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Abstract: In this paper, we consider a system of one-dimensional hyperbolic delay differential
equations (HDDEs) and their corresponding initial conditions. HDDEs are a class of differential
equations that involve a delay term, which represents the effect of past states on the present state.
The delay term poses a challenge for the application of standard numerical methods, which usually
require the evaluation of the differential equation at the current step. To overcome this challenge,
various numerical methods and analytical techniques have been developed specifically for solving
a system of first-order HDDEs. In this study, we investigate these challenges and present some
analytical results, such as the maximum principle and stability conditions. Moreover, we examine
the propagation of discontinuities in the solution, which provides a comprehensive framework
for understanding its behavior. To solve this problem, we employ the method of lines, which is a
technique that converts a partial differential equation into a system of ordinary differential equations
(ODEs). We then use the Runge–Kutta method, which is a numerical scheme that solves ODEs with
high accuracy and stability. We prove the stability and convergence of our method, and we show that
the error of our solution is of the order O(∆t + h̄4), where ∆t is the time step and h̄ is the average
spatial step. We also conduct numerical experiments to validate and evaluate the performance of
our method.

Keywords: maximum principle; Runge–Kutta method; cubic Hermite interpolation; method of lines;
delay differential equations; stable method; convergence analysis

MSC: 65M12; 65M15; 35B50; 35F10; 65M06

1. Introduction

Delay Differential Equations (DDEs) are a type of differential equations that incor-
porate delays. They are useful for modeling complex systems that exhibit time- and
space-dependent behaviors, such as epidemics, neuronal activity, and wave phenomena.
By introducing delays into mathematical models, researchers can capture the effects of
memory, feedback, or propagation that are present in real-world situations. This can lead to
more accurate and realistic representations of the dynamics of the system, as well as better
predictions and control strategies. Solving DDEs requires providing values for unknown
functions within defined intervals, rather than just at initial points. This is because the
value of an unknown function at a certain time depends on its value at some previous time,
which reflects the delay effect. The delay can be constant or variable, and it can affect one
or more terms in the equation. The presence of delays can significantly alter the qualitative
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behavior of the model, such as its stability, equilibrium, and periodicity. For example,
consider an epidemic model that uses generalized logistic dynamics to describe the growth
and decline of the susceptible and infected populations. If the duration of infection is
constant, the model can exhibit periodic solutions, meaning that the populations oscillate
between high and low levels. However, if the duration of infection is delayed, meaning that
it depends on the past state of the system, the model can exhibit more complex behaviors,
such as bifurcations, chaos, and extinction. This shows how delays can affect the outcome
of the epidemic and the effectiveness of interventions [1–3]. Another example is a model
that describes the activity of neurons in the brain. Neurons are cells that communicate
with each other through electrical and chemical signals. The signals travel along the axons
and synapses of the neurons, which introduce delays in the transmission. The delays can
vary depending on the distance, the type, and the state of the neurons. The model also
accounts for stochastic effects, meaning that the signals are subject to random fluctuations
and noise. These effects can result from the excitation or inhibition of the neurons, which
depend on the input from other neurons or external stimuli. The model can capture the
inherent variability and unpredictability of the neuronal system, as well as its ability to
adapt and learn [4–7]. It investigates the intricate dynamic characteristics inherent in heat
exchanges, a pivotal component extensively employed in the chemical industry for thermal
management. It not only delves into the theoretical foundations but also provides illu-
minating real-world examples. By elucidating the mathematical intricacies, the reference
serves as a valuable resource for understanding and optimizing the dynamic behavior of
heat exchanges, offering a comprehensive exploration of their applications in chemical
engineering [8]. In a broader mathematical context, hyperbolic partial differential equations
(HPDEs) are often encountered. These equations arise in various fields and play a key
role in understanding and describing wave phenomena. Examples of HPDEs include
the wave equation and the telegraph equation, which are used to study classical physics
phenomena such as water waves, sound waves, and seismic waves [9]. These equations
can also incorporate delays, which can represent the effects of dispersion, dissipation,
or diffusion. Advanced numerical methods have been developed to solve hyperbolic delay
partial differential equations, with special attention given to techniques such as the Forward
Time Backward Space (FTBS) and Backward Time Backward Space (BTBS) methods. These
methods can handle the challenges posed by the delays, such as non-linearity, instability,
and boundary conditions [10,11]. Researchers have devoted extensive efforts to the analysis
of convergence and numerical treatments for both ordinary delay differential equations
(DDEs) and hyperbolic partial differential equations (PDEs) [12,13]. When dealing with
DDEs, which involve delays in the state variables, the use of numerical techniques poses
