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Abstract: This article introduces an extension of classical fuzzy partial differential equations, known
as fuzzy fractional partial differential equations. These equations provide a better explanation for
certain phenomena. We focus on solving the fuzzy time diffusion equation with a fractional order of
0 < α ≤ 1, using two explicit compact finite difference schemes that are the compact forward time
center space (CFTCS) and compact Saulyev’s scheme. The time fractional derivative uses the Caputo
definition. The double-parametric form approach is used to transfer the governing equation from an
uncertain to a crisp form. To ensure stability, we apply the von Neumann method to show that CFTCS
is conditionally stable, while compact Saulyev’s is unconditionally stable. A numerical example is
provided to demonstrate the practicality of our proposed schemes.

Keywords: compact finite difference scheme; double-parametric form of fuzzy number; Caputo
derivative; fuzzy time fractional diffusion equation

1. Introduction

Nonlinear partial differential equations (NPDEs) play a fundamental role across a
spectrum of disciplines, including physics, chemistry, biology, mathematics, and engineer-
ing. They serve as vital tools for describing intricate phenomena like fluid dynamics and
heat transfer, among others. However, tackling nonlinear models for practical applications
poses formidable challenges, both in theory and in computation. The inherent complexity
and nonlinearity of NPDEs often necessitate the imposition of simplifying assumptions to
render them tractable. These assumptions may involve simplifications of the equations,
the neglect of certain terms, or the approximation of solutions. While these measures can
facilitate problem solving, they concurrently introduce uncertainties that may compromise
the accuracy and reliability of the solutions, particularly when applied to real-world scenar-
ios where precision is paramount. A variety of numerical techniques exist for addressing
NPDEs, yet each approach comes with its own set of limitations. Traditional methods
like finite difference and finite element approaches, reliant on domain discretization, are
susceptible to errors and instabilities. In summary, navigating NPDEs demands a nuanced
blend of theoretical insight and numerical proficiency. The quest for effective solutions
remains an active frontier in research and development across diverse fields. The ongoing
exploration and refinement of novel techniques and methodologies are indispensable for
advancing our ability to grapple with NPDEs effectively [1–5].

The surge in attention towards fractional partial differential equations (FPDEs) over
recent decades reflects a growing recognition of their versatile applicability across various
domains of physics and engineering [6–21]. Among the rich tapestry of FPDEs, one stands
out prominently: the time fractional diffusion equation. Unlike its classical counterpart, this
equation introduces a fundamental departure by incorporating fractional derivatives in lieu
of the customary first-order time derivative. This departure is not merely symbolic; rather,
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it extends the temporal purview of the phenomenon under scrutiny, offering a powerful
tool to model intricate dynamical systems with enhanced fidelity and accuracy [22].

The allure of the time fractional diffusion equation lies in its capacity to capture
phenomena characterized by non-local, long-range interactions, which are often overlooked
or poorly represented by traditional integer-order differential equations. By embracing
fractional calculus, this equation provides a more nuanced framework for describing
the anomalous diffusion processes observed in diverse fields such as physics, chemistry,
biology, and finance.

In physics, for instance, the time fractional diffusion equation finds applications in
modeling the transport of particles in complex media exhibiting anomalous diffusion
behavior, such as porous materials, biological tissues, or disordered solids. Similarly, in
engineering, it serves as a cornerstone for understanding heat conduction in fractal media,
signal propagation in heterogeneous materials, and the dynamics of complex networks.

The exploration of the time fractional diffusion equation and other FPDEs represents
not just a theoretical pursuit but also a practical endeavor with far-reaching implications. By
unlocking the mathematical machinery to describe and analyze these intricate phenomena,
researchers are paving the way for innovations in diverse fields, from advanced material
science to biomedical engineering. Thus, the increased focus on FPDEs underscores a
pivotal shift towards a deeper understanding of complex dynamics and the development
of novel methodologies to address real-world challenges.

In general, it is difficult to obtain exact analytical solutions using analytical methods,
so many authors have turned to numerical methods. One important numerical method
for solving fractional diffusion equations is the finite difference method, which has been
discussed by several authors [23–25]. Compact finite difference schemes are often preferred
due to their accuracy and high computational efficiency, and there have been a number of
recent publications on using these methods to solve the fractional diffusion equation. As
an example, the authors Gao and Sun [26] employed a high-order compact finite difference
method to tackle fractional diffusion equations. The problem was solved by applying
analytical theories, including the Caputo definition, and L1 discretization was utilized to
estimate the time fractional derivative. The stability and convergence of the method were
analyzed using the energy method.

In a similar vein, Karatay and Bayramoglu [27] tackled time fractional heat equations
using a compact difference scheme in their study. They employed a second-order discretiza-
tion method, based on the Crank–Nicolson scheme, for the time fractional derivative and a
fourth-order accuracy compact approximation for the second-order space derivative. The
proposed scheme’s stability was analyzed using both Fourier stability and spectral stability
methods, and it was concluded that the scheme is unconditionally stable, meaning that
there are no time constraints. Additionally, Al-Shibani et al. [28] developed two compact
finite difference schemes to solve the one-dimensional time fractional diffusion equation
and studied their stability. They discovered that using high-order compact finite difference
schemes allowed them to overcome the challenges associated with high-order discretiza-
tions by utilizing derivatives of the function values at the nodes of the corresponding
independent variables.

