
Citation: Yang, Y.; Xiao, M.; Li, W.

Semi-Online Algorithms for the

Hierarchical Extensible Bin-Packing

Problem and Early Work Problem.

Computation 2024, 12, 68. https://

doi.org/10.3390/computation12040068

Academic Editor: Michele Bonnin

Received: 12 September 2023

Revised: 13 February 2024

Accepted: 11 March 2024

Published: 1 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Semi-Online Algorithms for the Hierarchical Extensible
Bin-Packing Problem and Early Work Problem
Yaru Yang , Man Xiao * and Weidong Li

School of Mathematics and Statistics, Yunnan University, Kunming 650504, China; y2239023588@126.com (Y.Y.);
weidongmath@126.com (W.L.)
* Correspondence: man1205@163.com

Abstract: In this paper, we consider two types of semi-online problems with hierarchies. In the
extensible bin-packing problem with two hierarchical bins, one bin can pack all items, while the
other bin can only pack some items. The initial size of the bin can be expanded, and the goal is to
minimize the total size of the two bins. When the largest item size is given in advance, we provide
some lower bounds and propose online algorithms. When the total item size is given in advance,
we provide some lower bounds and propose online algorithms. In addition, we also consider the
relevant early-work-maximization problem on two hierarchical machines; one machine can process
any job, while the other machine can only process some jobs. Each job shares a common due date,
and the goal is to maximize the total early work. When the largest job size is known, we provide
some lower bounds and propose two online algorithms whose competitive ratios are close to the
lower bounds.

Keywords: semi-online; early work; hierarchy; competitive ratio

1. Introduction

The bin-packing problem (BP) is one of the most fundamental problems in combina-
torial optimization and is the cornerstone of approximation algorithms, and it has been
extensively studied since the early 1970s. The extensive study of the BP, called the ex-
tensive bin-packing problem (EBP), has had a great impact on the design and analysis of
approximation algorithms [1,2], which are widely used in numerous classic applications,
such as machine scheduling, cutting stock problems, storage allocation, and cloud stor-
age. Currently, the model of the EBP arises in scheduling problems [3], and more and
more hierarchical scheduling has been combined with early work maximization (especially
makespan minimization) in recent years [4] (especially [5–7]). Thus, in this work, we
will investigate both problems: the hierarchical extensible bin-packing problem and the
early-work-maximization problem. Before introducing our problems, we will first provide
some basic knowledge and related notions, the contributions of previous studies, and
the motivation and the results of this paper.

1.1. Basic Knowledge and Related Notions

In the (semi-)online scheduling problem, the jobs arrive one by one. The performance
of the (semi-)online algorithm is measured by the competitive ratio. For a maximization
(minimization) problem and given an instance I, the objective value of the solution pro-
duced by an online algorithm A is denoted by CA(I) (CA, for short), and the offline optimal
criterion value is denoted by C∗(I) (C∗, for short). The performance of A is measured by
its competitive ratio, and the competitive ratio of A is defined as the minimum value ρ
satisfying C∗(I) ≤ ρ · CA(I) (CA(I) ≤ ρ · C∗(I)) for any instance I, where CA(I) denotes
the output value by A and C∗(I) denotes the offline optimal criterion value. On the other
hand, if there is no online algorithm for the problem that has a competitive ratio strictly

Computation 2024, 12, 68. https://doi.org/10.3390/computation12040068 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation12040068
https://doi.org/10.3390/computation12040068
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0009-0008-3718-2174
https://doi.org/10.3390/computation12040068
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation12040068?type=check_update&version=3

Computation 2024, 12, 68 2 of 31

less than γ, then γ is referred to as a lower bound of the problem. In particular, if there is
an online algorithm with a competitive ratio exactly matching the problem’s lower bound,
then we claim that this algorithm is an optimal online algorithm.

For the online hierarchical extensible bin-packing problem, we are given a set
I = {a1, a2, . . . , an} of n items. Each item aj has a size sj and m extendable bins B1, B2, . . . , Bm
with original size 1, where each item must be packed into one bin, and the total size of
the items packed in any bin can exceed 1, if necessary. The load Li = ∑j:aj∈Bi

sj of a bin
Bi is just the total size of the items contained in Bi, and the size of a bin Bi is defined by
max{Li, 1}. The extensible bin-packing problem introduced in [3,8], which is also called
operating room allocation [9], is to minimize the total size of the bins, i.e., to minimize

S =
m

∑
i=1

si =
m

∑
i=1

max{Li, 1}.

Since the model of the EBP naturally arises in scheduling problems, we stick to the
scheduling terminology in this article (bins are the same as machines; items are the same as
jobs). For the semi-online hierarchical early work maximization scheduling problem, we
are given a set M = {M1, M2} of two hierarchical machines and a set J = {J1, J2, · · · , Jn}
of n jobs arriving online. The machine M1 can process all jobs, while the machine M2 can
only process some of the jobs. Each job can only be processed by one machine. A new job
Jj+1 arrives only after job Jj is irrevocably scheduled to a machine. Let Li = ∑Jj∈Si

pj be the
load of Mi, i ∈ {1, 2}. The objective is to find a schedule such that the total early work

X =
n

∑
j=1

Xj =
2

∑
i=1

min {Li, 1}

is maximized.

1.2. The Contributions of Previous Studies

The extensible bin-packing problem (EBP), with the goal of minimizing the total sizes
of bins, originates from the research work of Dell’Olmo et al. [8], who showed that the
problem is strongly NP-hard. Furthermore, they proved that the approximation ratio of the
longest processing time (LPT) algorithm for the problem is 13

12 .
Alon et al. [10] presented a unified efficient polynomial time approximation scheme

(EPTAS) for scheduling on parallel machines, which is also suitable for the EBP. It is
worth noting that Coffman et al. [11] presented an asymptotic fully polynomial time
approximation scheme (FPTAS) for the EBP. If the number m of bins is fixed, there is an
FPTAS following from the results of [12]. Most recently, Levin [13] designed an EPTAS for
a generalization of the EBP with unequal bin sizes, where the cost of exceeding the bin size
depends on the index of the bin and not only on the amount by which the size of the bin
is exceeded.

A special case of the EBP is the case of extensible bin packing with unequal bin sizes (called
the EBP-UBS). The online version of the problem was first studied by Dell’Olmo et al. [14],
and they proved that the competitive ratio of the LS algorithm is 5

4 , which was improved
slightly by Ye et al. [15]. Berg et al. [16] gave an online algorithm for the online EBP with a
variable cost of extension. Most recently, Luo et al. [17] presented several lower bounds
and an online algorithm whose competitive ratio is optimal in certain cases for the online
EBP with a variable cost of extension. When m ≥ 3, there exists a big gap between the best-
known lower bound and the upper bound for the online EBP. When m = 2, the best possible
competitive ratio for the online EBP problem is 7

6 [3,18]. Another special case of the EBP is
the case of a stochastic extensible bin-packing problem (SEBP), in which the size of each item
follows some known probability distribution, and all the n items are packed into m bins of
unit capacity in order to minimize the expected costs. Sagnol et al. [19] showed that there is
a simple policy, called LEPT, with an approximation ratio of 1 + e−1 ≈ 1.368 for the SEBP,

Computation 2024, 12, 68 3 of 31

and the problem has been generalized to arbitrary stochastic jobs in [20]. Building on the
two papers, Sagnol et al. [21] proved improved bounds under distributional assumptions
of the processing times.

The EBP model arises in scheduling problems in which machines are available for some
amount of time at a fixed cost and for extra time at an additional cost. Speranza et al. [3]
first introduced the online scheduling problem on m identical machines with extendable
working time, which is also a special online EBP problem in which all bin sizes are equal to
one and the size of a bin can be extended if necessary. They proved that the competitive
ratio of the list scheduling (LS) algorithm for the problem is 5

4 and designed a new online
algorithm with a competitive ratio of 1.228.

A similar problem is the early work maximization scheduling problem. Nonpreemp-
tive parallel machine scheduling with a common due date to maximize the total early
work of all the jobs, i.e., the total processing time of the jobs completed before the common
due date, has been a popular objective in the past decade [22,23]. Recently, for the offline
version of the problem, when the number m of machines is fixed, Li [24] presented an
FPTAS with running time O(1

ϵ2m+1 + n), for any desired accuracy ϵ, where n is the number
of jobs and f (1

ϵ) is exponential in 1
ϵ . When the number m of machines is not fixed, Li [24]

also presented an EPTAS. Moreover, Sun et al. [25] proved that the worst-case ratio of the
LPT algorithm for the offline early-work-maximization problem is at most 1.207 this year.
For the online case of the problem, Chen et al. [26] considered the scheduling problem
on parallel identical machines and presented an algorithm with a competitive ratio of√

2m2−2m+1−1
m−1 . In particular, they proved that the competitive ratio of

√
5 − 1 is tight when

m = 2. This year, Jiang et al. [27] proved that the tight competitive ratio of the LS algorithm
is 4

3 and improved the upper bound on the competitive ratio for the previous algorithm
EFFm to 1.2956.

For the early-work-maximization problems on two hierarchical machines, Xiao et al. [28]
studied two semi-online models of the problem with a buffer or rearrangements. If a buffer
size of K is available, they designed an optimal online algorithm with a competitive ratio
of 4/3. If it is allowed to reassign at most K jobs after all the jobs have been scheduled,
they proposed an optimal online algorithm with a competitive ratio of 4/3. Furthermore,
Xiao et al. [7] designed an optimal online algorithm with a competitive ratio of

√
2 for

the problem and proposed several optimal semi-online algorithms for the cases when the
largest processing time or total processing time is known. For the early-work-maximization
problems on two hierarchical uniform machines M1 and M2, where machine M1 with
speed s > 0 is available for all jobs and machine M2 with speed 1 is available only for high-
hierarchy jobs, Xiao et al. [4] proposed four optimal semi-online algorithms for the cases of
the total size of all jobs, the total size of low-hierarchy jobs, the total size of high-hierarchy
jobs, and both the total size of low-hierarchy and high-hierarchy jobs that are known in
advance, respectively. This problem is also closely related to the online lp-norm load-
balancing problem on two hierarchical machines [6,29] and the online machine covering
problems on two hierarchical machines [30–32]. Furthermore, more related results can be
found in the recent surveys [33–35].

The makespan minimization scheduling problem on hierarchical machines is another typ-
ical objective in scheduling and is also closely related to the online early-work-maximization
problem. The online version of such a problem was also first studied by Park et al. [36] and
Jiang et al. [37]. They independently proposed an optimal online algorithm with a competitive
ratio of 5

3 . Moreover, if the total size of all the jobs is given in advance, ref. [36] presented
an optimal online algorithm with a competitive ratio of 3

2 . If the largest processing time
of jobs is known in advance, Wu et al. [38] presented an optimal online algorithm with a
competitive ratio of 1+

√
5

2 ; if the total processing time is known in advance, the group pre-
sented an optimal online algorithm and obtained the same result as [36]. If the processing
times are bounded, Liu et al. [39], Luo et al. [40], and Zhang et al. [41] designed several
online algorithms for the makespan minimization problem on two hierarchical machines.
Chen et al. [22,42] considered several semi-online versions of the problem and proposed the

Computation 2024, 12, 68 4 of 31

corresponding optimal online algorithms. Akaria et al. [5] discussed online scheduling with
migration on two hierarchical machines.