a substantial challenge. A widely used approach is the method of lines, which involves
discretizing the spatial derivatives in hyperbolic equations and obtaining systems of ordi-
nary differential equations (ODEs). The solution of these ODEs can be efficiently obtained
using Runge–Kutta methods, which improve the performance of the numerical solution
process. This allows for the effective approximation of DDE solutions. However, these
numerical techniques are not without drawbacks. The computational demands can be high,
especially for large-scale or complex problems. Furthermore, the convergence analysis
for both DDEs and hyperbolic PDEs is a difficult task that requires careful attention and
computational effort [14,15]. These techniques are useful for solving various problems in
science and engineering, but they often require significant computational resources [16].
Another topic that has been explored in depth is the maximum principle, which reveals
the implications and practical significance of applying hyperbolic, parabolic, and elliptical
differential equations to various phenomena [17,18]. Implicit Runge–Kutta (IRK) meth-
ods are numerical approaches for solving ordinary differential equations (ODEs). Unlike
explicit methods, IRK tackles stiff ODEs by involving algebraic equations at each stage.
This makes it adept at handling problems where certain components evolve at distinct
rates. In IRK, each step necessitates solving a system of equations, often using iterative
methods. Its application shines in scenarios with varying timescales, like chemical reactions
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or electrical circuits. The method’s formulation includes coefficients dictating its accuracy
and stability. Higher-order methods enhance precision, but stability analysis is crucial for
reliable solutions. IRK is commonly employed in stiff systems where explicit methods be-
come computationally demanding. It finds use in solving systems of differential-algebraic
equations and time-dependent partial differential equations, offering accurate and stable
results. The theoretical understanding involves delving into the coefficients role, stability
analysis, convergence properties and practical implementation using iterative solvers. Im-
plicit Runge–Kutta (IRK) methods are a sophisticated class of time discretization schemes
that stand out for their advanced features compared to other methods. These schemes
have higher orders of accuracy, which means they can produce more accurate solutions
with fewer steps. They also exhibit desirable stability properties, which means they can
handle stiff or oscillatory problems without numerical instability. Moreover, they have
effective error estimators, which can provide an estimate of the local or global error of the
numerical solution. These features make IRK methods suitable for optimizing the time
step needed to ensure stable and accurate solutions while maintaining the dispersion and
dissipation at fixed levels [19–21]. Implicit Runge–Kutta (IRK) methods are a cutting-edge
group of schemes within the range of advanced time discretization schemes [22]. On a
different track, Runge–Kutta methods have been carefully developed to overcome the
difficulties of solving systems of ordinary differential equations that arise from discretizing
the spatial derivatives in hyperbolic equations using the method of lines approach. Cubic
Hermite Interpolation is a technique used to create a smooth curve between given data
points, where both the function values and their derivatives are known. It ensures that the
resulting curve is continuous and differentiable. This method relies on cubic polynomials
to connect adjacent data points, with coefficients determined to satisfy conditions at each
point. The process involves setting up and solving a system of equations to find these
coefficients. The interpolation polynomial preserves both the function values and their
derivatives at each data point, creating a piecewise continuous and differentiable curve.
Cubic Hermite Interpolation is commonly applied in computer graphics and computer-
aided design to achieve accurate and visually pleasing interpolations of complex curves.
Its versatility makes it valuable in situations where precise control over both function
and derivative information is essential.The main goal of these methods is to accurately
adjust the time step needed to achieve stable and accurate solutions while keeping the
dispersion and dissipation constants unchanged. Implicit Runge–Kutta (IRK) methods,
in particular, are known for their advanced features and efficiency. They have high orders
of accuracy, which make them especially relevant in situations where precision is crucial.
Their stability properties ensure the generation of reliable and robust numerical solutions,
complemented by error estimators for rigorous accuracy assessment. The distinctive fea-
ture of IRK methods is their skillful use of the structure derived from carefully selected
time discretization formulae, which enable the customization of the method based on the
specific needs and characteristics of the problem. In this investigation, our computational
endeavors were facilitated by a computer boasting an Intel Core i5 processor paired with
16 GB of RAM memory. The selection of this specific hardware configuration was driven
by the need for an optimal blend of processing capability and memory capacity. The Intel
Core i5 processor ensured efficient execution of our simulations, while the 16 GB RAM
proved instrumental in handling sizable datasets. Notably, the computing time for our
experiments was impressively brief, clocking in at an elapsed time of 1.312139 s. This swift
computational performance underscores the efficiency of our chosen hardware setup and
lays a foundation for the subsequent exploration of our research methodology and results.