Fuzzy time fractional diffusion equations (FTFDEs) arise in diffusion processes due to
imprecise and uncertain parameters and variables caused by experimental and measure-
ment errors. In order to accommodate this vagueness, researchers have explored various
analytical methods for solving fuzzy fractional diffusion equations. As an example, Ghaz-
anfari and Ebrahimi [29] employed the differential transformation method (DTM) to obtain
computable series as approximate solutions for fuzzy fractional diffusion equations. The
DTM was deemed highly efficient and straightforward for this purpose. Salah et al. [30]
introduced the homotopy analysis transform method (HATM) to address fuzzy fractional
heat and wave partial differential equations. In a separate approach, Chakraverty and
Tampaswini [31] proposed a novel computational technique to solve the time fractional
diffusion equation with uncertainties in the initial conditions. Their method employed a
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single-parametric form of fuzzy numbers to transform the fuzzy diffusion equation into
an interval-based fuzzy differential equation, which was then converted into a crisp form
using a double-parametric form of fuzzy numbers. The resulting equation was solved
using the Adomian decomposition method to obtain uncertain solution bounds. The au-
thors [32] also developed a finite difference scheme using the single-parametric form of
fuzzy numbers for solving FTFDEs.

Based on our analysis of the existing literature, it appears that although there have been
some attempts to tackle FTFDEs using approximate analytical techniques, the utilization
of numerical methods has been relatively unexplored. Consequently, our paper aims to
investigate the use of numerical finite difference methods for solving FTFDEs. Specifically,
we intend to create modified two explicit compact finite difference methods that are CFTCS
and compact Saulyev schemes with high-order accuracy to derive a numerical solution
that represents fuzzy numbers in a double-parametric form for FTFDEs. Also, the double-
parametric form approach is used to transfer the fuzzy governing equation from fuzzy case
to crisp case to reduce the computational cost and cover more fuzzy cases [33–35].

2. Preliminaries

In this section, we present the related theorems and definitions that are used further in
this paper.

Definition 1. r-level set [31].

The r-level set of a fuzzy set
∼
U, labeled as

∼
Ur, is the crisp set of all x ∈ X, such that

µ∼
A

≥ r; i.e.,
∼
Ur =

{
x ∈ X

∣∣∣µ∼
u

> r, r ∈ [0, 1]
}

.

Definition 2. Fuzzy numbers [31].

Fuzzy numbers are a subset of the real number set and represent uncertain values.
Fuzzy numbers are linked to the degrees of membership of a set. A fuzzy number [10]
µ is called a triangular fuzzy number if defined by three numbers a < b < c where the
graph of µ (x) is a triangle with the base on the interval [a, c] and the vertex at x = b and
its membership function is of the form:

µ∼
ur

=


0, i f x < a

x−a
b−a , i f a ≤ x ≤ b
c−x
c−b , i f b ≤ x ≤ c

0, i f x > c

where the r-level sets of triangular fuzzy numbers are

[µ]r = [a + r (b − a), c − r (c − b)], r ∈ [0, 1]

Definition 3. [27]: Let
∼
f : [t0 + α, T] →

∼
E be Hukuhara differentiable and denote[∼

f ′(t)
]

r
=
[

f ′(t), f ′(t)
]

r
=
[

f ′(t; r), f ′(t; r)
]

Then, both of the boundary functions f ′(t; r), f ′(t; r) are differentiable; we can write
of the nth-order fuzzy derivative:

[
∼
f
(n)

(t)]r =
[(

f (n)(t; r)
)′

,
(

f
(n)

(t; r)
)′]

∀r ∈ [0, 1]
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Definition 4. Double-parametric forms of fuzzy numbers [31].

Using the single-parametric form, we have
∼
U = [u(r), u(r)]. This can be written as a

crisp number using the double-parametric form:

∼
U(r, β) = β[u(r)− u(r)] + u(r) where r and β ∈ [0, 1]

Definition 5. The fractional derivative was also defined by Zhuang and Liu, 2006, as follows [27]:

∂αu(x, t)
∂αt

=
∆t−α

Γ(2 − α)

n

∑
j=1

bj (u
n+1−j
i − un−j

i )

3. Fuzzy Compact Finite Difference Scheme (FCFD)

Assuming that un
i represents the approximate value of u at (xi, tn), we can expand

un
i+1 and un

i−1 around (xi, tn) using Taylor series to obtain FCFD approximations for the
first- and second-order spatial derivatives.

∼
u

n
i+1 =

∼
u

n
i + h

(
∂
∼
u

∂x

)n

i
+ h2

2

(
∂2∼u
∂x2

)n

i
+ h3

6

(
∂3∼u
∂x3

)n

i
+ · · ·

∼
u

n
i−1 =

∼
u

n
i − h

(
∂
∼
u

∂x

)n

i
+ h2

2

(
∂2∼u
∂x2

)n

i
− h3

6

(
∂3∼u
∂x3

)n

i
+ · · ·

 (1)

The first derivatives of un
i+1 and un

i−1 are(
∂
∼
u

∂x

)n

i+1
=
(

∂
∼
u

∂x

)n

i
+ h
(

∂2∼u
∂x2

)n

i
+ h2

2

(
∂3∼u
∂x3

)n

i
+ h3

6

(
∂4∼u
∂x4

)n

i
+ · · ·(

∂
∼
u

∂x

)n

i−1
=
(

∂
∼
u

∂x

)n

i
− h
(

∂2∼u
∂x2

)n

i
+ h2

2

(
∂3∼u
∂x3

)n

i
− h3

6

(
∂4∼u
∂x4

)n

i
+ · · ·

 (2)

