱm − β0

m

∑
u=0

λu

(
k1(e−iσr + eiσr) (19)

+ k2

)
(ϱm+1−u − 2ϱm−u + ϱm−1−u).

Using the relation e−iσr + eiσr = 2 cos(σr), we obtain(
(

1
2
(δ1k1 − k4))(2 cos σr) + (

1
2
(δ1k2 − k5))

)
ϱm+1 =

((
1
2
(−δ1k1 + k4 − 2δ2k0k1)

)
(2 cos σr)

+

(
1
2
(−δ1k2 + k5 − 2δ2k0k2)

))
ϱm − β0

m

∑
u=0

λu

(
k1(2 cos σr) + k2

)
(ϱm+1−u − 2ϱm−u + ϱm−1−u).

Dividing the above equation by δ1
2 (2k1 cos σr + k2) and simplifying, we acquire(

1 − 2k4 cos σr + k5
δ1
4 (2k1 cos σr + k2)

)
ϱm+1 =

(
(− δ1

2 − δ2k0)
δ1
2

+
2k4 cos σr + k5

δ1
4 (2k1 cos σr + k2)

)
ϱm − 2

δ1
β0

m

∑
u=0

λu(ϱ
m+1−u − 2ϱm−u + ϱm−1−u).

We can assume that σ = 0 without losing generality. Then, the previous expression
becomes(

1 − 2k4 + k5
δ1
4 (2k1 + k2)

)
ϱm+1 =

(
(− δ1

2 − δ2k0)
δ1
2

+
2k4 + k5

δ1
4 (2k1 + k2)

)
ϱm − 2

δ1
β0

m

∑
u=0

λu(ϱ
m+1−u − 2ϱm−u + ϱm−1−u),

which can be written as

ςm+1 =
d̃
ω

ϱm −
2
δ1

ω

m

∑
u=0

λu(ϱ
m+1−u − 2ϱm−u + ϱm−1−u), (20)

where

d̃ =

(
(− δ1

2 − δ2k0)
δ1
2

+
2k4 + k5

δ1
4 (2k1 + k2)

)
and ω =

(
1 − 2k4 + k5

δ1
4 (2k1 + k2)

)
.

Furthermore,

2k4 + k5
δ1
4 (2k1 + k2)

= −4(h + 2 − ν)

δ1h2 ≤ 0; thus, ω ≥ 1.

Theorem 1. If ϱm(m = 0, 1, · · · , M) are the solutions of Equation (20), then |ϱm| ≤ D̃|ϱ0|, where
D̃ = |d̃|2.
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Proof. To complete the proof, we apply mathematical induction. For m = 0, Equation (20)
becomes

|ϱ1| ≤ |d̃|
ω

|ϱ0| ≤ |d̃||ϱ0| ≤ |d̃|2|ϱ0| = D̃|ϱ0|,

with ω ≥ 1. Now, consider |ϱj| ≤ d̃|ϱ0| ≤ D̃|ϱ0|, j = 1, 2, · · · , m. Then, from Equation (20)
and using the inequality ||y| − |z|| ≤ |y − z|, for y, z ∈ R, we acquire

|ϱm+1| ≤ |d̃|
ω

|ϱm| −
| 2

δ1
|

ω

m

∑
u=0

λu(|ϱm+1−u| − 2|ϱm−u|+ |ϱm−1−u|)

≤ |d̃||ϱm| −
∣∣∣∣ 2
δ1

∣∣∣∣ m

∑
u=0

λu(|ϱm+1−u| − 2|ϱm−u|+ |ϱm−1−u|)

≤ |d̃|2|ϱ0| −
∣∣∣∣ 2
δ1

∣∣∣∣|d̃| m

∑
u=0

λu(|ϱ0| − 2|ϱ0|+ |ϱ0|)

= |d̃|2|ϱ0| = |D̃||ϱ0|.

Hence, we have
|ϱm| ≤ D̃|ϱ0|, for m = 0, 1, 2, · · · , M. (21)

Theorem 2. The collocation technique (12) is unconditionally stable.

Proof. Employing Theorem 1 and expression (18), it follows that

∥Υm∥2
2 ≤ D̃∥Υ0∥2

2, m = 0, 1, 2, · · · , M,

which confirms that the scheme is unconditionally stable.