This work is organized as follows: Section 2 contains the problem statement. Section 3
presents the maximum principle and its consequence of stability results. In Section 4, we de-
scribe the time semi-discrete problem using a backward Euler scheme in temporal direction.
In Section 5, we discretize the spatial domain using fourth-order Runge–Kutta method with
piecewise cubic Hermite interpolation. In Section 6, we present some numerical results and
compare them with the analytical solutions. Finally, conclusions are presented in Section 7.
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2. Problem Statement

Works from [10,11] motivate us to study the following problem: We find ū =
(u1, u2, . . . , un), u1, u2, . . . , un ∈ C(D̄) ∩ C(1,1)(D) such that

L̄ū :=
∂ū
∂t

+ A
∂ū
∂x

+ Bū(x, t) + Cū(x − δ, t) = f̄ (x, t), (x, t) ∈ D, (1)

ū = ϕ̄(x, t), (x, t) ∈ [−δ, 0]× [0, T], (2)

ū(x, 0) = ū0(x), x ∈ [0, x f ], ϕ̄(0, 0) = ū0(0), (3)

where L̄ = (L1, L2, . . . , Ln)T , f̄ = ( f1, f2, . . . , fn)T , ϕ̄ = (ϕ1, ϕ2, . . . , ϕn)T , ū0 = (u0,1, u0,2,
. . . , u0,n)

T ,

A =


a11(x, t) 0 . . . 0

0 a22(x, t) . . . 0
...

...
. . .

...
0 0 . . . ann(x, t)

, B =


b11(x, t) b12(x, t) . . . b1n(x, t)
b21(x, t) b22(x, t) . . . b2n(x, t)

...
...

. . .
...

bn1(x, t) bn2(x, t) . . . bnn(x, t)

,

C =


c11(x, t) c12(x, t) . . . c1n(x, t)
c21(x, t) c22(x, t) . . . c2n(x, t)

...
...

. . .
...

cn1(x, t) cn2(x, t) . . . cnn(x, t)

.