1.3. The Motivation of the Paper

The EBP has been widely used to represent the cost of allocating surgeries to operating
rooms (ORs) [9,16,19] in recent years, which is a challenging combinatorial optimization
problem. There is also significant uncertainty in the duration of surgical procedures, which
further complicates assignment decisions. In the context of OR allocation, ORs represent
bins. Assume that k ≤ m is the number of ORs. Each bin has a certain size at a fixed cost
c f , which denotes the time T that each OR is available during a particular day. The OR
can be utilized for more than the regular available time. Under this model, the total cost
of a solution assigning the subset of surgeries Si to the i-th operating room (i = 1, · · · , k)
becomes kc f + cv ∑k

i=1 max{∑j∈Si
pj − T, 0}, and the decision maker is asked to find the

best allocation so that the total cost is minimized. The EBP corresponds to the situation in
which T = c f = cv = 1 and k = m. In practice, surgical durations are not known in advance,
and the patients with more severe injuries should be given priority treatment, which is
also highly important. In addition, in communications engineering, service providers
assign service classes to calls in communications networks and route queries to hierarchical
databases. Hence, motivated by these random cases and online hierarchical scheduling [43],
we study the hierarchical extensible bin-packing problem (HEBP), in which each bin Bi has
an identical original size 1, for i = 1, 2. The bin B1 can pack all the items, while B2 can only
pack the items with the high hierarchy, i.e., hj = 2, with the objective of minimizing the
expected costs. Our new model is defined to generalize some special semi-online cases of
the HEBP.

Scheduling with the goal of early work maximization has many practical applications
in recent years, such as scheduling customer orders in manufacturing systems, testing soft-
ware in software engineering, spreading fertilizers in agriculture, planning technological
processes in manufacturing systems, collecting data from sensors in control systems, and
harvesting crops in agriculture. For example, in the service industry, service providers
often assign corresponding privileges and differentiated services to customers according
to the level of service they promise to customers. Motivated by [32], we study the early-
work-maximization problems on two identical parallel machines under a grade of service
(GoS) provision, with the information of the largest job, where the machine M1 can process
all jobs, while the machine M2 can only process the higher hierarchical jobs, with the goal
of maximizing the total early work. Our new model is defined to generalize some special
semi-online cases of the problem.

1.4. The Organization and Results of the Paper

The remainder of this paper is organized as follows. Section 2 focuses on a series of
models for the HEBP with the largest item size known in advance.

(Section 2.1) If the largest size β of the items is known in advance, without knowledge
of the item hierarchy, and if at least one item of size β appears, we give two lower bounds
1 + β

4 and 1 + 1
2+2β and propose an optimal online algorithm with a competitive ratio of

1 + min { β
4 , 1

2+2β}.
(Section 2.2) If the hierarchy of the largest item is known in advance and there is

at least one item of the largest size β that appears, we give some lower bounds. When
2
3 < β < 1, we propose a simple online algorithm with a competitive ratio of 3−β

2 .
(Section 2.3) If the largest item with hierarchy hj = 1 is known in advance and if

β = 1, i.e., sj ≤ smax,1 ≤ 1, where smax,1 is the size of the largest item amax,1 with the lower
hierarchy, we design an optimal semi-online algorithm with a competitive ratio of 7

6 .
(Section 2.4) If the largest item with hierarchy hj = 2 is known in advance and con-

sidering the case where β = 1, i.e., sj ≤ smax,2 ≤ 1, where smax,2 is the size of the largest

Computation 2024, 12, 68 5 of 31

item amax,2 with the higher hierarchy, we show a lower bound
√

13+1
4 and design an online

algorithm with a competitive ratio of 7
6 .

Section 3 focuses on a series of models for the HEBP with the total item size known
in advance.

(Section 3.1) If the total size T of all the items is known in advance, we give a lower
bound of 5

4 and propose an optimal online algorithm with a competitive ratio of 5
4 .

(Section 3.2) If the total size T1 of the low-hierarchy items is known in advance, we
show a lower bound of

√
13+1
4 and propose an algorithm with a competitive ratio of 7

6 .
(Section 3.3) If the total size T2 of the high-hierarchy items is known in advance, we

show a lower bound of
√

13+1
4 and propose an algorithm with a competitive ratio of 7

6 .
In Section 4, we investigate the semi-online hierarchical early-work-maximization

problem, i.e., the case of the largest job is known in advance.
(Section 4.1) If the largest job size pmax = β ≤ 1 is known in advance, without

knowledge of the job hierarchy, we give two lower bounds 1 + β
3 and

√
β2−2β+9−1+β

2 for

β <
√

5−1
2 and

√
5−1
2 ≤ β ≤ 1, respectively. We also propose an online algorithm with a

competitive ratio
√

β2−2β+9−1+β
2 for 0 < β ≤ 1.

(Section 4.2) If the hierarchy of the largest job is known, when the largest job has
a low hierarchy, i.e., pj ≤ pmax,1 = β ≤ 1, for 1 ≤ j ≤ n, we denote this problem as
P2|GoS, online, pmax,1 = β|max(X). We give two lower bounds 4

4−β and 4
3+β for β ≤ 1

2 and
1
2 < β ≤ 1, respectively.

Finally, we present our conclusions in Section 5.

2. The Hierarchical Extensible Bin-Packing Problem of Knowing the Largest Item Size

For the online case, a set of n items I = {a1, · · · , an} and two hierarchical bins
B = {B1, B2} are given. Each item aj is characterized by two parameters: the item size
sj and the item hierarchy hj ∈ {1, 2}. For convenience, item aj is denoted by aj = (sj, hj)
for j = 1, · · · , n. Each bin Bi has an identical original size of 1 for i = 1, 2. The hierarchical
constraint means that the bin B1 can pack all the items, while B2 can only pack the items
with hierarchy 2, i.e., hj = 2.

All the items of I are ordered in a list and arrive one by one. Once an item arrives, it
must be assigned to one of the two hierarchical bins immediately and irrevocably. The in-
formation of item aj+1 is given after item aj has been assigned. Assume that the size of each
item satisfies

sj ≤ 1, for j = 1, · · · , n. (1)

This problem is to find a packing that assigns all the items of I to the two bins, and the
goal is to minimize the total size of both bins. Let Li = ∑ajϵBi

sj be the load of the bin Bi,
i.e., the total size of the items assigned to Bi, for i = 1, 2. If Li ≤ 1, the size of bin Bi is equal
to 1, i.e., si = 1. If Li > 1, the size of bin Bi is equal to its load, i.e., si = Li. As a result,
the size of bin Bi is defined as

si = max{Li, 1}.

Therefore, the goal of the problem is to find a packing plan such that the total size of
both bins

S =
2

∑
i=1

si =
2

∑
i=1

max{Li, 1} (2)

is minimized.
In the following, let Lj

i be the total size of the items assigned to bin Bi after item aj is
assigned, for j ∈ {1, 2, · · · , n}. Clearly, we have

Ln
i = Li.

Computation 2024, 12, 68 6 of 31

Let T be the total size of all the items and Tk (k = 1, 2) be the total size of the items
with hierarchy hj = k. Hence, we have T = T1 + T2. Define C∗ as the offline optimal value
and CA as the output value of the (semi-)online algorithm A. From the definition of the
total size of both bins, we have the following lemma.

Lemma 1. The offline optimal value C∗ satisfies

C∗ ≥ max{T, 2}. (3)

In this section, we consider a series of models for which the largest item size is given
in advance. Assume that each item size sj is bounded by (0, β], i.e.,

0 < sj ≤ β.

2.1. The Largest Item Is Known

In this subsection, the largest size of the items is known in advance without knowledge
of the item hierarchy, and at least one item of size β appears. We give two lower bounds
1 + β

4 and 1 + 1
2+2β and propose an optimal online algorithm with a competitive ratio

1 + min { β
4 , 1

2+2β}.

Theorem 1. When only the size of the largest item is known, any online algorithm A has a
competitive ratio at least 1 + β

4 for β < 1.

Proof. Let N be a large enough integer and ε = 1
N . The first t items are a1 = a2 = · · · =

at = (ε, 2), where t is the minimal integer satisfying the following conditions.
Case 1. Lt

1 ∈ [β
2 , β

2 + ε] (Lt
2 < 1 − β

2).
The item at+1 = (β, 1) and the last k items at+2, · · · , at+1+k arrive, ∑t+1+k

j=t+2 sj = 1 − β

and sj ≤ β, then C∗ ≤ 2 + ε and CA ≥ 2 + β
2 .

Case 2. Lt
2 ∈ [1 − β

2 , 1 − β
2 + ε] (Lt

1 < β
2).

The last two items at+1 = (1 − β
2 − Lt

1, 1) and at+2 = (β, 2) arrive, implying that
C∗ ≤ 2 + ε and CA ≥ 2 + β

2 .
As a result, in all cases, we obtain that

lim
ε→0

CA

C∗ ≥ lim
ε→0

2 + β
2

2 + ε
≥ 1 +

β

4
.

Therefore, our theorem holds in any case.

Theorem 2. When only the size of the largest item is known, any online algorithm A has a
competitive ratio of at least 1 + 1

2+2β for β ≥ 1.

Proof. The first item is a1 = (1
2 , 2).

Case 1. a1 is assigned to B1.
Then, the last item a2 = (β, 1) arrives, and we have C∗ = 1 + β and CA = 3

2 + β.
Case 2. a1 is assigned to B2.
Then, the next item a2 = (β, 2):

(i) If a2 is assigned to B2, and no more items arrive, then, we have C∗ = 1 + β and
CA = 3

2 + β.
(ii) If a2 is assigned to B1, the last item a3 = (1

2 , 1) arrives, then we have C∗ = 1 + β and
CA = 3

2 + β.

Computation 2024, 12, 68 7 of 31

As a result, in all cases, we obtain that

CA

C∗ ≥
3
2 + β

1 + β
= 1 +

1
2 + 2β

.

Therefore, our theorem holds in any case.

The details of our online algorithm are described in Algorithm 1.

Theorem 3. The competitive ratio of Algorithm 1 is at most 1 + min { β
4 , 1

2+2β}.

Algorithm 1: A1.

1 Initially, let L0
2 = 0.

2 When a new item aj = (sj, hj) arrives ,
3 if hj = 1 then
4 Assign item aj to B1.

5 else
6 if Lj−1

2 < max {1 − β
2 , 1

2} then
7 Assign item aj to B2.

8 else
9 Assign item aj to B1.

10 If there is another item, j == j + 1, go to step 2. Otherwise, stop.

Proof. Since the largest item size is β, we have C∗ ≥ 1 + β. Based on Lemma 1, we
have C∗ ≥ max{T, 2}. In the case of min{L1, L2} ≥ 1, we have CA1 = T ≤ C∗. In the
case of max{L1, L2} ≤ 1, we have CA1 = 2 ≤ C∗. Both cases imply that Algorithm 1
reaches optimality. Thus, we only consider the case of min{L1, L2} < 1 < max{L1, L2},
implying that

CA1 = 1 + max{L1, L2}.

We consider the following two cases:
Case 1. L1 > 1 and L2 < 1.
Let al = (pl , 2) be the last item of hierarchy hj = 2 assigned to B1. According to

Algorithm 1, we know that item al is assigned to B1 at Line 9; then, we have

L2 ≥ Ll−1
2 ≥ max {1 − β

2
,

1
2
}. (4)

By Lemma 1, we have

CA1

C∗ ≤ L1 + 1
max {2, L1 + L2, 1 + β} = 1 +

L1 + 1 − max {2, L1 + L2, 1 + β}
max {2, L1 + L2, 1 + β}

≤ 1 +
1 − L2

max {2, L1 + L2, 1 + β} ≤ 1 +
1 − L2

max {2, 1 + β}

≤ 1 +
min { β

2 , 1
2}

max {2, 1 + β} = 1 + min { β

4
,

1
2 + 2β

},

where the second inequality follows from max {2, L1 + L2, 1 + β} ≥ L1 + L2, the third
inequality follows from max {2, L1 + L2, 1 + β} ≥ max {2, 1 + β}, and the last inequality
follows from (4).