5. The Convergence Analysis

The convergence analysis of the system (11) is provided in this section. Expressing (11)
in linearized homogeneous form, we have(

β0 +
δ1

2

)
zm+1 − 1

2
(zm+1)pp =

(
β0 −

δ1

2

)
zm +

1
2
(zm)pp + β0

m−1

∑
u=0

(λu − λu+1)(zm−u

−zm−1−u)− β0λmz1 + 2β0λm∆tϕ1(p) + β0λmz0 − δ2k0(zm).

(22)

Theorem 3. Let {z(p, tm)}M−1
m=0 denote the exact solution of Equation (1) with ICs and BCs, and

let {zm}M−1
m=0 be the time discrete solution of Equation (22); then, the estimated error is

∥êm+1∥ ≤ K + Kzτ3−α, (23)

where êm+1 = z(p, tm+1)− zm+1 and K is a constant.

Proof. The exact solution z satisfies the semidiscrete scheme (22); thus,(
β0 +

δ1

2

)
z(p, tm+1)− 1

2
(z(p, tm+1))pp =

(
β0 −

δ1

2
− δ2k0

)
z(p, tm) +

1
2
(z(p, tm))pp

+ β0

m−1

∑
u=0

(λu − λu+1)
(

z(p, tm−u)− z(p, tm−1−u)
)
− β0λmz(p, t1) + 2β0λm∆tϕ1(pj) + β0λmz(p, t0) + r̃m+1

τ .
(24)

Subtracting Equation (22) from Equation (24), we acquire



Computation 2024, 12, 80 10 of 21

(
β0 +

δ1

2

)
êm+1 − 1

2
(êm+1)pp =

(
β0 −

δ1

2
− δ2k0

)
êm +

1
2
(êm)pp + β0

m−1

∑
u=0

(λu − λu+1)

×
(

êm−u − êm−1−u
)
− β0λm ê1 + β0λm ê0 + r̃m+1

τ .

(25)

Using ê0 = 0 and applying inner product with êm+1 on both sides of Equation (25)
provides the following:(

β0 +
δ1

2

)
< êm+1, êm+1 >=

1
2
< (êm+1)pp, êm+1 > +

(
β0 −

δ1

2
− δ2k0

)
< êm, êm+1 >

+
1
2
< (êm)pp, êm+1 > +β0

m−1

∑
u=0

(λu − λu+1)(< êm−u, êm+1 > − < êm−1−u, êm+1 >)

−β0λm < ê1, êm+1 > + < r̃m+1
τ , êm+1 > .

Now, using the relation < zpp, z >= − < zp, zp >, < z, z >= ∥z∥2; the fact that
∥z∥2 ≥ 0; and by utilizing the Cauchy-Schwarz inequality < p, q >≤ ∥p∥∥q∥, we obtain(

β0 +
δ1

2

)
∥êm+1∥2 ≤

(
β0 −

δ1

2
− δ2k0

)
∥êm∥∥êm+1∥+ β0

m−1

∑
u=0

(λu − λu+1)(∥êm−u∥∥êm+1∥

−∥êm−1−u∥∥êm+1∥)− β0λm∥ê1∥∥êm+1∥+ ∥r̃m+1
τ ∥∥êm+1∥,

which reduces to(
β0 +

δ1

2

)
∥êm+1∥ ≤

(
β0 −

δ1

2
− δ2k0

)
∥êm∥+ β0

m−1

∑
u=0

(λu − λu+1)(∥êm−u∥ − ∥êm−1−u∥)

−β0λm∥ê1∥+ ∥r̃m+1
τ ∥.

Let Gm = max
0≤j≤m

∥êj∥ and Hm = max
0≤j≤m−1

{∥êm−j∥ − ∥êm−1−j∥}. Then, the above

inequality becomes(
β0 +

δ1

2

)
∥êm+1∥ ≤

(
β0 −

δ1

2
− δ2k0

)
Gm + Hmβ0

m−1

∑
u=0

(λu −λu+1)− β0λm∥ê1∥+ ∥r̃m+1
τ ∥.