The above Equation (1) can be written as

L̄ū :=


∂ū
∂t + A ∂ū

∂x + Bū = f̄ − Cϕ̄(x − δ, t), (x, t) ∈ [0, δ]× (0, T],
∂ū
∂t + A ∂ū

∂x + Bū = f̄ − Cū(x − δ, t), (x, t) ∈ (δ, x f ]× (0, T], (4)

ū(0, t) = ϕ̄(0, t), t ∈ [0, T], ū(x, 0) = ū0(x), x ∈ [0, x f ], (5)

where aii ≥ αi > 0, bii ≥ βi ≥ 0, and bij ≤ 0, i ̸= j and cij ≤ 0, D = (0, x f ]× (0, T] and
δ ≤ x f , x f and δ are fixed constants. Functions aij, bij, and cij, are sufficiently differentiable
on their domains.

Note: If all the coefficients aij, bij, cij, fk are continuous functions of t on a compact
set, then the above system has a solution; see [23].

3. Stability Analysis

In this section, we present the maximum principle for Problems (4) and (5) which is a
system of partial differential equations with initial conditions. We also present a stability
result that follows from the maximum principle.

Theorem 1 (Maximum Principle). Let ψ̄ = (ψ1, ψ2, . . . , ψn), ψ1, ψ2, . . . , ψn ∈ C(D̄) ∩ C(1,1)

(D) be any function satisfying L̄ψ̄ ≥ 0̄, (x, t) ∈ D̄, ψ̄(0, t) ≥ 0̄, t ∈ [0, T], ψ̄(x, 0) ≥ 0̄, x ∈
[0, x f ]. Then, ψ̄(x, t) ≥ 0̄, ∀(x, t) ∈ D̄.

A consequence of the above theorem is the following stability result:
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Theorem 2 (Stability Result). Let ψ̄ = (ψ1, ψ2, . . . , ψn), ψ1, ψ2, . . . , ψn ∈ C(D̄) ∩ C(1,1)(D) be
any function; then,

|ψk(x, t)| ≤ C1 max
{

max
t

∥ ψ̄(0, t) ∥, max
x

∥ ψ̄(x, 0) ∥, max
k

{ sup
(x,t)∈D

∥ Lkψ̄(x, t) ∥}
}

,

∀(x, t) ∈ D̄

where C1 is a constant.

3.1. Propagation of Discontinuities

W recall that System (1)–(3) consists of n partial differential equations. Now, let us
focus on the kth equation of the system and fix time variable t to a constant value which we
can write as

Lkū =
∂uk
∂t

+ akk
∂uk
∂x

+
n

∑
l=1

bklul(x, t) +
n

∑
l=1

cklul(x − δ, t) = fk(x, t)

It is assumed that ϕk(0, t) = uk(0, t), ∀ k = 1, . . . , n and ∀ t ∈ [0, T]. We differentiate the
equation partially with respect to x; then,

akkuk,xx = fk,x − uk,xt − akk,xuk,x −
n

∑
l=1

[bkl,xul + bklul,x]

−
n

∑
l=1

[ckl,xul(x − δ, t) + cklul,x(x − δ, t)]

lim
x→δ−

akkuk,xx = fk,x(δ
−, t)− uk,xt(δ

−, t)− akk,xuk,x(δ
−, t)

−
n

∑
l=1

[bkl,x(δ
−, t)ul(δ

−, t) + bkl(δ
−, t)ul,x(δ

−, t)]

−
n

∑
l=1

[ckl,x(δ
−, t)ul(0

−, t) + ckl(δ
−, t)ul,x(0

−, t)]

= fk,x(δ
−, t)− uk,xt(δ

−, t)− akk,xuk,x(δ
−, t)

−
n

∑
l=1

[bkl,x(δ
−, t)ul(δ

−, t) + bkl(δ
−, t)ul,x(δ

−, t)]

−
n

∑
l=1

[ckl,x(δ
−, t)ϕl(0

−, t) + ckl(δ
−, t)ϕl,x(0

−, t)]

and

lim
x→δ+

akkuk,xx = fk,x(δ
+, t)− uk,xt(δ

+, t)− akk,xuk,x(δ
+, t)−

n

∑
l=1

bkl,x(δ
+, t)ul(δ

+, t)