Computation 2024, 12, 68 8 of 31

Case 2. L1 < 1 and L2 > 1.
Let at = (st, 2) be the last item of hierarchy 2 assigned to B2. According to Algorithm 1,

we know that item at is assigned to B2 at Line 7; then, we have

L2 = Lt−1
2 + st ≤ max {1 − β

2
,

1
2
}+ β. (5)

By Lemma 1, we have

CA1

C∗ ≤ 1 + L2

max {2, L1 + L2, 1 + β} ≤ 1 + L2

max {2, 1 + β}

= 1 +
L2 − max {1, β}
max {2, 1 + β} ≤ 1 + min { β

4
,

1
2 + 2β

},

where the second inequality follows from max {2, L1 + L2, 1 + β} ≥ max {2, 1 + β} and the
last inequality follows from (5).

Therefore, our theorem holds in any case.

2.2. The Largest Item with Lower Hierarchy or Higher Hierarchy

In this subsection, the hierarchy of the largest item is known, and there is at least one
item of size β that appears; we give some lower bounds. When 2

3 < β < 1, we propose a
simple online algorithm with a competitive ratio of 3−β

2 .

Theorem 4. When the largest item is the hierarchy-1 item, any online algorithm A has a competitive
ratio of at least 1 + 1−β

4 for 1
2 ≤ β < 1.

Proof. Let N be a large enough integer and ε = 1
N . The first t items are a1 = (β, 1) and

a2 = · · · = at = (ε, 2), where t is the minimal integer satisfying the following conditions.
Case 1. Lt

1 ∈ [β + 1−β
2 , β + 1−β

2 + ε] (Lt
2 < β + 1−β

2).
The last item at+1 = (1 − β, 1) arrives, then C∗ ≤ 2 + ε and CA ≥ 2 + 1−β

2 .
Case 2. Lt

2 ∈ [β + 1−β
2 , β + 1−β

2 + ε] (Lt
1 < β + 1−β

2).
The last two items at+1 = (β + 1−β

2 − Lt
1, 1) and at+2 = (1− β, 2) arrive, implying that

C∗ ≤ 2 + ε and CA ≥ 2 + 1−β
2 .

As a result, in all cases, we obtain that

lim
ε→0

CA

C∗ ≥ lim
ε→0

2 + 1−β
2

2 + ε
≥ 1 +

1 − β

4
.

Therefore, our theorem holds in any case.

Theorem 5. When the largest item is the hierarchy-2 item, any online algorithm A has a competitive

ratio of at least
√

4+2β

2 for β ≤
√

13−1
4 .

Proof. Let N be a large enough integer and ε = 1
N . The first item is a1 = (β, 2).

If a1 is assigned to B1, then the last item a2 = (1, 1) arrives, and we have C∗ = 2 and
CA = 2 + β.

If a1 is assigned to B2, then the next t − 1 items a2 = · · · = at = (ε, 2) arrive, where t is
the minimal integer satisfying the following conditions.

Case 1. Lt
1 ∈ [2 + β −

√
4 + 2β, 2 + β −

√
4 + 2β + ε] (Lt

2 <
√

4 + 2β − 1 − β).
The last item at+1 = (1, 1) arrives, then C∗ ≤ 2 + ε and CA ≥ 4 + β −

√
4 + 2β.

Case 2. Lt
2 ∈ [

√
4 + 2β − 1 − β,

√
4 + 2β − 1 − β + ε] (Lt

1 < 2 + β −
√

4 + 2β).

Computation 2024, 12, 68 9 of 31

The next item at+1 = (β, 2) arrives:

(i) If at+1 is assigned to B2, no more jobs arrive, and we have C∗ ≤ 2 + ε and CA ≥√
4 + 2β.

(ii) If at+1 is assigned to B1, the last item at+2 = (1 − Lt
1, 1) arrives, and we have C∗ ≤√

4 + 2β + ε and CA ≥ 2 + β.

Since β ≤
√

13−1
4 , we have

β ≤
√

4 + 2β − 1 − β

and

lim
ε→0

4 + β −
√

4 + 2β

2 + ε
≥ lim

ε→0

2 + β√
4 + 2β + ε

≥ lim
ε→0

√
4 + 2β

2 + ε
=

√
4 + 2β

2
,

and as a result, in all cases, we obtain that

lim
ε→0

CA

C∗ ≥
√

4 + 2β

2
.

Therefore, our theorem holds in any case.

Theorem 6. When the largest item is the hierarchy-2 item, any online algorithm A has a competitive

ratio of at least
√

3−2β+1
2 for

√
13−1
4 < β < 1.

Proof. The first item is a1 = (β, 2).
Case 1. a1 is assigned to B1.
Then, the last item a2 = (1, 1) arrives, and we have C∗ = 2 and CA = 2 + β.
Case 2. a1 is assigned to B2.
Then, the next item a2 = (

√
3 − 2β − β, 2) arrives:

(i) If a2 is assigned to B2, no more items arrive, and we have C∗ = 2 and CA =
√

3− 2β+ 1.
(ii) If a2 is assigned to B1, the last item a3 = (1, 1) arrives, and we have C∗ =

√
3 − 2β + 1

and CA = 2 +
√

3 − 2β − β.

Therefore, we obtain

CA

C∗ ≥
2 +

√
3 − 2β − β√

3 − 2β + 1
=

√
3 − 2β + 1

2
.

Therefore, our theorem holds in any case.

The details of our online algorithm are described in Algorithm 2.

Theorem 7. The competitive ratio of Algorithm 2 is at most 3−β
2 .

Algorithm 2: A2.

1 if The largest item is hierarchy 1 then
2 Assign all hierarchy-1 items to B1 and all hierarchy-2 items to B2.

3 else
4 Assign the first largest hierarchy-2 item to B2 and the remaining items to B1.

Proof. As the proof of Theorem 3, we consider only the following two cases.

Computation 2024, 12, 68 10 of 31

Case 1. L1 > 1 and L2 < 1:

(i) If the largest item is hierarchy 1, then all items of hierarchy 2 are assigned to B2,
and Algorithm 2 reaches optimality.

(ii) If the largest item is hierarchy 2, then the first largest item is assigned to B2, and L2 ≥ β.
By Lemma 1, we have

CA2

C∗ ≤ L1 + 1
max {L1 + L2, 2} ≤ 1 +

1 − L2

2
≤ 1 +

1 − β

2
.

Case 2. L1 < 1 and L2 > 1:

(i) If the largest item is hierarchy 1, then L1 ≥ T1 ≥ β. By Lemma 1, we have

CA2

C∗ ≤ L2 + 1
max {L1 + L2, 2} ≤ 1 +

1 − L1

2
≤ 1 +

1 − β

2
.

(ii) If the largest item is hierarchy 2, then only the first largest item is assigned to B2,
and L2 = β > 1, which contradicts the assumption that β < 1.

Therefore, our theorem holds in any case.

2.3. The Largest Item with the Lower Hierarchy

In this subsection, we focus on the semi-online case in which the largest item with
hierarchy 1 is known a priori and consider the case in which β = 1, i.e.,

sj ≤ smax,1 ≤ 1, (6)

where smax,1 is the size of the largest item amax,1 with the lower hierarchy; we design an
optimal semi-online algorithm with a competitive ratio of 7

6 .

Theorem 8. The competitive ratio of any online algorithm A for the problem is no less than 7
6 .

Proof. Assume that smax,1 = 2
3 . The first two items a1 = (2

3 , 1) and a2 = (1
3 , 2) arrive.

Case 1. a2 is assigned to B1.
Then, the last item a3 = (1

3 , 1) arrives. Thus, we have CA = 7
3 and C∗ = 2.

Case 2. a2 is assigned to B2.
Then, the third item a3 = (1

3 , 2) arrives:

(i) If a3 is assigned to bin B1, then the last item a4 = (1
3 , 1) arrives. Thus, we have CA = 7

3
and C∗ = 2.

(ii) If a3 is assigned to bin B2, then the last item a4 = (2
3 , 2) arrives. This means that

CA = 7
3 and C∗ = 2.

Therefore, CA

C∗ ≥ 7
6 , our theorem holds in any case.

Now, we present an optimal online algorithm to solve the semi-online case when the
largest item has the lower hierarchy. The primary concept of this algorithm is that we
prioritize bin B2 when allocating items, since the largest items with hierarchy 1 can only be
assigned to B1.

Theorem 9. The competitive ratio of Algorithm 3 is at most 7
6 .

Computation 2024, 12, 68 11 of 31

Algorithm 3: A3.

1 Initially, let j = 1, L0
2 = 0.

2 When a new item aj = (sj, hj) arrives,
3 if hj = 1 then
4 Assign item aj to bin B1.

5 else
6 if Lj−1

2 ≤ 2
3 then

7 Assign item aj to bin B2.

8 else
9 Assign item aj to bin B1.

10 If there is another item, let j = j + 1, and go to Line 2. Otherwise, stop.

Proof. As the proof of Theorem 3, we consider only the following two cases.
Case 1. L1 > 1 and L2 < 1.
According to the analysis of Theorem 2, we let ak = (sk, 2) be the last item of hierarchy

hj = 2 assigned to B1. According to Algorithm 3, we know that item ak is assigned to B1 at
Line 9, implying that

L2 ≥ Lj−1
2 >

2
3

. (7)

Thus, based on Lemma 1, we have

CA3

C∗ ≤ 1 + L1

max{L1 + L2, 2} = 1 +
1 + L1 − max{L1 + L2, 2}

max{L1 + L2, 2}

≤ 1 +
1 − L2

max{L1 + L2, 2} ≤ 1 +
1 − L2

2
=

3 − L2

2
≤ 7

6
,

where the second inequality follows from max{L1 + L2, 2} ≥ L1 + L2, the third inequality
follows from max{L1 + L2, 2} ≥ 2, and the last inequality follows from (7).

Case 2. L1 < 1 and L2 > 1.
Case 2.1 smax,1 ≤ 2

3 .
Let ak = (sk, 2) be the last item assigned to B2. By (6), we assume that

sk ≤ smax,1 ≤ 2
3

. (8)

According to Algorithm 3, we know that item ak is assigned to B2 at Line 7, which
implies that

Lk−1
2 ≤ 2

3
,

and
L2 = Lk−1

2 + sk ≤
2
3
+

2
3
=

4
3

,

where the inequality follows from (8). Hence, based on Lemma 1, we have

CA3

C∗ ≤ 1 + L2

2
≤

1 + 4
3

2
=

7
3
2
=

7
6

.

Case 2.2 smax,1 > 2
3 .

Obviously, we have

L1 ≥ smax,1 >
2
3

. (9)

Computation 2024, 12, 68 12 of 31

Thus, based on Lemma 1, we have

CA3

C∗ ≤ 1 + L2

max{L1 + L2, 2} = 1 +
1 + L2 − max{L1 + L2, 2}

max{L1 + L2, 2}

≤ 1 +
1 − L1

max{L1 + L2, 2} ≤ 1 +
1 − L1

2
=

3 − L1

2
≤

3 − 2
3

2
=

7
6

,

where the second inequality follows from max{L1 + L2, 2} ≥ L1 + L2, the third inequality
follows from max{L1 + L2, 2} ≥ 2, and the last inequality follows from (9).

Therefore, our theorem holds in any case.