Let G = max
0≤j≤m

Gj and H = max
0≤j≤m−1

Hj. Then, using the fact that
m−1
∑

u=0
(λu − λu+1) =

1 − λu and λu < 1, we obtain(
β0 +

δ1

2

)
∥êm+1∥ ≤

(
β0 −

δ1

2
− δ2k0

)
G + Hβ0

m−1

∑
u=0

(λu − λu+1)− β0∥ê1∥+ ∥r̃m+1
τ ∥

≤
(

β0 −
δ1

2
− δ2k0

)
G + Hβ0 − β0∥ê1∥+ ∥r̃m+1

τ ∥,

which implies that

∥êm+1∥ ≤

(
β0 − δ1

2 − δ2k0

)
G + Hβ0 − β0∥ê1∥(

β0 +
δ1
2

) +
1(

β0 +
δ1
2

)∥r̃m+1
τ ∥

= K +
1(

β0 +
δ1
2

)∥r̃m+1
τ ∥

≤ K + Kzτ3−α,
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where

K =

(
β0 − δ1

2 − δ2k0

)
G + Hβ0 − β0∥ê1∥(

β0 +
δ1
2

) .

6. Numerical Results

In this section, an approximate solution to the TFKGE (1) is obtained by solving
numerical problems. The error norms L∞ and L2 are used to evaluate the scheme’s
accuracy as follows:

L∞ = ∥z(pj, t)− Z(pj, t)∥∞ ≃ max
0≤j≤N

|z(pj, t)− Z(pj, t)|

and

L2 =

√√√√h
N

∑
j=0

|z(pj, t)− Z(pj, t)|2.

Numerical computations were carried out by utilizing Mathematica 12 on an Intel(R)
Core(TM) i5-3437U CPU @ 1.90 GHz (2.40 GHz Turbo), 12.0 GB RAM, an SSD, HP and a
64-bit operating system (Windows 10 Pro 10).

Example 1 ([12]). Consider the nonlinear TFKGE (1) with δ1 = 1, δ2 = 3
2 , 0 ≤ p ≤ 1, ϕ0(p) =

ϕ1(p) = ψ0(t) = ψ1(t) = 0 and the force term

q(p, t) =
Γ(3 + α)

2
sin(πp)t2 + (1 + π2) sin(πp)t2+α +

3
2

h(z(p, t)),

where h(z(p, t)) = (z(p, t))3, and z(p, t) = sin(πp)t2+α is the exact solution of the given
problem.

The proposed approach (12) was used to attain the numerical solution of the problem
mentioned above. Figure 1 provides a comparison of the exact and approximate solutions at
various time points with h = 1

80 , ∆t = 1
100 and α = 1.5. Figure 2 shows a three-dimensional

(3D) comparison of the approximate (right) and exact (left) solutions. For various α values
with a range of 1 ≤ α ≤ 2, the absolute errors are determined and compared with the
results presented in [21] in Tables 1–3. For α = 1.6, the absolute errors are determined and
compared with the results presented in [38] in Table 4. In Table 5, for different values of α,
the approximate solutions are listed.

t=1

t=0.75

t=0.5

pp

z

20 40 60 80

0.2

0.4

0.6

0.8

1.0

Figure 1. The numerical (circles) and exact (solid lines) solutions for various points in time when
h = 1

80 , ∆t = 1
100 , t = 1 and α = 1.5 for Example 1.
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(a) (b)

Figure 2. Three-dimensional plot for exact and approximate solutions, when h = 1
80 , ∆t = 1

100 , t = 1
and α = 1.5 for Example 1. (a) Exact solution; (b) Numerical solution.

Table 1. Absolute errors with α = 1.5 for Example 1.

CTBS [21] Presented Method

CPU Time(s) CPU Time(s)
3484.98 353.6875

p h = 1
80 , ∆t = 0.001 h = 1

80 , ∆t = 0.001

0.1 2.2437 × 10−4 3.7667 × 10−5

0.2 4.4180 × 10−4 7.0999 × 10−5

0.3 6.3346 × 10−4 9.6627 × 10−5

0.4 7.6861 × 10−4 1.1255 × 10−4

0.5 8.1773 × 10−4 1.1793 × 10−4

0.6 7.6861 × 10−4 1.1255 × 10−4

0.7 6.3346 × 10−4 9.6627 × 10−5

0.8 4.4180 × 10−4 7.0999 × 10−5

0.9 2.2437 × 10−4 3.7667 × 10−5

Table 2. Absolute errors with α = 1.7 for Example 1.