The second derivatives of un
i+1 and un

i−1 are(
∂2∼u
∂x2

)n

i+1
=
(

∂2∼u
∂x2

)n

i
+ h
(

∂3∼u
∂x3

)n

i
+ h2

2

(
∂4∼u
∂x4

)n

i
+ h3

6

(
∂5∼u
∂x5

)n

i
+ · · ·(

∂2∼u
∂x2

)n

i−1
=
(

∂2∼u
∂x2

)n

i
− h
(

∂3∼u
∂x3

)n

i
+ h2

2

(
∂4∼u
∂x4

)n

i
− h3

6

(
∂5∼u
∂x5

)n

i
+ · · ·

 (3)

We obtain approximations for the first and second spatial derivatives, respectively, by
utilizing Equations (1)–(3): (

∂
∼
u

∂x

)n

i

=
δx/2h

(1 + 1
6 δ2x)

∼
u

n
i + O(h4) (4)

(
∂2∼u
∂x2

)n

i

=
δ2

x/h2

(1 + 1
12 δ2x)

∼
u

n
i + O(h4) (5)

where δx =
∼
u

n
i+1 − un

i−1 and δ2
x =

∼
u

n
i+1 − 2

∼
u

n
i +

∼
u

n
i−1 for 0 ≤ i ≤ M, 0 ≤ n ≤ N.

Now, based on the definition of the average operator in [27], we obtain

1
(1 + 1

6 δ2x)

∼
u

n
i =

1
6

(∼
u

n
i+1 + 4

∼
u

n
i +

∼
u

n
i−1

)
, 1 ≤ i ≤ M − 1 (6)

1
(1 + 1

12 δ2x)

∼
u

n
i =

1
12

(∼
u

n
i+1 + 10

∼
u

n
i +

∼
u

n
i−1

)
, 1 ≤ i ≤ M − 1 (7)
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4. Compact FTCS Scheme for the Solution of FTFDE

This section applies the double-parametric form of fuzzy numbers within a compact
FTCS scheme. The Caputo formula is used to calculate the time fractional derivative, while
a fourth-order accuracy compact approximation is used to compute the second-order space
derivative at time level n. This approach are utilized to solve the FTFDE.

Let us consider the one-dimensional FTFDE equation with the initial and boundary
conditions presented in [32].

∂α∼u(x, t, r, α)

∂αt
=

∼
a(x)

∂2∼u(x, t)
∂x2 +

∼
q(x), 0 < x < l, t > 0

∼
u(x, 0) =

∼
f (x),

∼
u(0, t) =

∼
g,

∼
u(l, t) =

∼
z (8)

where
∼
u(x, t, α) is a fuzzy concentration of a quantity such as the mass, energy, etc., of

crisp variables t, x and α represent the fractional order, ∂α
∼
U(x,t,α)

∂αt is the fuzzy time fractional

derivative of order α . ∂2∼u(x,t)
∂x2 is the partial Hukuhara derivative, as shown in Definition 3

with respect to x.
∼
a(x) is the diffusion coefficient (or diffusivity),

∼
q(x) is a fuzzy function

for the crisp variable x.
∼
u(x, 0) is the fuzzy initial condition, and

∼
u(0, t) and

∼
u(l, t) are fuzzy

boundary conditions, with
∼
g ,

∼
z being fuzzy convex numbers.

To obtain a numerical solution of the FTFDE using the CFTCS scheme, we discretize the
time fractional derivative in Equation (8) using the Caputo formula presented in Definition
5, while the second partial derivatives are approximated using Equation (5), resulting in

∆t−α

Γ(2 − α)
[
∼
u

n+1
i − ∼

u
n
i +

n

∑
j=1

bj (
∼
u

n+1−j
i − ∼

u
n−j
i )] =

∼
a(x)

δ2
x/h2(

1 + 1
12 δ2x

)∼
u

n
i +

∼
q(x), (9)

Using Equations (6) and (7), Equation (9) is simplified to obtain

∆t−α

Γ(2−α)
× 1

12 ([

(
∼
u

n+1
i+1 + 10

∼
u

n+1
i +

∼
u

n+1
i−1

)
−
(∼

u
n
i+1 + 10

∼
u

n
i +

∼
u

n
i−1

)
]

+
n
∑

j=1
bj

[(
∼
u

n+1−j
i+1 + 10

∼
u

n+1−j
i +

∼
u

n+1−j
i−1

)
−
(
∼
u

n−j
i+1 + 10

∼
u

n−j
i +

∼
u

n−j
i−1

)]
)

=
∼
a(x)

[∼
u

n
i+1−2

∼
u

n
i +

∼
u

n
i−1

h2

]
+ 1

12 (
∼
q

n
i+1 + 10

∼
q

n
i +

∼
q

n
i−1)

(10)

∼
u

n+1
i+1 + 10

∼
u

n+1
i +

∼
u

n+1
i−1 − ∼

u
n
i+1 − 10

∼
u

n
i − ∼

u
n
i−1 +

n
∑

j=1
bj

[(
∼
u

n+1−j
i+1 + 10

∼
u

n+1−j
i +

∼
u

n+1−j
i−1

)
−
(
∼
u

n−j
i+1 + 10

∼
u

n−j
i +

∼
u

n−j
i−1

)]
=

∼
a(x) ∆tαΓ(2−α)

h2

(
12un

i+1 − 24un
i + 12un

i−1

)
+ ∆tαΓ(2 − α)

(∼
q

n
i+1 + 10

∼
q

n
i +

∼
q

n
i−1

) (11)