2.4. The Largest Item with the Higher Hierarchy

In this subsection, we focus on the semi-online case in which the largest item with
hierarchy 2 is known in advance and consider the case in which β = 1, i.e.,

sj ≤ smax,2 ≤ 1, (10)

where smax,2 is the size of the largest item amax,2 with the higher hierarchy. We show a lower
bound

√
13+1
4 and design an online algorithm with a competitive ratio of 7

6 .

Theorem 10. The competitive ratio of any online algorithm A for the problem is no less than√
13+1
4 .

Proof. Assume that smax,2 =
√

13−1
4 . The first item a1 = (

√
13−1
4 , 2) arrives. Let N be a large

enough integer and ε = 1
N .

Case 1. a1 is assigned to bin B1.
Then, the next N items a2 = · · · = aN+1 = (ε, 1) arrive, and no more items arrive.

Thus, we have CA =
√

13+7
4 , and C∗ = 2.

Case 2. a1 is assigned to bin B2.
Then, the second item a2 = (

√
13−1
4 , 2) arrives:

(i) a2 is assigned to bin B2.

Then, no more items arrive. Thus, we have CA =
√

13+1
2 , and C∗ = 2.

(ii) a2 is assigned to bin B1.
Then, the next N items a3 = · · · = aN+2 = (ε, 1) arrive, and no more items arrive.
Thus, we have CA =

√
13+7
4 and C∗ =

√
13+1
2 .

As a result, in all cases, we obtain that

CA

C∗ ≥

√
13+1
2
2

=

√
13+7
4√

13+1
2

=

√
13 + 1

4
.

Therefore, our theorem holds in any case.

Now, we present an online algorithm to solve the semi-online case when the largest
item has the lower hierarchy. The primary concept of this algorithm is that we reserve bin
B2 for the first largest item until it appears in the system.

Theorem 11. The competitive ratio of Algorithm 4 is at most 7
6 .

Computation 2024, 12, 68 13 of 31

Algorithm 4: A4.

1 Initially, let j = 1, L0
2 = 0, and n2 = 0.

2 When a new item aj = (sj, hj) arrives,
3 if hj = 1 then
4 Assign item aj to bin B1.

5 else
6 if n2 = 0 and sj ̸= smax,2 then
7 if Lj−1

2 + smax,2 + sj ≤ 4
3 then

8 Assign item aj to the bin B2.

9 else
10 Assign item aj to the bin B1.

11 else
12 if n2 = 0 and sj = smax,2 then
13 Assign item aj to bin B2.

14 else
15 if Lj−1

2 + sj ≤ 4
3 then

16 Assign item aj to bin B2.

17 else
18 Assign item aj to bin B1.

19 If there is another item, let j = j + 1, and go to Line 2. Otherwise, stop.

Proof. As the proof of Theorem 3, we consider only the following two cases.
Case 1. L1 > 1 and L2 < 1.
According to the analysis of Theorem 2, we let ak = (sk, 2) be the last item of hierarchy

2 assigned to B1, at = (st, 2) be the first largest item of hierarchy 2, and st = smax,2. Since
item at can be assigned only to B2 in Algorithm 4, we can obtain that k ̸= t.

Case 1.1 k < t.
According to Algorithm 4, we know that item ak is assigned to B1 at Line 10 and at is

assigned to B2 at Line 13, implying that

Lk−1
2 + smax,2 + sk >

4
3

and
2(Lk−1

2 + smax,2) ≥ Lk−1
2 + smax,2 + sk >

4
3

,

where the first inequality follows from (10). Hence, we have

Lk−1
2 + smax,2 >

2
3

.

As item at is assigned to B2 after item ak, then

L2 ≥ Lk−1
2 + st = Lk−1

2 + smax,2 >
2
3

. (11)

Case 1.2 k > t.
According to Algorithm 4, we know that item ak is assigned to B1 at Line 18 and at is

assigned to B2 at Line 13, implying that

Lk−1
2 + sk >

4
3

.

Computation 2024, 12, 68 14 of 31

As item at is assigned to B2 before item ak, then, together with (11), this implies that

Lk−1
2 ≥ st = smax,2 ≥ sk,

hence, we have

L2 ≥ Lk−1
2 ≥

Lk−1
2 + sk

2
>

2
3

. (12)

As a result, by (11) and (12), we have

L2 >
2
3

, (13)

hence, based on Lemma 1,

CA4

C∗ ≤ 1 + L1

max{L1 + L2, 2} = 1 +
1 + L1 − max{L1 + L2, 2}

max{L1 + L2, 2}

≤ 1 +
1 + L1 − (L1 + L2)

max{L1 + L2, 2} = 1 +
1 − L2

max{L1 + L2, 2} ≤ 1 +
1 − L2

2
≤ 7

6
,

where the second inequality follows from max{L1 + L2, 2} ≥ L1 + L2, the third inequality
follows from max{L1 + L2, 2} ≥ 2, and the last inequality follows from (13).

Case 2. L1 < 1 and L2 > 1.
Let ak = (sk, 2) be the last item assigned to B2:

(i) If item ak is assigned to B2 at Line 16 of Algorithm 4, then we have

L2 = Lk−1
2 + sk ≤

4
3

. (14)

(ii) If ak is the first largest item with a size sk = smax,2, it is assigned to B2 at Line 13 of
Algorithm 4. Let at = (st, 2) be the last item assigned to B2 before ak. Then, according
to Algorithm 4, we have

L2 = Lt−1
2 + st + sk = Lt−1

2 + st + smax,2 ≤ 4
3

. (15)

As a result, by (14) and (15), we have

L2 ≤ 4
3

,

hence, and based on Lemma 1,

CA4

C∗ ≤ 1 + L2

2
≤

1 + 4
3

2
=

7
6

.

Therefore, our theorem holds in any case.

3. The Hierarchical Extensible Bin-Packing Problem of Knowing the Total Item Size

In this section, we consider a series of models for which the total item size is known
in advance.

3.1. The Total Size of All the Items Is Known

In this subsection, when we know the total size T of all the items in advance, we give
a lower bound of 5

4 and propose an optimal online algorithm with a competitive ratio of 5
4 .

Computation 2024, 12, 68 15 of 31

Theorem 12. Any online algorithm A for the problem has a competitive ratio of at least 5
4 .

Proof. Assume that T = 2. The first item is a1 = (1
2 , 2):

(i) If a1 is assigned to B1, then the last two items a2 = (1, 1) and a3 = (1
2 , 2) arrive. Thus,

we have CA ≥ 5
2 and C∗ = 2.

(ii) If a1 is assigned to B2, then the second item a2 = (1, 2) arrives.

If item a2 is assigned to bin B1, then the last item a3 = (1
2 , 1) arrives. Thus, we have

CA = 5
2 and C∗ = 2.

If item a2 is assigned to bin B2, then the last item a3 = (1
2 , 1) arrives. Thus, we have

CA ≥ 5
2 and C∗ = 2.

As a result, in all cases, we obtain that

CA

C∗ ≥
5
2
2
=

5
4

.

Therefore, our theorem holds in any case.

The details of our online algorithm are described in Algorithm 5.

Algorithm 5: A5.

1 Initially, let j = 1, L0
1 = L0

2 = 0.
2 When a new item aj = (sj, hj) arrives,
3 if hj = 1 then
4 Assign item aj to bin B1.

5 else
6 if T − Lj−1

2 − sj >
5
8 T then

7 Assign item aj to bin B2.

8 else
9 if T − Lj−1

2 − sj ≥ Lj−1
2 then

10 Assign item aj to bin B2, and assign the remaining items to B1 (if there
are still items after aj).

11 else
12 Assign item aj to bin B1, and assign the remaining items to B1 (if there

are still items after aj).

13 If there is another item, let j = j + 1, and go to Line 2. Otherwise, stop.

Theorem 13. The competitive ratio of Algorithm 5 is at most 5
4 .

Proof. As the proof of Theorem 3, we consider the following two cases:
Case 1. L1 > 1 and L2 < 1.
In this case, we have CA5 = 1 + L1. If there is no item of hierarchy hj = 2 assigned to

B1, then L1 = T1 > 1 and L2 = T2 < 1, implying that Algorithm 5 reaches optimality. Else,
let ak = (sk, 2) be the last item of hierarchy hj = 2 assigned to B1:

(i) If item ak is assigned to B1 at Line 10 by Algorithm 5, let ak2 = (sk2 , 2) be the last item
assigned to B2. According to Algorithm 5, we know that

L1 = T − Lk2−1
2 − sk2 ≤ 5

8
T.

Computation 2024, 12, 68 16 of 31

Based on Lemma 1, we have

CA5

C∗ ≤ 1 + L1

1 + 1
2 T

≤
1 + 5

8 T

1 + 1
2 T

= 1 +
1
8 T

1 + 1
2 T

≤ 1 +
1
8 T
1
2 T

=
5
4

.

(ii) If item ak is assigned to B1 at Line 12 by Algorithm 5, let ak1 = (sk1 , 2) be the first item
assigned to B1 at Line 12. According to Algorithm 5, we know that

L2 = Lk1−1
2 > T − Lk1−1

2 − sk1 = L1 − sk1

and
T − L1 > L1 − sk1 ,

implying that

L1 <
T + sk1

2
≤ T + 1

2
, (16)

where the last inequality follows from (1).

Based on Lemma 1, if T ≤ 2, by (16), we have

CA5

C∗ ≤ 1 + L1

2
<

1 + T+1
2

2
≤

1 + 2+1
2

2
=

5
4

,

if T > 2, by (16), we have

CA5

C∗ ≤ 1 + L1

1 + T
2

<
1 + T+1

2

1 + T
2

=
3 + T
2 + T

= 1 +
1

2 + T
≤ 1 +

1
2 + 2

=
5
4

.

Case 2. L1 < 1 and L2 > 1.
In this case, we have CA5 = 1 + L2. Let L1,2 be the total size of the items of hierarchy

hj = 2 assigned to B1, and let ak = (sk, 2) be the last item assigned to B2:

(i) If item ak is assigned to B2 at Line 7 of Algorithm 5, then we have L1 = T − Lk−1
2 − sk >

5
8 T > T

2 , which contradicts max{L1, L2} = L2.
(ii) If item ak is assigned to B2 at Line 10 of Algorithm 5, then we have

L1 = T − Lk−1
2 − sk ≥ Lk−1

2 = L2 − sk

and
T − L2 ≥ L2 − sk,

implying that

L2 <
T + sk

2
≤ T + 1

2
, (17)

where the last inequality follows from (1).

Based on Lemma 1, if T ≤ 2, by (17), we have

CA5

C∗ ≤ 1 + L2

2
<

1 + T+1
2

2
≤

1 + 2+1
2

2
=

5
4

,

and if T > 2, by (17), we have

CA5

C∗ ≤ 1 + L2

1 + T
2

<
1 + T+1

2

1 + T
2

=
3 + T
2 + T

= 1 +
1

2 + T
≤ 1 +

1
2 + 2

=
5
4

.

Therefore, our theorem holds in any case.

Computation 2024, 12, 68 17 of 31

3.2. The Total Size of the Low-Hierarchy Items Is Known

In this subsection, the total size T1 of the low-hierarchy items and the total size T2

of the high-hierarchy items are known in advance. We show a lower bound of
√

13+1
4

and propose an algorithm with a competitive ratio of 7
6 .

Theorem 14. Any online algorithm A for the problem has a competitive ratio of at least
√

13+1
4 .