CTBS [21] Presented Method

CPU Time(s) CPU Time(s)
3503.70 358.2656

p h = 1
80 , ∆t = 0.001 h = 1

80 , ∆t = 0.001

0.1 2.8566 × 10−4 1.2052 × 10−5

0.2 5.5578 × 10−4 2.2820 × 10−5

0.3 7.8594 × 10−4 3.1232 × 10−5

0.4 9.4376 × 10−4 3.6548 × 10−5

0.5 1.0003 × 10−3 3.8361 × 10−5

0.6 9.4376 × 10−4 3.6548 × 10−5

0.7 7.8594 × 10−4 3.1232 × 10−5

0.8 5.5578 × 10−4 2.2820 × 10−5

0.9 2.8566 × 10−4 1.2052 × 10−5
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Table 3. Absolute errors with α = 1.9 for Example 1.

CTBS [21] Presented Method

CPU Time(s) CPU Time(s)
3489.45 254.8750

p h = 1
80 , ∆t = 0.001 h = 1

80 , ∆t = 0.001

0.1 4.8172 × 10−4 1.7910 × 10−5

0.2 9.2384 × 10−4 3.3370 × 10−5

0.3 1.2844 × 10−3 4.4751 × 10−5

0.4 1.5211 × 10−3 5.1494 × 10−5

0.5 1.6051 × 10−3 5.3699 × 10−5

0.6 1.5211 × 10−3 5.1494 × 10−5

0.7 1.2844 × 10−3 4.4751 × 10−5

0.8 9.2384 × 10−4 3.3370 × 10−5

0.9 4.8172 × 10−4 1.7910 × 10−5

Table 4. Comparison of absolute errors for Example 1 with α = 1.6, ∆t = 0.001 and N = 100.

RECBS [38] Proposed Method

t p

0.4 1.1769 × 10−7 2.0024 × 10−8

0.4 0.6 1.0126 × 10−6 5.3950 × 10−7

0.8 7.2740 × 10−6 3.3133 × 10−7

Table 5. Approximate solution for several α values, where h = 1
40 , t = 1, ∆t = 0.01, ν = −0.0000009

for Example 1.

p α = 1.6 α = 1.8 α = 1.9 α = 1.95 α = 1.99 α = 1.999

0.1 0.309102 0.309832 0.310767 0.311496 0.312251 0.312446
0.2 0.587949 0.589326 0.591093 0.592473 0.593903 0.594272
0.3 0.809245 0.811122 0.813536 0.815423 0.817381 0.817886
0.4 0.951327 0.953516 0.956337 0.958543 0.960835 0.961426
0.5 1.000290 1.002580 1.007850 1.007850 1.010260 1.010880
0.6 0.951327 0.953516 0.956337 0.958543 0.960835 0.961426
0.7 0.809245 0.811122 0.813536 0.815423 0.817381 0.817886
0.8 0.587949 0.589326 0.591093 0.592473 0.593903 0.594272
0.9 0.309102 0.309832 0.310767 0.311496 0.3122514 0.312446

Example 2 ([46]). Consider the linear inhomogeneous TFKGE (1) when δ1 = 1, δ2 = 0, 0 ≤ p ≤ 1,
t > 0, ϕ0(p) = ϕ1(p) = 0, ψ0(t) = 0 and

ψ1(t) ≈ 6
tα+1

Γ(α + 2)
− 30

tα+3

Γ(α + 4)
+ (α + 1)

(
6

tα+1

Γ(α + 2)
− 30

tα+3

Γ(α + 4)

)
+ (α − 1)2

(
30

t2α+1

Γ(2α + 2)
+ 66

t2α+3

Γ(2α + 4)

)
.

The force term is
q(p, t) = 6p3t + (p3 − 6p)t3.

The exact solution of the problem is z(p, t) = p3t3. Using the scheme (12), the approxi-
mate solutions are attained for a variety of α values, and the results are shown in Table 6.
The approximate solutions for various α values of Example 2 are displayed in Figure 3.
Figure 4 provides a three-dimensional (3D) comparison of exact (left) and approximate
(right) solutions.
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Table 6. Approximate solutions for several α values where h = 1
40 , t = 1, ∆t = 0.01 and ν = −0.0007

for Example 2.