Now, we let
∼
p(r) =

∼
a(x,r)∆tαΓ(2−α)

h2 , and from Equation (11), we obtain

∼
u

n+1
i+1 + 10

∼
u

n+1
i +

∼
u

n+1
i−1 − ∼

u
n
i+1 − 10

∼
u

n
i − ∼

u
n
i−1 +

n
∑

j=1
bj

[(
∼
u

n+1−j
i+1 + 10

∼
u

n+1−j
i +

∼
u

n+1−j
i−1

)
−
(
∼
u

n−j
i+1 +

∼
u

n−j
i +

∼
u

n−j
i−1

)]
=
(

12p un
i+1 − 24p un

i + 12p un
i−1

)
+ ∆tαΓ(2 − α)

(∼
q

n
i+1 + 10

∼
q

n
i +

∼
q

n
i−1

) (12)

By simplifying Equation (12), we obtain the general formula of compact FTCS for
FTFDE:

∼
u

n+1
i+1 + 10

∼
u

n+1
i +

∼
u

n+1
i−1

= (1 + 12p)
∼
u

n
i+1 + (10 − 24p)

∼
u

n
i + (1 + 12p)

∼
u

n
i−1

−
n
∑

j=1
bj

[(
∼
u

n+1−j
i+1 + 10

∼
u

n+1−j
i +

∼
u

n+1−j
i−1

)
−
(
∼
u

n−j
i+1 +

∼
u

n−j
i +

∼
u

n−j
i−1

)]
+ ∆tαΓ(2 − α)

(∼
q

n
i+1 + 10

∼
q

n
i +

∼
q

n
i−1

) (13)

For each spatial grid point, Equation (13) is evaluated to yield linear equations. For
a one-dimensional problem, a compact FTCS leads to a tridiagonal system of equations,
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where each equation involves the unknowns at the current and neighboring grid points. The
obtained tridiagonal system of linear equations typically involves using iterative methods
for solving sparse linear systems. In each time step, we solve a linear system of equations
using wolfram mathematica 11.2 to obtain the values

∼
u(x, t, α) for that particular time level.

The complexity of the system of equations is influenced by the order of accuracy of the
compact FTCS. Higher-order accuracy typically requires larger stencils and more complex
coefficients, leading to more intricate systems of equations. Generally, solving fuzzy time
fractional diffusion equations involves a balance between accuracy and computational
efficiency, and the careful consideration of these factors is crucial in determining the overall
cost of the simulation. The use of specialized algorithms for fuzzy fractional derivatives
and parallelization can potentially enhance the efficiency of computation.

5. Compact Saulyev Scheme for the Solution of FTFDE

Within this segment, the concise compact Saulyev scheme utilizes the Caputo formula
to incorporate the double-parametric form of fuzzy numbers, with a two-time level fourth-
order accuracy to approximate the second space derivative. While the method may seem
implicit, the obtained solution is explicit in nature.

To compute the numerical solution for the FTFDE utilizing the compact Saulyev
scheme, we apply the Caputo formula to discretize the time fractional derivatives in
Equation (8). Additionally, we discretize the second partial derivatives in the same equation
using a two-time level approach with fourth-order accuracy, resulting in

∆t−α

Γ(2 − α)
[
∼
u

n+1
i − ∼

u
n
i +

n

∑
j=1

bj (
∼
u

n+1−j
i − ∼

u
n−j
i )] =

∼
a(x)

∼
ui+1,n −

∼
ui,n −

∼
ui,n+1 +

∼
ui−1,n+1/h2(

1 + 1
12 δ2x

) ∼
u

n
i +

∼
q(x) (14)

∼
u

n+1
i+1 + 10

∼
u

n+1
i +

∼
u

n+1
i−1 − ∼

u
n
i+1 − 10

∼
u

n
i − ∼

u
n
i−1 +

n
∑

j=1
bj

[(
∼
u

n+1−j
i+1 + 10

∼
u

n+1−j
i +

∼
u

n+1−j
i−1

)
−
(
∼
u

n−j
i+1 +

∼
u

n−j
i +

∼
u

n−j
i−1

)]
=

∼
a(x) ∆tαΓ(2−α)

h2

(
12

∼
ui+1,n − 12

∼
ui,n − 12

∼
ui,n+1 + 12

∼
ui−1,n+1

)
+∆tαΓ(2 − α)

(∼
q

n
i+1 + 10

∼
q

n
i +

∼
q

n
i−1

) (15)

Next, we let
∼
p(r) =

∼
a(x,r)∆tαΓ(2−α)

h2 , and from Equation (15), we obtain:

∼
u

n+1
i+1 + 10

∼
u

n+1
i +

∼
u

n+1
i−1 − ∼

u
n
i+1 − 10

∼
u

n
i − ∼

u
n
i−1 +

n
∑

j=1
bj

[(
∼
u

n+1−j
i+1 + 10

∼
u

n+1−j
i +

∼
u

n+1−j
i−1

)
−
(
∼
u

n−j
i+1 +

∼
u

n−j
i +

∼
u

n−j
i−1

)]
=
(

12
∼
p
∼
ui+1,n − 12

∼
p
∼
ui,n − 12

∼
p
∼
ui,n+1 + 12

∼
p
∼
ui−1,n+1

)
+ ∆tαΓ(2 − α)

(∼
q

n
i+1 + 10

∼
q

n
i +

∼
q

n
i−1

) (16)

By simplifying Equation (16), we obtain the general formula for compact Saulyev for
FTFDE:

∼
u

n+1
i+1 + (10 + 12p)

∼
u

n+1
i + (1 − 12p)

∼
u

n+1
i−1

= (1 + 12p)
∼
u

n
i+1 + (10 − 12p)

∼
u

n
i +

∼
u

n
i−1 −

n
∑

j=1
bj

[(
∼
u

n+1−j
i+1 + 10

∼
u

n+1−j
i +

∼
u

n+1−j
i−1

)
−
(
∼
u

n−j
i+1 +

∼
u

n−j
i +

∼
u

n−j
i−1

)]
+∆tαΓ(2 − α)

(∼
q

n
i+1 + 10

∼
q

n
i +

∼
q

n
i−1

) (17)

6. The Stability of Compact FTCS for FTFDE

The stability of the proposed compact schemes for FTFDE with no source term in
the double-parametric form of fuzzy numbers will be analyzed using the von Neumann
method in the following section.