Proof. Let T1 =
√

13−1
4 . The first two items are a1 = (

√
13−1
4 , 1) and a2 = (

√
13−1
4 , 2). a1 can

only be assigned to B1:

(i) If a2 is assigned to B1, then no more items arrive. Hence, we have CA =
√

13+1
2 and

C∗ = 2, implying that

CA

C∗ =

√
13+1
2
2

=

√
13 + 1

4
.

(ii) If a2 is assigned to B2, the last item a3 = (1, 2) arrives. Regardless of how item a3 is

allocated, we have CA =
√

13+7
4 and C∗ =

√
13+1
2 , implying that

CA

C∗ =

√
13+7
4√

13+1
2

=

√
13 + 1

4
.

Therefore, in any case, we have CA

C∗ ≥
√

13+1
4 , implying that the theorem holds.

The details of our online algorithm are described in Algorithm 6.

Algorithm 6: A6.

1 Initially, let L0
1,2 = 0.

2 When a new item aj = (sj, hj) arrives,
3 if hj = 1 then
4 Assign item aj to B1.

5 else
6 if T1 ≥ 2

3 then
7 Assign item aj to B2.

8 else
9 if Lj−1

1,2 + T1 + sj ≤ 2
3 then

10 Assign aj to B1.

11 else
12 if 2

3 < Lj−1
1,2 + T1 + sj ≤ 4

3 then
13 Assign aj to B1, and assign the remaining hierarchy hj = 2 items to

B2 (if there are items after aj).

14 else
15 Assign aj to B2, and assign the remaining hierarchy hj = 2 items to

B1 (if there are items after aj).

16 If there is another item, let j == j + 1, and go to step 2. Otherwise, stop.

Computation 2024, 12, 68 18 of 31

Theorem 15. The competitive ratio of Algorithm 6 is at most 7
6 .

Proof. As the proof of Theorem 3, we consider only the following two cases.
Case 1. L1 > 1 and L2 < 1.
In this case, we have CA6 = 1 + L1. If there is no item of hierarchy hj = 2 assigned to

B1, then L1 = T1 > 1 and L2 = T2 < 1, implying that Algorithm 6 reaches optimality. Else,
let ak = (sk, 2) be the last item of hierarchy hj = 2 assigned to B1. According to Algorithm 6,
we know that there are three possibilities for assigning item ak to B1:

(i) If ak is assigned to B1 at Line 10 of Algorithm 6, then we have L1 = Lk−1
1,2 + T1 + sk ≤ 2

3 ,
which contradicts L1 > 1.

(ii) If ak is assigned to B1 at Line 13 of Algorithm 6, then we have

L1 = Lk−1
1,2 + T1 + sk ≤

4
3

.

Based on Lemma 1, we have

CA6

C∗ ≤ 1 + L1

2
≤

4
3 + 1

2
=

7
6

.

(iii) If ak is assigned to B1 at Line 15 of Algorithm 6, let at = (st, 2) be the item assigned to
B2 at Line 15. According to Algorithm 6, we have T1 < 2

3 and

Lt−1
1,2 + T1 + st >

4
3

. (18)

If Lt−1
1,2 = 0, then

Lt−1
1,2 + T1 ≤ 2

3
.

If Lt−1
1,2 > 0, let al = (sl , 2) be the last item assigned to B1 when at arrives; from the

choice of Algorithm 6, we know that al is assigned to B1 at Line 10. Thus, we have

Lt−1
1,2 + T1 = Ll−1

1,2 + T1 + sl ≤
2
3

.

Together with (18), we have

L2 ≥ st >
2
3

.

Therefore, we have

CA6

C∗ ≤ 1 + L1

max{L1 + L2, 2} = 1 +
1 + L1 − max{L1 + L2, 2}

max{L1 + L2, 2}

≤ 1 +
1 − L2

max{L1 + L2, 2} ≤ 1 +
1 − L2

2
≤ 1 +

1 − 2
3

2
=

7
6

.

Case 2. L1 < 1 and L2 > 1.
In this case, we have CA6 = 1 + L2. Let ak = (sk, 2) be the last item assigned to B2.

According to Algorithm 6, we know that there are three possibilities for assigning item ak
to B2:

(i) If ak is assigned to B2 at Line 7 of Algorithm 6, we have

L1 = T1 ≥ 2
3

. (19)

Computation 2024, 12, 68 19 of 31

(ii) If ak is assigned to B2 at Line 13 of Algorithm 6, let at = (st, 2) be the item assigned to
B1 at Line 13. According to Algorithm 6, we have

L1 = Lt−1
1,2 + T1 + st >

2
3

. (20)

(iii) If ak is assigned to B2 at Line 15, then Algorithm 6 does not run Lines 7 and 13. Since
only item ak is assigned to B2 at Line 15, we have L2 = sk ≤ 1, which contradicts the
assumption that L2 > 1.

As a result, by (19) and (20), we have

CA6

C∗ ≤ 1 + L2

max{L1 + L2, 2} = 1 +
1 + L2 − max{L1 + L2, 2}

max{L1 + L2, 2}

≤ 1 +
1 − L1

max{L1 + L2, 2} ≤ 1 +
1 − L1

2
≤ 1 +

1 − 2
3

2
=

7
6

.

Therefore, our theorem holds in any case.

3.3. The Total Size of High-Hierarchy Items Is Known

In this subsection, the total size T2 of the high-hierarchy items is known in advance.
We show a lower bound of

√
13+1
4 and propose an algorithm with a competitive ratio of 7

6 .

Theorem 16. Any online algorithm A for the problem has a competitive ratio of at least
√

13+1
4 .

Proof. Let T2 =
√

13−1
2 . The first item is a1 = (

√
13−1
4 , 2):

(i) If a1 is assigned to B1, the last two items a2 = (
√

13−1
4 , 2) and a3 = (1, 1) arrive.

Therefore, C∗ =
√

13+1
2 and CA ≥

√
13+7
4 , implying that

CA

C∗ ≥

√
13+7
4√

13+1
2

=

√
13 + 1

4
.

(ii) If a1 is assigned to B2, the next item a2 = (
√

13−1
4 , 2) arrives.

If a2 is assigned to B2, then no more items arrive. Therefore, C∗ = 2 and CA =
√

13+1
2 ,

implying that

CA

C∗ =

√
13+1
2
2

=

√
13 + 1

4
.

If a2 is assigned to B1, the last item a3 = (1, 1) arrives. Therefore, C∗ =
√

13+1
2 and

CA =
√

13+7
4 , implying that

CA

C∗ =

√
13+7
4√

13+1
2

=

√
13 + 1

4
.

Therefore, in any case, we have CA

C∗ ≥
√

13+1
4 , implying that the theorem holds.

The details of our online algorithm are described in Algorithm 7.

Computation 2024, 12, 68 20 of 31

Algorithm 7: A7.

1 Initially, let L0
1,2 = 0.

2 When a new item aj = (sj, hj) arrives,
3 if hj = 1 then
4 Assign item aj to B1.

5 else
6 if T2 ≤ 4

3 then
7 Assign aj to B2.

8 else
9 if T2 − Lj−1

1,2 − sj ≥ 2
3 then

10 Assign aj to B1.

11 else
12 if T2 − Lj−1

1,2 ≤ 4
3 then

13 Assign aj to B2, and assign the remaining items to B2.

14 else
15 Assign aj to B2, and assign the remaining items to B1.

16 If there is another item, let j == j + 1, and go to step 2. Otherwise, stop.

Theorem 17. The competitive ratio of Algorithm 7 is at most
√

13+1
4 .

Proof. As the proof of Theorem 3, we consider only the following two cases.
Case 1. L1 > 1 and L2 < 1.
In this case, we have CA7 = 1 + L1. If there is no item of hierarchy hj = 2 assigned to

B1, then L1 = T1 > 1 and L2 = T2 < 1, implying that Algorithm 7 reaches optimality. Else,
let ak = (sk, 2) be the last item of hierarchy hj = 2 assigned to B1. According to Algorithm 7,
we know that there are two possibilities for assigning item ak to B1:

(i) If ak is assigned to B1 at Line 10 of Algorithm 7, then we have

L2 = T2 − Lt−1
1,2 − st ≥

2
3

. (21)

(ii) If ak is assigned to B1 at Line 15, let at = (st, 2) be the item assigned to B2 at Line 15.
According to Algorithm 7, we have

T2 − Lt−1
1,2 − st <

2
3

,

and
T2 − Lt−1

1,2 >
4
3

,

implying that

L2 ≥ st >
2
3

. (22)

As a result, based on Lemma 1, by (21) and (22), we have

CA7

C∗ ≤ 1 + L1

max{L1 + L2, 2} = 1 +
1 + L1 − max{L1 + L2, 2}

max{L1 + L2, 2}

≤ 1 +
1 − L2

max{L1 + L2, 2} ≤ 1 +
1 − L2

2
≤ 1 +

1 − 2
3

2
=

7
6

.

Computation 2024, 12, 68 21 of 31

Case 2. L1 < 1 and L2 > 1.
In this case, we have CA7 = 1 + L2. Let ak = (sk, 2) be the last item assigned to B2.

According to Algorithm 7, we know that there are three possibilities for assigning item ak
to B2:

(i) If ak is assigned to B2 at Line 7 of Algorithm 7, we have

L2 = T2 ≤ 4
3

. (23)

(ii) If ak is assigned to B2 at Line 13, let at = (st, 2) be the first item assigned to B2 at Line
13. According to Algorithm 7, we have

L2 = T2 − Lt−1
1,2 ≤ 4

3
. (24)

(iii) If ak is assigned to B2 at Line 15, then Algorithm 7 does not run Lines 7 and 13. Since
only item ak is assigned to B2 at Line 15, we have L2 = sk ≤ 1, which contradicts the
assumption that L2 > 1.

As a result, based on Lemma 1, by (23) and (24), we have

CA7

C∗ ≤ 1 + L2

2
≤

1 + 4
3

2
=

7
6

.

Therefore, our theorem holds in any case.

3.4. The Total Size of the Low-Hierarchy and High-Hierarchy Items Are Known

In this subsection, the total size T1 of the low-hierarchy items and the total size T2 of
the high-hierarchy items are known in advance. We show a lower bound of 7

6 , and we
propose an optimal algorithm with a competitive ratio of 7

6 .

Theorem 18. Any online algorithm A for the problem has a competitive ratio at least 7
6 .

Proof. Let T1 = 1
3n and T2 = 2. The first three items are a1 = (1

3n , 1), a2 = (1
3 , 2), and

a3 = (1
3 , 2). The item a1 can only be assigned to B1:

(i) If a2 and a3 are assigned to the same bin, then the last two items a4 = (2
3 , 2) and

a5 = (2
3 , 2) arrive, implying that CA ≥ 7

3 and C∗ = 6n+1
3n .

(ii) If a2 and a3 are assigned to the different bins, then the last two items a4 = (1, 2) and
a5 = (1

3 , 2) arrive, implying that CA ≥ 7
3 and C∗ = 6n+1

3n .

As a result,

lim
n→∞

CA

C∗ ≥ lim
n→∞

7n
6n + 1

=
7
6

.

Therefore, in any case, we have CA

C∗ ≥ 7
6 , implying that the theorem holds.

The details of our online algorithm are described in Algorithm 8.

Computation 2024, 12, 68 22 of 31

Algorithm 8: A8.

1 Initially, let L0
1,2 = 0.

2 When a new item aj = (sj, hj) arrives,
3 if hj = 1 then
4 Assign item aj to B1.

5 else
6 if T1 + Lj−1

1,2 + sj ≤ 4
3 then

7 Assign item aj to B1.

8 else
9 if T1 + Lj−1

1,2 ≥ max {sj, T2 − (Lj−1
1,2 + sj)} then

10 Assign item aj to B2, and assign the remaining items to B2 (if there are
items after aj).

11 else
12 if sj ≥ max {T1 + Lj−1

1,2 , T2 − (Lj−1
1,2 + sj)} then

13 Assign item aj to B2, and assign the remaining items to B1.

14 else
15 Assign item aj to B1, and assign the remaining items to B2.