p α = 1.6 α = 1.8 α = 1.9 α = 1.95 α = 1.99 α = 1.999

0.1 0.003111 0.002671 0.004456 0.003045 0.001653 0.001315
0.2 0.011775 0.010599 0.014395 0.011648 0.009028 0.008397
0.3 0.031589 0.029174 0.035478 0.031602 0.028040 0.027188
0.4 0.068255 0.064053 0.073604 0.068899 0.064699 0.063703
0.5 0.127654 0.121295 0.134813 0.129604 0.125065 0.123999
0.6 0.215937 0.207469 0.225172 0.219817 0.215252 0.214190
0.7 0.339672 0.329778 0.350752 0.345687 0.341452 0.340477
0.8 0.506032 0.496257 0.517642 0.513432 0.509970 0.509181
0.9 0.723055 0.716078 0.731981 0.729376 0.727265 0.726788

10 20 30 40

0.2

0.4

0.6

0.8

1.0

Figure 3. Approximate solution for various α values when h = 1
40 , ∆t = 1

100 and t = 1 for Example 2.

(a) (b)

Figure 4. Three-dimensional plot for exact and approximate solutions, when h = 1
40 , ∆t = 1

100 , t = 1
and α = 1.5 for Example 2. (a) Exact solution; (b) Numerical solution.

Example 3 ([38]). Consider the nonlinear TFKGE (1) with δ1 = 0, δ2 = 1, 0 ≤ p ≤ 1,
ϕ0(p) = ϕ1(p) = 0, ψ0(t) = t

3
2 , ψ1(t) = 0, and the force term

q(p, t) =
Γ
( 5

2
)

Γ
( 5

2 − α
) (1 − p)

5
2 t

3
2−α − 15

4
(1 − p)

1
2 t

3
2 + h(z(p, t)),

where h(z(p, t)) = (z(p, t))2, and z(p, t) = (1 − p)
5
2 t

3
2 is the exact solution of the given problem.

Using Scheme (12), the approximate solutions were obtained, and the results are shown in Table 7.
In Table 8, the comparison of error norms with [38] is listed. For α = 1.6, the absolute errors
are determined and compared with the results presented in [38] in Table 9. Figure 5 provides a
comparison of the exact and approximate solutions at various time points with h = 1

25 , ∆t = 1
200

and α = 1.5. Figure 6 shows a three-dimensional (3D) comparison of the approximate (right) and
exact (left) solutions.
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Table 7. Absolute errors at t = 1, α = 1.5, N = 20 and ∆t = 0.01 for Example 3.

p Exact Solution Approximate
Solution Absolute Errors

0.1 0.768433 0.768433 1.1797 × 10−9

0.2 0.572433 0.572318 1.1557 × 10−4

0.3 0.409963 0.409708 2.5557 × 10−4

0.4 0.278855 0.278489 3.6557 × 10−4

0.5 0.176777 0.176360 4.1671 × 10−4

0.6 0.101193 0.100795 3.9818 × 10−4

0.7 0.049295 0.048983 3.1229 × 10−4

0.8 0.017889 0.017716 1.7206 × 10−4

0.9 0.003162 0.003158 3.9026 × 10−6

Table 8. Comparison of error norms for Example 3 with α = 1.3 and ∆t = 0.001.

RECBS [38] Proposed Method

N L∞ L2 L∞ L2

10 3.1950 × 10−2 2.9355 × 10−2 1.7841 × 10−3 1.39087 × 10−3

20 9.0451 × 10−3 8.7109 × 10−3 1.7788 × 10−4 1.0508 × 10−4

40 2.4778 × 10−3 2.2128 × 10−3 3.3796 × 10−5 2.1677 × 10−5

80 6.3842 × 10−4 5.9376 × 10−4 1.5214 × 10−5 8.4009 × 10−6

Table 9. Comparison of absolute errors for Example 3 with α = 1.6, ∆t = 0.001 and N = 100.

RECBS [38] Proposed Method

t p

0.4 1.6174 × 10−5 6.7324 × 10−6

0.4 0.6 6.3939 × 10−6 3.2045 × 10−6

0.8 5.1612 × 10−6 4.4024 × 10−7

0.4 2.4030 × 10−5 1.7690 × 10−6

0.8 0.6 6.7766 × 10−6 6.7009 × 10−7

0.8 3.5003 × 10−6 8.4648 × 10−8

t = 0.1

t = 0.3

t = 0.5

t = 0.7

t = 0.9

0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

z

t = 0.2

t = 0.4

t = 0.6

t = 0.8

t = 1.0

0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

z

Figure 5. Exact results (circles) and approximate solutions (solid lines) at various temporal stages for
Example 3.
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(a) (b)

Figure 6. Three-dimensional plot for exact and approximate solutions, when h = 1
16 , ∆t = 1

1000 , t = 1
and α = 1.5 for Example 3. (a) Exact solution; (b) Numerical solution.