It is first assumed that the discretization of the initial condition introduces the fuzzy

error
∼
ε

0
i .

Let
∼
u

0
i =

∼́
u

0
i −

∼
ε

0
i ,

∼
u

n
i and

∼́
u

n
i be the fuzzy numerical solutions of the scheme in

Equation (13) with respect to the initial data
∼
f

0

i and
∼́
f

0

i , respectively.

Let [
∼
u

n
i+1(x, t; α)]r = β[u(r)− u(r)] + u(r)], where β, r ∈ [0, 1].
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The fuzzy error bound is defined as[∼
ε

n
i

]
r
=

[
∼́
u

n
i −

∼
u

n
i

]
r

, n = 1, 2, . . . , X × M, i = 1, 2, . . . , X − 1 (18)

Now, based on the approach used in [30,31], Equation (13) can be rewritten as follows:

∼
u

n+1
i+1 + 10

∼
u

n+1
i +

∼
u

n+1
i−1

= (1 + 12p − b1)
∼
u

n
i+1 + (10 − 24p − 10b1)

∼
u

n
i + (1 + 12p − b1)

∼
u

n
i−1

−
n−1
∑

j=1

(
bj+1 − bj

)(∼
u

n−j
i+1 + 10

∼
u

n−j
i +

∼
u

n−j
i−1

)
+ bn

(
∼
u

0
i+1 + 10

∼
u

0
i +

∼
u

0
i−1

) (19)

Next, we rewrite the fuzzy round-off error for Equation (19) as follows:

∼
ε

n+1
i+1 + 10

∼
ε

n+1
i +

∼
ε

n+1
i−1

= (1 + 12p − b1)
∼
ε

n
i+1 + (10 − 24p − 10b1)

∼
ε

n
i + (1 + 12p − b1)

∼
ε

n
i−1

−
n−1
∑

j=1

(
bj+1 − bj

)(∼
ε

n−j
i+1 + 10

∼
ε

n−j
i +

∼
ε

n−j
i−1

)
+ bn

(
∼
ε

0
i+1 + 10

∼
ε

0
i +

∼
ε

0
i−1

) (20)

∼
ε

n
0 =

∼
ε

n
X = 0, n = 1, 2, . . . , T × M

Let
∼
ε

n
i = [

∼
ε

n
1 ,

∼
ε

n
2 , . . . ,

∼
ε

n
X−1], and introduce the following fuzzy norm:

∥∥∥∼ε n∥∥∥
2
=

√
∑X−1

i=1 h
∣∣∣∼ε n

i

∣∣∣2
Then, we obtain ∥∥∥∼ε n∥∥∥2

2
= ∑X−1

i=1 h
∣∣∣∼ε n

i

∣∣∣2 (21)

Suppose that
∼
ε

n
i can be expressed in the form:

∼
ε

n
i =

∼
λ

n
e
√
−θi , where

∼
θ i = qih (22)

Substituting Equation (22) into Equation (20), we obtain:

∼
λ

n+1
e
√

−θi+1 + 10
∼
λ

n+1
e
√

−θi +
∼
λ

n+1
e
√

−θi−1

= (1 + 12p − b1)
∼
λ

n
e
√

−θi+1 + (10 − 24p − 10b1)
∼
λ

n
e
√

−θi + (1 + 12p − b1)
∼
λ

n
e
√

−θi−1

−
n−1
∑

j=1

(
bj+1 − bj

)(∼
λ

n−j
e
√

−θi+1 + 10
∼
λ

n−j
e
√

−θi +
∼
λ

n−j
e
√

−θi−1

)
+ bn

(∼
λ

0
e
√

−θi+1 + 10
∼
λ

0
e
√

−θi +
∼
λ

0
e
√

−θi−1

) (23)

Divide Equation (23) by e
√
−θi to obtain

[
10 +

(
e
√
−θi + e−

√
−θi

)]∼
λ

n+1

=
[
(10 − 24p − 10b1) + (1 + 12p − b1)

(
e
√
−θi + e−

√
−θi

)]∼
λ

n

−
n−1
∑

j=1

(
bj+1 − bj

) [
10 +

(
e
√
−θi + e−

√
−θi

)]∼
λ

n−j
+ bn

[
10 +

(
e
√
−θi + e−

√
−θi

)]∼
λ

0
(24)

By simplifying Equation (24), we obtain

∼
λ

n+1
=

[
12−4sin2( θ

2 )−48psin2 ( θ
2 )−12b1+4b1sin2( θ

2 )
12−4sin2( θ

2 )

]∼
λ

n

− ∑n−1
j=1 (bj+1−bj)(12−4sin2( θ

2 ))
∼
λ

n−j
+bn(12−4sin2( θ

2 ))
∼
λ

0

12−4sin2( θ
2 )

(25)
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Proposition 1. If
∼
λ

n
is the fuzzy solution of Equation (13) and p ≤ 1

6 , then
∣∣∣∣∼λn∣∣∣∣ ≤ ∣∣∣∣∼λ0∣∣∣∣.