16 If there is another item, let j == j + 1, and go to step 2. Otherwise, stop.

Theorem 19. The competitive ratio of Algorithm 8 is at most 7
6 .

Proof. As the proof of Theorem 3, we consider only the following two cases.

Case 1. L1 > 1 and L2 < 1.
In this case, we have CA8 = 1 + L1. If there is no item of hierarchy hj = 2 assigned to

B1, then L1 = T1 > 1 and L2 = T2 < 1, implying that Algorithm 8 reaches optimality. Else,
let ak = (sk, 2) be the last item of hierarchy hj = 2 assigned to B1. According to Algorithm 8,
we know that there are three possibilities for assigning item ak to B1:

(i) If ak is assigned to B1 at Line 7 of Algorithm 8, then we have

L1 = T1 + Lk−1
1,2 + sk ≤

4
3

.

Based on Lemma 1, we have

CA8

C∗ ≤ L1 + 1
2

≤
4
3 + 1

2
=

7
6

.

(ii) If ak is assigned to B1 at Line 13, let at = (st, 2) be the item assigned to B2 at Line 13.
According to Algorithm 8, we have

L2 ≥ st ≥ max {T1 + Lt−1
1,2 , T2 − (Lt−1

1,2 + st)},

implying that

L2 ≥ T1 + T2

3
. (25)

(iii) If ak is assigned to B1 at Line 15 of Algorithm 8, then, we have

L2 = T2 − (Ll−1
1,2 + sl) ≥ max {sl , T1 + Ll−1

1,2 },

Computation 2024, 12, 68 23 of 31

implying that

L2 ≥ T1 + T2

3
. (26)

As a result, based on Lemma 1, when T1 + T2 ≤ 2, by (25) and (26), we have

L1 = T1 + T2 − L2 ≤ 2(T1 + T2)

3
,

and
CA8

C∗ ≤ 1 + L1

2
≤

1 + 2(T1+T2)
3

2
≤

1 + 4
3

2
=

7
6

.

when T1 + T2 > 2, by (25) and (26), we have

CA8

C∗ ≤ 1 + L1

max{L1 + L2, 2} = 1 +
1 + L1 − max{L1 + L2, 2}

max{L1 + L2, 2}

≤ 1 +
1 − L2

max{L1 + L2, 2} ≤ 1 +
1 − T1+T2

3
2

≤ 1 +
1 − 2

3
2

=
7
6

.

Case 2. L1 < 1 and L2 > 1.
In this case, we have CA8 = 1 + L2. Let ak = (sk, 2) be the last item assigned to B2.

According to Algorithm 8, we know that there are three possibilities for assigning item ak
to B2:

(i) If ak is assigned to B2 at Line 10, let at = (st, 2) be the first item assigned to B2 at
Line 10. According to Algorithm 8, we have

L1 = T1 + Lt−1
1,2 ≥ max {st, T2 − (Lt−1

1,2 + st)},

implying that

L1 ≥ T1 + T2

3
. (27)

(ii) If ak is assigned to B2 at Line 13, then Algorithm 8 does not run Lines 10 and 15. Since
only item ak is assigned to B2 at Line 13, we have L2 = sk ≤ 1, which contradicts the
assumption that L2 > 1.

(iii) If ak is assigned to B2 at Line 15, let at = (st, 2) be the item assigned to B1 at Line 15.
According to Algorithm 8, we have L1 = T1 + Lt−1

1,2 + st >
4
3 , which contradicts the

assumption that L1 < 1.

As a result, based on Lemma 1, when T1 + T2 ≤ 2, by (27), we have

L2 = T1 + T2 − L1 ≤ 2(T1 + T2)

3

and
CA8

C∗ ≤ 1 + L2

2
≤

1 + 2(T1+T2)
3

2
≤

1 + 4
3

2
=

7
6

.

when T1 + T2 > 2, by (27), we have

CA8

C∗ ≤ 1 + L2

max{L1 + L2, 2} = 1 +
1 + L2 − max{L1 + L2, 2}

max{L1 + L2, 2}

≤ 1 +
1 − L1

max{L1 + L2, 2} ≤ 1 +
1 − L1

2
≤ 1 +

1 − T1+T2
3

2
≤ 1 +

1 − 2
3

2
=

7
6

.

Therefore, our theorem holds in any case.

Computation 2024, 12, 68 24 of 31

4. The Hierarchical Early-Work-Maximization Problem of Knowing the Largest Job

In this section, we are given two hierarchical machines M1 and M2 and a series of
jobs arriving online that are to be immediately scheduled irrevocably at the time of their
arrival. An new job appears only after the current job is scheduled to a machine. Let
J = {J1, J2, . . . , Jn} be the set of all jobs arranged in the order of arrival time. Denote
the j-th job as Jj = (pj, hj), where pj is the processing time (also called the size) of job Jj
and gj ∈ {1, 2} is the hierarchy of job Jj. If hj = 1, we call Jj a low-hierarchy job; otherwise,
we call Jj a high-hierarchy job. M1 can process all jobs, and M2 can only process the
high-hierarchy jobs.

As in [26], we assume that each job has a common due date d = 1, and

pj ≤ 1, for j = 1, 2, . . . , n,

the early work of job Jj is denoted by Xj ∈ [0, pj]. If job Jj is completed before the due date
d = 1, the job is called totally early and Xj = pj. If the job Jj starts at the time of sj < 1,
but finishes after the due date d = 1, the job is called partially early and Xj = 1 − sj. If the
job Jj starts at the time of sj ≥ 1, the job is called totally late and Xj = 0.

A feasible schedule is actually a partition (S1, S2) of the job set J , such that S1 ∪ S2 = J
and S1 ∩ S2 = ∅. Let Li = ∑Jj∈Si

pj be the load of Mi and i ∈ {1, 2}. The objective is to find
a schedule such that the total early work

X =
n

∑
j=1

Xj =
2

∑
i=1

min {Li, 1}

is maximized. Let T be the total size of the jobs in J , and let Lj
i be the load of Mi after job

Jj is assigned to a machine. Clearly, T = L1 + L2.
Based on the above definitions, we have the following lemma.

Lemma 2. The optimal objective value C∗ is at most min {2, T}.

As mentioned in Xiao et al. [7], it is not useful if we only know the largest job size
(processing time) β, which may equal one. Since, if we assume that β = 1, i.e., the largest
size of all the jobs is equal to 1, then for the semi-online case, Xiao et al. [7] obtained the best
possible competitive ratio of

√
2, which is exactly the best possible competitive ratio for

the pure online case. This means that we cannot obtain a better online algorithm with the
knowledge of pmax compared with the pure online case. Therefore, only the information on
the largest size of the input jobs is unuseful. However, we can design online algorithms
depending on the value of β as in [31,41].

In this section, assume that the value of β is known. We present some lower bounds
and online algorithms, depending on whether the hierarchy of the largest job is given. Let
pmax, pmax,1, and pmax,2 be the maximum size of all jobs, the maximum size of low-hierarchy
jobs, and the maximum size of high-hierarchy jobs, respectively. Let UB be the competitive
ratio of the proposed algorithms, and let LB be the lower bound found in this section. For
the sake of convenience, we only represent the portion of the optimal online algorithm that
has not been obtained in Figure 1, where the largest gap for any β is no more than 0.13.

Computation 2024, 12, 68 25 of 31

β

ρ

0

1

1
2

√
5−1
2 1

pmax = β, pmax,1 = β or pmax,2 = β, UB

pmax,1 = β, LB

pmax,1 = β, UB

pmax = β or pmax,2 = β, LB

Figure 1. The lower bounds and upper bounds.

4.1. The Hierarchy of the Largest Job Is Unknown

In this subsection, we consider that only the largest job size pmax = β ≤ 1 is known,
i.e., pj ≤ β for 1 ≤ j ≤ n, and we denote this problem as P2|GoS, online, pmax = β|max(X).

We give two lower bounds 1 + β
3 and

√
β2−2β+9−1+β

2 for β <
√

5−1
2 and

√
5−1
2 ≤ β ≤ 1,

respectively. We also propose an online algorithm with a competitive ratio of
√

β2−2β+9−1+β
2

for 0 < β ≤ 1.

Theorem 20. Any online algorithm A for P2|GoS, online, pmax = β|max(X) has a competitive
ratio of at least 1 + β

3 , β <
√

5−1
2√

β2−2β+9−1+β
2 , β ≥

√
5−1
2

.

Proof. We first consider β <
√

5−1
2 . In this case, we have

3 − β

3 + β
≥ β.

Let N be a large-enough integer and ε = 1
N . The first job J1 = (β, 2) arrives. If J1 is

assigned to M1, the last N jobs J2 = · · · = JN+1 = (ε, 1) arrive. It follows that C∗ = 1 + β

and CA = 1. Thus, we have C∗

CA = 1 + β > 1 + β
3 . Otherwise, J1 is assigned to M2. Let the

next t − 1 items be J2 = · · · = Jt = (ε, 2), where t is the minimal integer satisfying one of
the following two alternative conditions.

Case 1. Lt
1 ∈ [2β

3+β , 2β
3+β + ε] and β ≤ Lt

2 < 3−β
3+β .

The last N jobs Jt+1 = · · · = Jt+N = (ε, 1) arrive, and these jobs must be assigned to
M1. It follows that C∗ ≥ 1 + 2β

3+β + Lt
2 and CA = 1 + Lt

2. Thus, we have

C∗

CA ≥
1 + Lt

2 +
2β

3+β

1 + Lt
2

= 1 +
2β

3+β

1 + Lt
2
≥ 1 +

2β
3+β

1 + 3−β
3+β

= 1 +
β

3
.

Case 2. Lt
2 ∈ [3−β

3+β , 3−β
3+β + ε] and Lt

1 < 2β
3+β .

Computation 2024, 12, 68 26 of 31

The next job Jt+1 = (β, 2) arrives. If Jt+1 is assigned to M2, then no more jobs arrive.
It follows that C∗ ≥ β + 3−β

3+β + Lt
1 and CA = 1 + Lt

1. Thus, we have

C∗

CA ≥
β + 3−β

3+β + Lt
1

1 + Lt
1

= 1 +
β + 3−β

3+β − 1

1 + Lt
1

≥ 1 +
β + 3−β

3+β − 1

1 + 2β
3+β

= 1 +
β

3
.

If Jt+1 is assigned to M1, then the last N jobs Jt+2 = · · · = Jt+N+1 = (ε, 1) arrive, and
these jobs must be assigned to M1. It follows that C∗ = 2 and CA ≤ 1 + 3−β

3+β + ε. Thus,
we have

lim
ε→0

C∗

CA ≥ lim
ε→0

2

1 + 3−β
3+β + ε

= 1 +
β

3
.

Therefore, we have C∗

CA ≥ 1 + β
3 for β <

√
5−1
2 .