Example 4 ([19,39]). Consider the linear TFKGE (1) with δ1 = 1, δ2 = 0, 0 ≤ p ≤ 1,
ϕ0(p) = ϕ1(p) = 0, ψ0(t) = ψ1(t) = 0, and the force term

q(p, t) =
2t2−α

(2 − α)Γ(2 − α)
(e − ep) sin(p) + t2(2e − ep) sin(p) + 2t2ep cos(p),

where z(p, t) = t2(e − ep) sin(p) is the exact solution of the given problem. The approximate
solutions are demonstrated in Table 10. In Table 11, the comparison of error norms with [19,39] is
expressed. Table 12 displays the analysis of error norms in the spatial direction. Figure 7 expounds
the comparison of the exact and approximate solutions at various time stages with h = 1

45 , ∆t = 1
400

and α = 1.5. Figure 8 shows a three-dimensional (3D) comparison of the approximate (right) and
exact (left) solutions.

Table 10. Absolute errors at t = 1, α = 1.6, N = 50 and ∆t = 0.01 for Example 4.

p Exact Solution Approximate
Solution Absolute Errors

0.1 0.161042 0.161075 3.3088 × 10−5

0.2 0.297384 0.297481 9.7460 × 10−5

0.3 0.404397 0.404553 1.5594 × 10−4

0.4 0.477605 0.477788 1.8283 × 10−4

0.5 0.512775 0.512940 1.6518 × 10−4

0.6 0.506012 0.506116 1.0407 × 10−4

0.7 0.453870 0.453886 1.5793 × 10−5

0.8 0.353471 0.353404 6.7097 × 10−5

0.9 0.202630 0.202535 9.4895 × 10−5

Table 11. Comparison of error norm for Example 4 with α = 1.75 and h = 1
20 .

Fourth-Order
CFD [19]

Sixth-Order
CFD [39] Proposed Method

∆t L∞ L∞ L∞ L2

1
10 3.7014 × 10−3 3.7014 × 10−3 1.2528 × 10−3 8.0189 × 10−4

1
20 1.5270 × 10−3 1.5270 × 10−3 7.4684 × 10−4 4.7374 × 10−4

1
40 6.2904 × 10−4 6.2903 × 10−4 4.0106 × 10−4 2.3141 × 10−4

1
80 2.5916 × 10−4 2.5916 × 10−4 1.9319 × 10−4 1.3117 × 10−4

1
160 1.0715 × 10−4 1.0714 × 10−4 1.0350 × 10−4 7.0761 × 10−5
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Table 12. Error norms for Example 4 with α = 1.3 and ∆t = 0.01.

N L∞ L2

10 4.7454 × 10−4 3.1201 × 10−4

20 3.9127 × 10−4 2.5294 × 10−4

40 2.7539 × 10−4 1.7101 × 10−4

80 1.1576 × 10−4 7.4440 × 10−5

t = 0.1

t = 0.3

t = 0.5

t = 0.7

t = 0.9

0.2 0.4 0.6 0.8 1.0
p

0.1
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0.4

z
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t = 0.6

t = 0.8

t = 1.0

0.2 0.4 0.6 0.8 1.0
p

0.1

0.2

0.3

0.4

0.5

z

Figure 7. Exact results (circles) and approximate solutions (solid lines) at various temporal stages for
Example 4.

(a) (b)

Figure 8. Three-dimensional plot for exact and approximate solutions, when h = 1
100 , ∆t = 1

1000 ,
t = 1 and α = 1.5 for Example 4. (a) Exact solution; (b) Numerical solution.