Proof. From Equation (13), when n = 0, we obtain

∣∣∣∣∼λ1∣∣∣∣ =
1 −

48psin2
(

θ
2

)
12 − 4sin2

(
θ
2

)
∣∣∣∣∼λ0∣∣∣∣

Since p ≤ 1
6 and max for sin2

(
θ
2

)
= 1, we have

∣∣∣∣∼λ1∣∣∣∣ ≤ ∣∣∣∣∼λ0∣∣∣∣
Now, suppose that∣∣∣∣∼λm∣∣∣∣ ≤ ∣∣∣∣∼λ0∣∣∣∣, m = 1, 2 , 3 , . . . , n − 1

From Lemma 1 and Equation (13), we obtain

∼
λ

n+1
≤
[

12−4sin2( θ
2 )−48psin2 ( θ

2 )−12b1+4b1sin2( θ
2 )

12−4sin2( θ
2 )

]∣∣∣∣∼λn∣∣∣∣
−

∑n−1
j=1 (bj+1−bj)(12−4sin2( θ

2 ))
∣∣∣∣∼λn−j∣∣∣∣+bn(12−4sin2( θ

2 ))
∣∣∣∣∼λ0∣∣∣∣

12−4sin2( θ
2 )

∼
λ

n+1
≤
[

12−4sin2( θ
2 )−48psin2 ( θ

2 )−12b1+4b1sin2 ( θ
2 )−[(bn−b1)(12−4sin2( θ

2 ))]+12bn−4bnsin2( θ
2 )

12−4sin2( θ
2 )

]∣∣∣∣∼λ0∣∣∣∣
∼
λ

n+1
≤
[

1 − 48psin2( θ
2 )

12−4sin2( θ
2 )

]∣∣∣∣∼λ0∣∣∣∣ ≤ ∣∣∣∣∼λ0∣∣∣∣
□

Theorem 1. The CFTCS scheme in Equation (13) is stable under the condition p ≤ 1
6 .

Proof. From the formula in Equation (25) and proposition 1, it can be obtained that∣∣∣∣∼λm∣∣∣∣ ≤ ∣∣∣∣∼λ0∣∣∣∣, m = 1, 2, 3, . . . , n − 1

which means that the CFTCS scheme in Equation (13) is stable under the condition p ≤ 1
6 .

Using the same procedure, we can show that the compact Saulyev’s scheme in
Equation (17) is unconditionally stable. □

7. The Truncation Error and Convergence

Now, we consider the truncation error of Equation (14), based on the Taylor expansion
of each term about xi, to obtain

∼
T(xi, tn) =

1
Γ(2−α)∆tα

n
∑

j=0
bj (

∼
u

n+1−j
i − ∼

u
n−j
i )− δ2

x/h2

(1+ 1
12 δ2x)

∼
u

n
i − f n

i

= 1
Γ(2−α)∆tα

n
∑

j=0
bj (

∼
u

n+1−j
i − ∼

u
n−j
i )− ∂α∼u

∂αt

∣∣∣n
i
+ ∂2∼u

∂2x

∣∣∣n
i
− δ2

x/h2

(1+ 1
12 δ2x)

∼
u

n
i

= 1
Γ(2−α)∆tα

n
∑

j=0
bj (

∼
u

n+1−j
i − ∼

u
n−j
i )− ∂α∼u

∂αt

∣∣∣n
i
+ ( h4

240

(
∂6∼u
∂x6

)n

i
)

= O(∆t)2−α + O(h4)
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The principal part of the truncation error of the compact FTCS method for FTFDE is
said to be O

(
∆t2−α

)
+ O(∆x4). Thus, the compact FTCS method is consistent.

From Section 6, we know the scheme is stable (conditionally) and it has now been
established that it is consistent. Hence, convergence follows from the Lax equivalence
theorem [36].

8. Numerical Results and Discussion

Let us consider the following fuzzy time fractional diffusion equations [37].

∂α∼u(x, t)
∂tα

=
∂2∼u(x, t)

∂x2 , 0 < x < l, t > 0 (26)

subject to the boundary conditions
∼
U(0, t) =

∼
U(1, t) = 0 and initial condition:

∼
U(x, 0) =

∼
ksin (πx) , 0 < x < 1 (27)

In double-parametric form, the fuzzy number will be the same, as follows:

∼
k(r, β) = ((β(0.2 − 0.2r)) + 0.1r − 0.1) for all r, β ∈ [0, 1]

In [37], the exact solution of Equation (27) was provided as

∼
u(x, t, α; r) =

∞

∑
n=0

(−1)nπ2nt2α
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8. Numerical Results and Discussion  

Let us consider the following fuzzy time fractional diffusion equations [37]. 

𝜕𝛼𝑢̃(𝑥, 𝑡)

𝜕𝑡𝛼
= 
𝜕2𝑢̃(𝑥, 𝑡)

𝜕𝑥2
,           0 < 𝑥 < 𝑙, 𝑡 > 0 (26) 

subject to the boundary conditions 𝑈̃(0, 𝑡) = 𝑈̃(1, 𝑡) = 0 and initial condition: 

𝑈̃(𝑥, 0) = 𝑘̃ sin(𝜋𝑥) , 0 <  𝑥 < 1 (27) 

In double-parametric form, the fuzzy number will be the same, as follows: 

𝑘̃(𝑟, 𝛽) = ((𝛽(0.2 − 0.2𝑟)) + 0.1𝑟 − 0.1) for all 𝑟, 𝛽 ∈ [0,1]. 