Next, we consider the case β ≥
√

5−1
2 . Let x =

√
β2−2β+9−1−β

2 . Clearly, x ≤ β

when β ≥
√

5−1
2 . The first job J1 = (x, 2) arrives. If J1 is assigned to M1, the last N jobs

J2 = · · · = JN+1 = (ε, 1) arrive. It follows that C∗ = 1 + x and CA = 1. Thus, we have
C∗

CA = 1 + x =

√
β2−2β+9−1+β

2 .
Otherwise, J1 is assigned to M2, and the next job J2 = (β, 2) arrives. If J2 is assigned

M2, then no more jobs arrive. It follows that C∗ = β + x and CA = 1. Thus, we have C∗

CA =

β + x =

√
β2−2β+9−1+β

2 . If J2 is assigned M1, then the last N jobs J3 = · · · = JN+2 = (ε, 1)
arrive and these jobs must be assigned to M1. It follows that C∗ = 2 and CA = 1 + x. Thus,

we have C∗

CA = 2
1+x =

√
β2−2β+9−1+β

2 .
The details of our online algorithm are described in Algorithm 9.

Theorem 21. The competitive ratio of Algorithm 9 is at most
√

β2−2β+9−1+β
2 , for any β ∈ (0, 1].

Algorithm 9: A9.

1 Initially, let L0
2 = 0 and j = 0.

2 When a new job Jj arrives,
3 if gj = 1 then
4 Assign job Jj to machine M1.

5 else

6 if Lj−1
2 <

√
β2−2β+9−β−1

2 then
7 Assign job Jj to machine M2

8 else
9 Assign Jj to M1.

10 If there is another item, let j == j + 1, and go to step 2. Otherwise, stop.

Proof. If L1 ≤ 1 and L2 ≤ 1, by Lemma 2, we have CA9 = L1 + L2 ≥ C∗. If L1 > 1 and
L2 > 1, by Lemma 2, we have CA9 = 2 ≥ C∗. This implies that we need to consider only
the following two cases.

Case 1. L1 > 1 and L2 < 1.
In this case, CA9 = 1 + L2. If there is no high-hierarchy job assigned to M1, then

Algorithm 9 reaches optimality. Else, let Jl be the last high-hierarchy job assigned to M1.

According to Algorithm 9, we have L2 ≥ Ll−1
2 ≥

√
β2−2β+9−β−1

2 . Thus, based on Lemma 2,
we have

Computation 2024, 12, 68 27 of 31

C∗

CA9 ≤ min {2, L1 + L2}
1 + L2

≤ 2
1 + L2

≤ 2√
β2−2β+9+1−β

2

=

√
β2 − 2β + 9 + β − 1

2
.

Case 2. L1 < 1 and L2 > 1
In this case, CA9 = 1 + L1. Let Jt be the last high-hierarchy job assigned to M2.

According to Algorithm 9 and pt ≤ β, we have

L2 = Lt−1
2 + pt ≤

√
β2 − 2β + 9 − β − 1

2
+ pt ≤

√
β2 − 2β + 9 − β − 1

2
+ β

=

√
β2 − 2β + 9 + β − 1

2
.

Based on Lemma 2, we have

C∗

CA9 ≤ min {2, L1 + L2}
1 + L1

≤ 1 +
L2 − 1
1 + L1

≤ 1 + L2 − 1 ≤
√

β2 − 2β + 9 + β − 1
2

.

Therefore, by Theorem 21, we conclude that Algorithm 9 is optimal when β ≥
√

5−1
2 .

Remark. If β = 1, the above competitive ratio is
√

2, which coincides with the result in [7].

4.2. The Hierarchy of the Largest Job Is Known

In this subsection, assume that the hierarchy of the largest job is known. When the
largest job has a low-hierarchy, i.e.,

pj ≤ pmax,1 = β ≤ 1, for 1 ≤ j ≤ n,

we denote this problem as P2|GoS, online, pmax,1 = β|max(X). We give two lower bounds
4

4−β and 4
3+β for β ≤ 1

2 and 1
2 < β ≤ 1, respectively.

Theorem 22. Any online algorithm A for P2|GoS, online, pmax,1 = β|max(X) has a competitive
ratio of at least {

4
4−β , if β ≤ 1

2 ,
4

3+β , if β > 1
2 .

Proof. We first consider β ≤ 1
2 . Let N be a large-enough integer and ε = 1

N . The first
t items are J1 = (β, 1) and J2 = · · · = Jt = (ε, 2), where t is the minimal integer satisfying
one of the following two alternative conditions.

Case 1. Lt
1 ∈ [1 − β

2 , 1 − β
2 + ε] and Lt

2 < 1 − β
2 .

The last k jobs Jt+1 = · · · = Jt+k with low-hierarchy arrive, where ∑t+k
j=t+1 pj = 1 − β.

Since the total size of the low-hierarchy job is one, C∗ ≥ min {2, 2 − 3β
2 + Lt

2} and CA =

1 + Lt
2. When min {2, 2 − 3β

2 + Lt
2} = 2, by Lemma 2, we have

C∗

CA ≥ 2
1 + Lt

2
≥ 2

1 + 1 − β
2

=
4

4 − β
.

When min {2, 2 − 3β
2 + Lt

2} = 2 − 3β
2 + Lt

2, by Lemma 2 and β ≤ 1
2 , we have

C∗

CA ≥
2 − 3β

2 + Lt
2

1 + Lt
2

≥ 1 +
1 − 3β

2

1 + 1 − β
2

=
6 − 4β

4 − β
≥ 4

4 − β
.

Computation 2024, 12, 68 28 of 31

Case 2. Lt
2 ∈ [1 − β

2 , 1 − β
2 + ε] and Lt

1 < 1 − β
2 .

The last l jobs Jt+1 = (β, 2) and Jt+2 = · · · = Jt+l with low-hierarchy jobs arrive,
where ∑t+l

j=t+2 = 1 − β
2 − Lt

1. It follows that C∗ ≥ 2 and CA ≤ 2 − β
2 + ε. Therefore, we have

lim
ε→0

C∗

CA ≥ lim
ε→0

2

2 − β
2 + ε

=
4

4 − β
.

We next consider β > 1
2 . Similarly, let N be a sufficiently large integer and ε = 1

N .
The first t items are J1 = (β, 1) and J2 = · · · = Jt = (ε, 2), where t is the minimal integer
satisfying one of the following two alternatively conditions:

(i) Lt
1 ∈ [β + 1−β

2 , β + 1−β
2 + ε] and Lt

2 < β + 1−β
2 ;

(ii) Lt
2 ∈ [β + 1−β

2 , β + 1−β
2 + ε] and Lt

1 < β + 1−β
2 .

If condition (i) occurs, then the last N job Jt+1 = · · · = Jt+N = (ε, 1) arrives. It follows
that C∗ ≥ 1 + 1−β

2 + Lt
2 and CA = 1 + Lt

2. Thus, we have

C∗

CA ≥
1 + 1−β

2 + Lt
2

1 + Lt
2

= 1 +
1−β

2
1 + Lt

2
≥ 1 +

1−β
2

1 + β + 1−β
2

=
4

3 + β
.

If condition (ii) occurs, then the last r jobs Jt+1 = (1 − β, 2) and Jt+2 = · · · = Jt+r with
low-hierarchy arrive, ∑t+r

j=t+2 pj = β + 1−β
2 − Lt

1 and pj ≤ β for t + 2 ≤ j ≤ t + r. It follows

that C∗ = 2 and CA ≤ 1 + β + 1−β
2 + ε. Thus, we have

lim
ε→0

C∗

CA ≥ lim
ε→0

2

1 + β + 1−β
2 + ε

=
4

3 + β
.

When the largest job has a high-hierarchy, i.e.,

pj ≤ pmax,2 = β ≤ 1, for 1 ≤ j ≤ n,

we denote this problem as P2|GoS, online, pmax,2 = β|max(X). We give two lower bounds
1 + β

3 and 2
1+β .

Theorem 23. When β ≥
√

5−1
2 , any online algorithm A for P2|GoS, online, pmax,2 = β|max(X)

has a competitive ratio of at least {
1 + β

3 , if β <
√

5−1
2 ,

2
1+β , if β ≥

√
5−1
2 .

Proof. As in the proof of Theorem 21, we can obtain the desired result when β <
√

5−1
2 .

Otherwise, let N be a large-enough integer and ε = 1
N . The first job J1 = (β, 2) arrives.

Case 1. J1 is assigned to M1.
The last N jobs J2 = · · · = JN+1 = (ε, 1) arrive, and these jobs must be assigned to M1.

It follows that C∗ = 1 + β and CA = 1. Thus, we have C∗

CA = 1 + β ≥ 2
1+β .

Case 2. J1 is assigned to M2.
The next job J2 = (2

1+β − β, 2) arrives, where 2
1+β − β ≤ β following β ≥

√
5−1
2 .

If J2 is assigned to M2, then no more jobs arrive. It follows that C∗ = β + 2
1+β − β and

CA = 1. Thus, we have C∗

CA = 2
1+β . If J2 is assigned to M1, then the last N jobs J3 = · · · =

JN+2 = (ε, 1) arrive. It follows that C∗ = 2 and CA = 1 + β. Thus, we have C∗

CA ≥ 2
1+β for

any case.

Computation 2024, 12, 68 29 of 31

Next, we present a simple online Algorithm 10 for the case in which the hierarchy of
the largest job is known.

Algorithm 10: A10.

1 if The largest job is a low-hierarchy job then
2 Assign all high-hierarchy jobs to machine M2.

3 else
4 Assign the first high-hierarchy job to M2 and the remaining jobs to M1.

Theorem 24. The competitive ratio of Algorithm 10 is at most 2
1+β , for any β ∈ (0, 1].

Proof. We first consider that the largest job is a low-hierarchy job. According to Algorithm 10,
if there are high-hierarchy jobs, then all high-hierarchy jobs are assigned to M2. As the
proof of Theorem 21, we consider only the cases of L1 < 1 and L2 > 1. Since there is at
least one low-hierarchy job (β, 2) that must be assigned to M1, we have L1 ≥ β. Based on
Lemma 2, we have

C∗

CA10 ≤ min {2, L1 + L2}
L1 + 1

≤ 2
L1 + 1

≤ 2
β + 1

.

Similarly, when the largest job has a high-hierarchy, we have L2 = β, and it is
easy to obtain this result. By Theorem 24, when β ≥

√
5−1
2 , Algorithm 10 is optimal

for P2|GoS, online, pmax,2 = β|max(X).

5. Conclusions

In this paper, we studied two types of online problems with hierarchies. In some
situations where the optimal online algorithm cannot be obtained, it is interesting to design
optimal online algorithms. In the future, it will also be necessary to consider general models
with any number of bins or machines.

Author Contributions: Conceptualization, Y.Y., M.X. and W.L.; methodology, Y.Y., M.X. and W.L.;
software, Y.Y. and M.X.; validation, W.L.; formal analysis, Y.Y., M.X. and W.L.; investigation, M.X. and
W.L.; resources, W.L.; data curation, M.X.; writing—original draft preparation, Y.Y. and M.X.; writing—
review and editing, M.X. and W.L.; visualization, Y.Y.; supervision, M.X.; project administration, W.L.;
funding acquisition, Y.Y. and W.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 12071417) and the Postgraduate Research and Innovation Foundation of Yunnan University (KC-
22223092).

Data Availability Statement: No new data were created nor analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Coffman, E.G.; Csirik, J.; Galambos, G.; Martello, S.; Vigo, D. Bin packing approximation algorithms: Survey and classification. In

Handbook of Combinatorial Optimization; Springer: Berlin/Heidelberg, Germany, 2013; pp. 455–531.
2. Hoberg, R.; Rothvoss, T. A logarithmic additive integrality gap for bin packing. In Proceedings of the 28th Annual ACM-SIAM

Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, Barcelona, Spain, 16–19 January 2017;
pp. 2616–2625.