−
n

∑
l=1

bkl(δ
+, t)ul,x(δ

+, t)−
n

∑
l=1

ckl,x(δ
+, t)ul(0

+, t)

−
n

∑
l=1

ckl(δ
+, t)ul,x(0

+, t)

= fk,x(δ
+, t)− uk,xt(δ

+, t)− akk,xuk,x(δ
+, t)

−
n

∑
l=1

[bkl,x(δ
+, t)ul(δ

+, t) + bkl(δ
+, t)ul,x(δ

+, t)]

−
n

∑
l=1

ckl,x(δ
+, t)ϕl(0

+, t)−
n

∑
l=1

ckl(δ
+, t)ϕl,x(0

+, t)
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Hence, akk(δ
+, t)uk,xx(δ

+, t) ̸= akk(δ
−, t)uk,xx(δ

−, t). Similarly, we can show that uk,xxx
(2δ−, t) ̸= uk,xxx(2δ+, t), k = 1, 2, . . . , n. Points δ, 2δ, 3δ, . . . are primary discontinuities [2].

3.2. Derivative Bounds

From differential Equations (1)–(3) that are given, we can derive the following bounds
for the derivative:

Theorem 3. Let ū be the exact solution of the system of partial differential Equations (1)–(3). Then,

the bound of the derivatives satisfies the following estimate:
∣∣∣ ∂i+juk

∂xi∂tj (x, t)
∣∣∣ ≤ C, 0 ≤ i + j ≤ 2,

k = 1, 2, . . . , n.

4. Semi-Discretization in Temporal Direction

We divide the time interval [0, T] into M subintervals of equal length, and we de-
note the resulting time grid by ΩM

t = {ti = i ∗ ∆t}M
i=0, where ∆t = T

M is the time step
size. Using this grid, we apply a finite difference method to discretize partial differential
Equations (1)–(3) in the time variable. We assume that the initial conditions are given
by u0

k(x) = uk,0(x), x ∈ [0, x f ]. Moreover, we define uj
k(x) as the approximate value of

uk(x, tj) at spatial point x and time level tj.

L
j
kuj

k(x) :=Dk,tu
j
k(x, tj) + akk(x, tj)u

j
k,x(x, tj) +

n

∑
l=1

bkl(x, tj)u
j
k(x, tj)

+
n

∑
l=1

cklu
j
l(x − δ, tj) = fk(x, tj), (6)

uj
k(x) = ϕk(x,tj)

, x ∈ [−δ, 0], j = 1, 2, . . . , M,

where Dk,tu
j
k(x, tj) =

uk(x,tj)−uk(x,tj−1)
∆t .

For fixed time point at t = tj, the equation presented earlier can be written in the
following manner:

∆t akk(x, tj)
duj

k
dx

(x) + (1 + ∆t
n

∑
l=1

bkl(x, tj))u
j
k(x, tj) + ∆t

n

∑
l=1

cklu
j
l(x − δ, tj)

= ∆t fk(x, tj) + uj−1
k (x, tj−1), j = 1, 2, · · · , M. (7)

Lemma 1. Let uk be the solution of (1)–(3) and uj
k(x) be the solution of (6) at t = tj; then,

∥uk − uj
k∥ ≤ C ∆t.

Proof. We let Ek,j(x) = uk(x, tj)− uj
k(x), and we let x be fixed. Then,

L
j
kEk,j(x) = Dk,tEk,j(x) + akk(x, tj)Ek,j(x) +

n

∑
l=1

bkl(x, tj)Ekj(x) +
n

∑
l=1

cj
kl,iEk,j(x − δ, tj)

= Dtuk(x, tj)− Dk,tu
j
k(x, tj) + akk(x, tj)(u′

k,x(x, tj)− uj
k(x, tj))