In [37], the exact solution of Equation (27) was provided as 

𝑢̃(𝑥, 𝑡, 𝛼; 𝑟) = ∑
(−1)𝑛𝜋2𝑛𝑡2𝛼

Ґ(𝑛𝛼 + 1)
𝑘̃(𝑟) sin(𝜋𝑥)

∞

𝑛=0

 

 

(28) 

The absolute error of the solution of Equation (26) can be defined as [38,39] 

[𝐸̃]𝑟 = |𝑈̃(𝑡, 𝑥; 𝑟) − 𝑢̃(𝑡, 𝑥; 𝑟)| = {
[𝐸]

𝑟
= |𝑈(𝑡, 𝑥; 𝑟) − 𝑢(𝑡, 𝑥; 𝑟)|

[𝐸]
𝑟
= |𝑈(𝑡, 𝑥; 𝑟) − 𝑢(𝑡, 𝑥; 𝑟)|

 (29) 

At ∆𝑥 = ℎ = 0.1 and ∆𝑡𝛼 = (0.01)0.5 = 0.1 to obtain 𝑝(𝑟) =
∆𝑡𝛼

ℎ2
=

0.1

0.12
, we have the fol-

lowing results. 

(nα + 1)

∼
k(r)sin(πx) (28)

The absolute error of the solution of Equation (26) can be defined as [38,39]

[
∼
E]r =

∣∣∣∣∼U(t, x; r)− ∼
u(t, x; r)

∣∣∣∣ = { [E]r = |U(t, x; r)− u(t, x; r)|[
E
]

r =
∣∣U(t, x; r)− u(t, x; r)

∣∣ (29)

At ∆x = h = 0.1 and ∆tα = (0.01)0.5 = 0.1 to obtain p(r) = ∆tα

h2 = 0.1
0.12 , we have the

following results.
Tables 1 and 2 and Figures 1–5 show that both the fuzzy CFTCS and the fuzzy compact

Saulyev have a good agreement with the exact solution at t = 0.005, α = 0.5, and for
all r, β ∈ [0, 1]. Moreover, the numerical solutions obtained using CFTCS and Compact
Saulyev schemes satisfy the properties of the double-parametric form of fuzzy numbers by
exhibiting a triangular fuzzy number shape. The CFTCS scheme provided slightly more
accurate results than the Compact Saulyev scheme. Additionally, the double-parametric
form approach is observed to be simple, generally applicable, and computationally efficient
due to the conversion of the governing equation from an uncertain to a crisp form. It can be
observed from Figures 3 and 4 that the proposed schemes produce more accurate numerical
results at points close to the inflection point (β = 0.5).
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Table 1. This table displays the numerical and exact solutions of Equation (26) obtained through
CFTCS and Compact Saulyev schemes at β = 0 and 1, t = 0.005, and x = 0.9 for all r ∈ [0, 1].

CFTCS Compact Saulyev

β r ∼
u(0.9, 0.5; r, β)

∼
U (0.9, 0.5; r, β)

∼
E(0.9, 0.5; r, β)

∼
u(0.9, 0.5; r, β)

∼
U (0.9, 0.5; r, β)

∼
E(0.9, 0.5; r, β)

Lower
solution

when
β = 0

0 −0.015639 −0.016278 6.38412 × 10−4 −0.014904 −0.016278 1.37393 × 10−3

0.2 −0.012511 −0.013022 5.10730 × 10−4 −0.011923 −0.013022 1.09914 × 10−3

0.4 −0.009384 −0.009767 3.83047 × 10−4 −0.008942 −0.009767 8.24357 × 10−4

0.6 −0.006256 −0.006511 2.55365 × 10−4 −0.005962 −0.006511 5.49571 × 10−4

0.8 −0.003128 −0.003256 1.27682 × 10−4 −0.002981 −0.003256 2.74786 × 10−4

1 0 0 0 0 0 0

Upper
solution

when
β = 1

0 −0.015639 0.016278 6.38412 × 10−4 0.014904 0.016278 1.37393 × 10−3

0.2 −0.012511 0.013022 5.10730 × 10−4 0.011923 0.013022 1.09914 × 10−3

0.4 −0.009384 0.009767 3.83047 × 10−4 0.008942 0.009767 8.24357 × 10−4

0.6 −0.006256 0.006511 2.55365 × 10−4 0.005962 0.006511 5.49571 × 10−4

0.8 0.0031278743 0.003256 1.27682 × 10−4 0.002981 0.003256 2.74786 × 10−4

1 0 0 0 0 0 0

Table 2. This table displays the numerical and exact solutions of Equation (26) obtained through
CFTCS and Compact Saulyev schemes at β = 0.4 and 0.6, t = 0.005, and x = 0.9 for all r ∈ [0, 1].