3. Speranza, M.G.; Tuza, Z. On-line approximation algorithms for scheduling tasks on identical machines with extendable working
time. Ann. Oper. Res. 1999, 86, 491–506. [CrossRef]

4. Xiao, M.; Liu, X.; Li, W. Semi-online early-work-maximization problems on two hierarchical uniform machines with partial
information of processing time. J. Comb. Optim. 2023, 46, 21. [CrossRef]

http://doi.org/10.1023/A:1018935608981
http://dx.doi.org/10.1007/s10878-023-01086-7

Computation 2024, 12, 68 30 of 31

5. Akaria, I.; Epstein, L. Online scheduling with migration on two hierarchical machines. J. Comb. Optim. 2022, 44, 3535–3548.
[CrossRef]

6. Qi, X.; Yuan, J. Semi-online hierarchical scheduling on two machines for lp-norm load balancing. Asia Pac. J. Oper. Res. 2019,
36, 1950002. [CrossRef]

7. Xiao, M.; Liu, X.; Li, W.; Chen, X.; Sterna, M.; Blazewicz, J. Online and semi-online scheduling on two hierarchical machines with
a common due date to maximize the total early work. arXiv 2022, arXiv:2209.08704.

8. Dell’Olmo, P.; Kellerer, H.; Speranza, M.G.; Tuza, Z. A 13/12 approximation algorithm for bin packing with extendable bins.
Inform. Process. Lett. 1998, 65, 229–233. [CrossRef]

9. Denton, B.T.; Miller, A.J.; Balasubramanian, H.J.; Huschka, T.R. Optimal allocation of surgery blocks to operating rooms under
uncertainty. J. Oper. Res. 2010, 58, 802–816. [CrossRef]

10. Alon, N.; Azar, Y.; Woeginger, G.J.; Yadid, T. Approximation schemes for scheduling on parallel machines. J. Sched. 1998, 1, 55–66.
[CrossRef]

11. Coffman, E.G.; Lueker, G.S. Approximation algorithms for extensible bin packing. J. Sched. 2006, 9, 63–69. [CrossRef]
12. Woeginger, G.J. When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation

scheme (FPTAS)? INFORMS J. Comput. 2000, 12, 57–74. [CrossRef]
13. Levin, A. Approximation schemes for the generalized extensible bin-packing problem. Algorithmica 2022, 84, 325–343. [CrossRef]
14. Dell’Olmo, P.; Speranza, M.G. Approximation algorithms for partitioning small items in unequal bins to minimize the total size.

Discret. Appl. Math. 1999, 94, 181–191. [CrossRef]
15. Ye, D.; Zhang, G. On-line extensible bin packing with unequal bin sizes. In Proceedings of the 1st International Workshop on

Approximation and Online Algorithms, Budapest, Hungary, 16–18 September 2019; pp. 235–247.
16. Berg, B.P.; Denton, B.T. Fast approximation methods for online scheduling of outpatient procedure centers. INFORMS J. Comput.

2017, 29, 581–783. [CrossRef]
17. Luo, K.; Spieksma, F.C.R. Online bin packing with overload cost. In Proceedings of the 7th International Conference on Algorithms

and Discrete Applied Mathematics, Rupnagar, India, 11–13 February 2021; pp. 3–15.
18. Ye, D.; Zhang, G. On-line scheduling with extendable working time on a small number of machines. Inform. Process. Lett. 2003,

85, 171–177. [CrossRef]
19. Sagnol, G.; Schmidt genannt Waldschmidt, D.; Tesch, A. The price of fixed assignments in stochastic extensible bin packing.

In Proceedings of the 16th International Workshop on Approximation and Online Algorithms, Helsinki, Finland, 23–24 August 2018;
pp. 327–347.

20. Sagnol, G. Stochastic extensible bin packing. arXiv 2020, arXiv:2002.00060.
21. Sagnol, G.; Schmidt genannt Waldschmidt, D. Improved bounds for stochastic extensible bin packing under distributional assump-

tions. In Proceedings of the 7th International Symposium on Combinatorial Optimization, Online, 18–20 May 2022; pp. 228–241.
22. Chen, X.; Ding, N.; Dosa, G.; Han, X.; Jiang, H. Online hierarchical scheduling on two machines with known total size of

low-hierarchy jobs. Int. J. Comput. Math. 2015, 92, 873–881. [CrossRef]
23. Luo, T.; Xu, Y. Semi-online scheduling on two machines with GoS levels and partial information of processing time. Sci. World J.

2014, 2014, 5762340. [CrossRef] [PubMed]
24. Li, W. Improved approximation schemes for early work scheduling on identical parallel machines with a common due date. J.

Oper. Res. Soc. China 2022 , online. [CrossRef]
25. Sun, R.; Zhang R.; Lan, Y.; Li, W. LPT algorithm for early-work-maximization problem. Oper. Res. Trans. 2024, online. Available

online: https://kns.cnki.net/kcms/detail/31.1732.O1.20240129.1642.008.html (accessed on 13 February 2024).
26. Chen, X.; Sterna, M.; Han, X.; Blazewicz, J. Scheduling on parallel identical machines with late work criterion: Offline and online

cases. J. Sched. 2016, 92, 729–736. [CrossRef]
27. Jiang, Y.; Wu, M.; Chen, X.; Dong, J.; Cheng, T.C.E.; Blazewicz, J.; Ji, M. Online early work scheduling on parallel machines. Eur. J.

Oper. Res. 2024, 315, 855–862. [CrossRef]
28. Xiao, M.; Bai, X.; Li, W. Online early-work-maximization problem on two hierarchical machines with buffer or rearrangements. In Pro-

ceedings of the 16th International Conference on Algorithmic Applications in Management, Guangzhou, China, 13–14 August 2022;
pp. 46–54.

29. Qi, X.; Yuan, J. Semi-online hierarchical scheduling for lp-norm load balancing with buffer or rearrangements. 4OR 2017,
15, 265–276. [CrossRef]

30. Chassid, O.; Epstein, L. The hierarchical model for load balancing on two machines. J. Comb. Optim. 2008, 15, 305–314. [CrossRef]
31. Luo, T.; Xu, Y. Semi-online hierarchical load balancing problem with bounded processing times. Theor. Comput. Sci. 2015,

607, 75–82. [CrossRef]
32. Wu, Y.; Cheng, T.; Ji, M. Optimal algorithms for semi-online machine covering on two hierarchical machines. Theor. Comput. Sci.

2014, 531, 37–46. [CrossRef]
33. Dwibedy, D.; Mohanty, R. Semi-online scheduling: A survey. Comput. Oper. Res. 2022, 139, 105646. [CrossRef]
34. Vakhania, N. On preemptive scheduling of unrelated machines using linear programming. AIMS Math. 2023, 8, 7061–7082.

[CrossRef]
35. Wang, D.; Ye, C. Single machine and group scheduling with random learning rates. AIMS Math. 2023, 8, 19427–19441. [CrossRef]

http://dx.doi.org/10.1007/s10878-022-00906-6
http://dx.doi.org/10.1142/S0217595919500027
http://dx.doi.org/10.1016/S0020-0190(97)00216-0
http://dx.doi.org/10.1287/opre.1090.0791
http://dx.doi.org/10.1002/(SICI)1099-1425(199806)1:1<55::AID-JOS2>3.0.CO;2-J
http://dx.doi.org/10.1007/s10951-006-5594-5
http://dx.doi.org/10.1287/ijoc.12.1.57.11901
http://dx.doi.org/10.1007/s00453-021-00895-8
http://dx.doi.org/10.1016/S0166-218X(99)00020-7
http://dx.doi.org/10.1287/ijoc.2017.0750
http://dx.doi.org/10.1016/S0020-0190(02)00404-0
http://dx.doi.org/10.1080/00207160.2014.922682
http://dx.doi.org/10.1155/2014/576234
http://www.ncbi.nlm.nih.gov/pubmed/24672335
http://dx.doi.org/10.1007/s40305-022-00402-y
https://kns.cnki.net/kcms/detail/31.1732.O1.20240129.1642.008.html
http://dx.doi.org/10.1007/s10951-015-0464-7
http://dx.doi.org/10.1016/j.ejor.2024.01.009
http://dx.doi.org/10.1007/s10288-016-0334-y
http://dx.doi.org/10.1007/s10878-007-9078-0
http://dx.doi.org/10.1016/j.tcs.2015.03.050
http://dx.doi.org/10.1016/j.tcs.2014.02.015
http://dx.doi.org/10.1016/j.cor.2021.105646
http://dx.doi.org/10.3934/math.2023356
http://dx.doi.org/10.3934/math.2023991

Computation 2024, 12, 68 31 of 31

36. Park, J.; Chang, S.Y.; Lee, K. Online and semi-online scheduling of two machines under a grade of service provision. Oper. Res.
Lett. 2006, 34, 692–696. [CrossRef]

37. Jiang, Y.; He, Y.; Tang, C. Optimal online algorithms for scheduling on two identical machines under a grade of service. J. Zhejiang
Univ.-Sci. A 2006, 7, 309–314. [CrossRef]

38. Wu, Y.; Ji, M.; Yang, Q. Optimal semi-online scheduling algorithms on two parallel identical machines under a grade of service
provision. Int. J. Prod. Econ. 2012, 135, 367–371. [CrossRef]

39. Liu, M.; Chu, C.; Xu, Y.; Zheng, F. Semi-online scheduling on 2 machines under a grade of service provision with bounded
processing times. J. Comb. Optim. 2011, 21, 138–149. [CrossRef]

40. Luo, T.; Xu, Y. Optimal algorithm for semi-online scheduling on two machines under GoS levels. Optim. Lett. 2016, 10, 207–213.
[CrossRef]

41. Zhang, A.; Jiang, Y.; Fan, L.; Hu, J. Optimal online algorithms on two hierarchical machines with tightly-grouped processing
times. J. Comb. Optim. 2015, 29, 781–795. [CrossRef]

42. Chen, X.; Xu, Z.; Dósa, G.; Han, X.; Jiang, H. Semi-online hierarchical scheduling problems with buffer or rearrangement. Inform.
Process. Lett. 2013, 113, 127–131. [CrossRef]

43. Bar-Noy, A.; Freund, A.; Naor, J. On-line load balancing in a hierarchical server topology. SIAM J. Comput. 2001, 31, 527–549.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.orl.2005.11.004
http://dx.doi.org/10.1631/jzus.2006.A0309
http://dx.doi.org/10.1016/j.ijpe.2011.07.021
http://dx.doi.org/10.1007/s10878-009-9231-z
http://dx.doi.org/10.1007/s11590-014-0838-3
http://dx.doi.org/10.1007/s10878-013-9627-7
http://dx.doi.org/10.1016/j.ipl.2012.12.007
http://dx.doi.org/10.1137/S0097539798346135

	Introduction
	Basic Knowledge and Related Notions
	The Contributions of Previous Studies
	The Motivation of the Paper
	The Organization and Results of the Paper

	The Hierarchical Extensible Bin-Packing Problem of Knowing the Largest Item Size
	The Largest Item Is Known
	The Largest Item with Lower Hierarchy or Higher Hierarchy
	The Largest Item with the Lower Hierarchy
	The Largest Item with the Higher Hierarchy

	The Hierarchical Extensible Bin-Packing Problem of Knowing the Total Item Size
	The Total Size of All the Items Is Known
	The Total Size of the Low-Hierarchy Items Is Known
	The Total Size of High-Hierarchy Items Is Known
	The Total Size of the Low-Hierarchy and High-Hierarchy Items Are Known

	The Hierarchical Early-Work-Maximization Problem of Knowing the Largest Job
	The Hierarchy of the Largest Job Is Unknown
	The Hierarchy of the Largest Job Is Known

	Conclusions
	References