+
n

∑
l=1

bkl(x, tj)(uk(x, tj)− uj
k(x, tj)) +

n

∑
l=1

ckl(x, tj)(u′
k,x(x − δ, tj)− uj

k(x − δ, tj));

using ([24], Lemma 4.1), we can have Ek,j(x) = (Dk,t − ∂
∂t )uk(x, tj) and |Ek,j(x)| ≤ O(∆t),

∀j = 1, 2, . . . , M, ∀x, which implies ∥Ek,j(x)∥ ≤ C(∆t); therefore, ∥uk −uj
k(x)∥ ≤ C(∆t).
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5. Fully Discretized Problem

In this section, we apply spatial discretization to the semi-discrete problem defined by
Equation (7). To achieve this, we use the fourth-order Runge–Kutta method to integrate
the differential equations and piecewise cubic Hermite interpolation to approximate the
solution over the interval of [0, x f ].

Spatial Mesh Points

In Section 3.1, it is evident that δ, 2δ, . . . serve as primary points of discontinuity.
Consequently, we partition domain [0, x f ] as follows: [0, δ], [δ, 2δ], . . . , [(r − 1)δ, rδ], and
[rδ, x f ]. Each of these sub-domains is further subdivided into N

r+1 segments. Thus, we define
Ω̄N

x = {xi}N
i=0, xi = xi−1 + hi, where xi = xi−1 + hi and hi = xi − xi−1 for i = 1, 2, . . . , N.

The formulation of Problem (7) can be expressed as follows:

f ∗k (x, uj
k, uj−1

k , tj) =
1

∆t akk(x, tj)
[∆t fk(x, tj)− (1 +

n

∑
l=1

bkl(x, tj)∆t)uj
k(x, tj)

+ uj−1
k (x, tj−1)−

n

∑
l=1

ckl(x, tj)∆tuj,I
k (x)]. (8)

For details on the numerical approach for piecewise cubic Hermite interpolation used to
interpolate solution u(xi − δ, tj) within range [δ, x f ], one may consult [25]. Employing the
fourth-order Runge–Kutta method alongside piecewise cubic Hermite interpolation in the
spatial domain over [0, x f ], we obtain

U j
r,i+1 = U j

r,i +
1
6
[Kr,1 + 2Kr,2 + 2Kr,3 + Kr,4], i = 0, 1, . . . , N − 1, j = 1, 2, . . . , M, (9)

where, r = 1, 2, . . . , n,

Kr1 =
1

akk(xi, tj)∆t
{∆t fr(xi, tj) + U j−1

r (xi, tj−1)− (1 +
n

∑
l=1

brl(xi, tj)∆t)U j
r(xi, tj)

−
n

∑
l=1

crl(xi, tj)∆tU j,I
r,i (xi),

Kr2 =
1

akk(xi +
hi
2 , tj)∆t

{∆t fr(xi +
hr,i

2
, tj) + (U j−1

r,i +
Kr1

2
)− (1 +

n

∑
l=1

brl(xi +
hr,i

2
, tj)∆t)

(U j
r,i +

Kr,1

2
)−

n

∑
l=1

crl(xi +
hi
2

, tj)∆t (U j,I
k,i (xi +

hr,i

2
))},

Kr3 =
1

akk(xi +
hr,i
2 , tj)∆t

{∆t fr(xi +
hr,i

2
, tj) + (U j−1

r,i +
Kr2

2
)− (1 +

n

∑
l=1

brl(xi +
hr,i

2
, tj)∆t)

(U j
r,i +

Kr2

2
)−

n

∑
l=1

crl(xi +
hr,i

2
, tj)∆t(U j,I

r,i (xi +
hr,i

2
))},

Kr4 =
1

akk(xi + hr,i, tj)∆t
{∆t fr(xi + hr,i, tj) + (U j−1

r,i + Kr3)− (1 +
n

∑
l=1

brl(xi + hr,i, tj)∆t)

(U j
ri + Kr3)−

n

∑
l=1

crl(xi + hr,i, tj)∆t(U j,I
ri (xi + hr,i))},

U j,I
r (x) =


ϕl(xi − δ, tj), if (xi − δ) ≤ 0,

U j
r,p Ap(x) + U j

r,p+1 Ap+1(x) + Bp(x) f ∗r (xp, U j
r,p, U j−1

r,p , tj)

+Bp+1(x) f ∗r (xp+1, U j
r,p+1, U j−1

r,p+1, tj), if (xi − δ) > 0,
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and p is an integer such that xi − δ ∈ (xp, xp+1).