CFTCS Compact Saulyev

β r ∼
u(0.9, 0.5; r, β)

∼
U (0.9, 0.5; r, β)

∼
E(0.9, 0.5; r, β)

∼
u(0.9, 0.5; r, β)

∼
U (0.9, 0.5; r, β)

∼
E(0.9, 0.5; r, β)

Lower
solution

when
β = 0.4

0 −0.003128 −0.003256 1.27682 × 10−4 −0.002980 −0.003256 2.74786 × 10−4

0.2 −0.002502 −0.002604 1.02146 × 10−4 −0.002385 −0.002604 2.19829 × 10−4

0.4 −0.001877 −0.001953 7.66094 × 10−5 −0.001788 −0.001953 1.64871 × 10−4

0.6 −0.001251 −0.001302 5.10730 × 10−5 −0.001192 −0.001302 1.09914 × 10−4

0.8 −0.00063 −0.000651 2.55365 × 10−5 −0.000596 −0.000651 5.49571 × 10−5

1 0 0 0 0 0 0

Upper
solution

when
β = 0.6

0 0.003128 0.003256 1.27682 × 10−4 0.002980 0.003256 2.74786 × 10−4

0.2 0.002502 0.002604 1.02146 × 10−4 0.002385 0.002604 2.19829 × 10−4

0.4 0.001877 0.001953 7.66094 × 10−5 0.001788 0.001953 1.64871 × 10−4

0.6 0.001251 0.001302 5.10730 × 10−5 0.001192 0.001302 1.09914 × 10−4

0.8 0.00063 0.000651 2.55365 × 10−5 0.000596 0.000651 5.49571 × 10−5

1 0 0 0 0 0 0
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Figure 5. Numerical and exact solution of Equation (26) via FTCS and Saulyev at t = 0.005 and
x = 0.9 for all r ∈ [0, 1].

Additionally, our obtained results are compared with the variational iteration method
presented in [40], where the same problem was addressed. As we can see Table 3, this
comparison illustrates a strong agreement between our results and those obtained using the
variational iteration method. It is notable that the standard fully compact explicit scheme is
associated with a condition on stability. The Compact Saulyev‘s scheme is unconditionally
stable, although it is explicit in nature. The disadvantage of the Saulyev method is that it
generates less accurate solutions than other compact explicit methods for the classical and
fractional diffusion equation.
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Table 3. Comparison of absolute error
∼
E correspond to the solutions of Equation (26) obtained via

CFTCS, the Compact Saulyev method, and the Variational Iteration method [40] at β = 0 and 1,
t = 0.005, and x = 0.9 for all r ∈ [0, 1].

CFTCS Compact Saulyev Variational Iteration Method

β r ∼
u(0.9, 0.5; r, β)

∼
E(0.9, 0.5; r, β)

∼
u(0.9, 0.5; r, β)

∼
E(0.9, 0.5; r, β)

∼
u(0.9, 0.5; r, β)

∼
E(0.9, 0.5; r, β)

Lower
solution
When
β = 0

0 −0.015639 6.38412 × 10−4 −0.014904 1.37393 × 10−3 −0.0167851423 5.07359 × 10−4

0.2 −0.012511 5.10730 × 10−4 −0.011923 1.09914 × 10−3 −0.013428114 4.05887 × 10−4

0.4 −0.009384 3.83047 × 10−4 −0.008942 8.24357 × 10−4 −0.010071085 3.04415 × 10−4

0.6 −0.006256 2.55365 × 10−4 −0.005962 5.49571 × 10−4 −0.006714057 2.02943 × 10−4

0.8 −0.003128 1.27682 × 10−4 −0.002981 2.74786 × 10−4 −0.0033570285 1.01472 × 10−4

1 0 0 0 0 0 0

Upper
solution

when
β = 1

0 −0.015639 6.38412 × 10−4 0.014904 1.37393 × 10−3 0.0167851423 5.07359 × 10−4

0.2 −0.012511 5.10730 × 10−4 0.011923 1.09914 × 10−3 0.013428114 4.05887 × 10−4

0.4 −0.009384 3.83047 × 10−4 0.008942 8.24357 × 10−4 0.010071085 3.04415 × 10−4

0.6 −0.006256 2.55365 × 10−4 0.005962 5.49571 × 10−4 0.006714057 2.02943 × 10−4

0.8 0.0031278743 1.27682 × 10−4 0.002981 2.74786 × 10−4 0.0033570285 1.01472 × 10−4

1 0 0 0 0 0 0

9. Conclusions

The primary focus of this paper comprises the development and application of two
explicit compact finite difference schemes crafted specifically for tackling the complex dy-
namics inherent to the fuzzy time diffusion equation. To facilitate this, a pivotal step
involves transferring the governing equation from its inherently uncertain state to a
more manageable crisp form, accomplished through an innovative double-parametric
form approach.

Upon implementing the proposed schemes, their efficacy was thoroughly evaluated
utilizing triangular fuzzy numbers as a benchmark. Impressively, the schemes exhibited an
accuracy characterized by an order of (O(∆t) +O(ĥ4)), a noteworthy achievement that not
only attests to their computational robustness but also aligns seamlessly with the intrinsic
properties of fuzzy numbers.

To ensure the reliability and robustness of the schemes, an in-depth analysis of their
stability was conducted employing the respected von Neumann method. This rigor-
ous examination revealed insightful findings: while the Compact Forward Time Cen-
tral Space (CFTCS) scheme displayed a conditionally stable behavior, Saulyev’s compact
scheme showcased the enviable trait of unconditional stability, augmenting its appeal for
practical applications.

Looking ahead, the horizon of research beckons towards the exploration of nonlinear
fuzzy fractional diffusion equations, an intriguing domain ripe with challenges and op-
portunities. Extending the presented scheme to address these intricate phenomena holds
immense promise, promising to unlock deeper insights into the nuanced dynamics of fuzzy
systems. Thus, this paper not only represents a significant advancement in numerical meth-
ods for fuzzy diffusion equations but also lays a sturdy foundation for future investigations
in this burgeoning field.
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