Example 5 ([40]). Consider the nonlinear TFKGE (1) with δ1 = 0, δ2 = 2.5 exp(p), 0 ≤ p ≤ 1,
ϕ0(p) = ϕ1(p) = 0, ψ0(t) = ψ1(t) = 0, and the force term

q(p, t) =
Γ(3 + α)

2
p3(1 − p)3t2 + (30p4 − 60p3 + 36p2 − 6p)t2+α + 2.5 exp(p)h(z(p, t)),

where h(z(p, t)) = (z(p, t))
3
2 , and z(p, t) = p3(1 − p)3t2+α is the exact solution of the given

problem. The approximate solutions are expressed in Table 13. In Tables 14 and 15, the comparison
of error norms with [40] is demonstrated. Figure 9 represents the comparison of the exact and
approximate solutions at various time stages with h = 1

100 , ∆t = 1
500 and α = 1.5. Figure 10

expounds a three-dimensional (3D) comparison of the approximate (right) and exact (left) solutions.
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Table 13. Absolute errors at t = 1, α = 1.7, N = 50 and ∆t = 0.005 for Example 5.

p Exact Solution Approximate
Solution Absolute Errors

0.1 0.000729 0.000765 3.5848 × 10−5

0.2 0.004096 0.004140 4.4264 × 10−5

0.3 0.009261 0.009296 3.5240 × 10−5

0.4 0.013824 0.013847 2.2700 × 10−5

0.5 0.015625 0.015642 1.7253 × 10−5

0.6 0.013824 0.013847 2.2741 × 10−5

0.7 0.009261 0.009296 3.5287 × 10−5

0.8 0.004096 0.004140 4.4293 × 10−5

0.9 0.000729 0.000765 3.5860 × 10−5

Table 14. Comparison of error norms for Example 5 with α = 1.5, t = 1 and ∆t = 0.01.

CBS FEM [40] Proposed Method

h L∞ L2 L∞ L2

1
4 1.2132 × 10−3 9.3311 × 10−4 1.0187 × 10−3 8.8201 × 10−4

1
8 4.0649 × 10−4 2.8192 × 10−4 4.3799 × 10−4 3.0777 × 10−4

1
10 2.8491 × 10−4 1.8780 × 10−4 2.7494 × 10−4 1.7921 × 10−4

1
20 1.1357 × 10−4 6.3206 × 10−5 9.0879 × 10−5 6.0401 × 10−5

1
40 6.6852 × 10−5 3.8371 × 10−5 5.7708 × 10−5 3.6271 × 10−5

1
80 5.5051 × 10−5 3.4415 × 10−5 4.7187 × 10−5 2.9298 × 10−5

1
100 4.6700 × 10−6 2.5900 × 10−6 3.5269 × 10−6 2.2255 × 10−6

Table 15. Comparison of error norms for Example 5 with α = 1.3, t = 1 and ∆t = 0.005.

CBS FEM [40] Proposed Method

h L∞ L2 L∞ L2

1
4 1.1779 × 10−3 9.1627 × 10−4 1.0512 × 10−3 8.9937 × 10−4

1
8 4.1643 × 10−4 2.7159 × 10−4 4.0370 × 10−4 1.9420 × 10−4

1
10 2.5651 × 10−4 1.7561 × 10−4 2.3485 × 10−4 1.4865 × 10−4

1
20 6.2482 × 10−5 4.4332 × 10−5 5.3501 × 10−5 3.7964 × 10−5

1
40 1.5783 × 10−5 1.1106 × 10−5 1.5305 × 10−5 1.0374 × 10−5

1
80 4.0630 × 10−6 2.7840 × 10−6 1.8171 × 10−6 1.1495 × 10−6

1
100 2.6600 × 10−6 1.7880 × 10−6 1.2686 × 10−6 8.3680 × 10−7
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t = 0.9
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0.015

z

Figure 9. Exact results (circles) and approximate solutions (solid lines) at various temporal stages for
Example 5.
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(a) (b)

Figure 10. Three-dimensional plot for exact and approximate solutions, when h = 1
60 , ∆t = 1

500 , t = 1
and α = 1.3 for Example 5. (a) Exact solution; (b) Numerical solution.

7. Concluding Remarks

In this paper, we provide an ECBS-based numerical technique for the generalized
nonlinear TFKGE. The standard finite difference techniques are used in this algorithm to
estimate the CTFD, and the ECBS functions are employed to approximate the derivative
in space. The convergence and stability of the scheme are also included in our research.
The numerical scheme’s accuracy is demonstrated by contrasting the attained results with
those provided in [19,21,38–40]. Comparing our technique numerically and graphically
shows that it is more appropriate and computationally very effective. Therefore, with some
modifications, our technique can be utilized to solve other classes of nonlinear FPDEs.
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