Ap(x) =

[
1 −

2(x − xp)

xp − xp+1

][
x − xp+1

xp − xp+1

]2

, Ap+1(x) =

[
1 −

2(x − xp+1)

xp+1 − xp

][
x − xp

xp+1 − xp

]2

,

Bp(x) =
(x − xp)(x − xp+1)

2

(xp − xp+1)2 , Bp+1(x) =
(x − xp+1)(x − xp)2

(xp+1 − xp)2 , p = i − N.

Theorem 4 ([2]). Let uj
k(xi) be the solution of problem (7) and U j

k,i represent the solution of

problem (9). Then, |uk(xi, tj)− U j
k,i| ≤ C(h̄4) is established, where C denotes a constant and h̄ =

maximum of hi.

This theorem offers an estimation of error for the above method.

Theorem 5. Let uj
k,i be the exact solution of (1) at point (xi, tj) and U j

k,i be the numerical solution

of (9); then, ∥uk(xi, tj)− U j
k,i∥ ≤ C(∆t + h̄4).

Proof. Using Lemma 1 and Theorem 4, one can prove that

∥uk − U j
k,i∥ =∥uk − uj

k,i + uj
k,i − U j

k,i∥ ≤ ∥uk − uj
k,i∥+ ∥uj

k,i − U j
k,i∥ ≤ C(∆t + h̄4).

6. Numerical Examples

In order to demonstrate the effectiveness and accuracy of the numerical methods that
we developed in this paper, we present two examples in this section. We compute the
maximum error of our numerical solutions by using the half mesh principle, which is a
technique for refining the mesh size and comparing the solutions on different grids.

EN,M
k = max

i,j
| U j

k,i(∆x, ∆t)− U j
k,i(∆x/2, ∆t/2) |, 0 ≤ i ≤ N, 0 ≤ j ≤ M,

DN
k,x = max

M
EN,M

k , DM
k,t = max

N
EN,M

k ,

U j
k,i(∆x, ∆t) and U j

k,i(∆x/2, ∆t/2) stand for the numerical outcomes at node (xi, tj) for
mesh sizes (∆x, ∆t) and (∆x/2, ∆t/2), respectively.

Example 1. We consider the first-order hyperbolic delay differential equation.

∂uk
∂t

+ A
∂uk
∂x

+ Buk(x, t) + Cuk(x − δ, t) = 0, (x, t) ∈ (0, 4]× (0, 4], (10)

ū(x, t) = (0, 0), (x, t) ∈ [−δ, 0]× [0, 4], (11)

uk(x, 0) = x exp(−(6x − 1)2/4)× (4 − x), k = 1, 2, x ∈ [0, 4], (12)

a11 =
1 + x3 + t4

1 + 2tx + 4x2 , a22 =
1 + x3 + t4

1 + 4tx + 4x2 , b11 = 1, b12 =
1
2

, b21 = 1, b22 =
1
2

,

c11 = −2, c12 = −1, c21 = −2, c22 = −1, δ = 1.

We assume that δ = 1 in this case. The presence of the delay term results in ad-
ditional wave propagation occurring in the forward direction of x at a δ unit distance.
Figures 1 and 2 show the numerical solution obtained by the proposed method and the
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exact solution, respectively. We can compare the solution curves at different time levels in
Figures 3 and 4. Figures 5 and 6 display the maximum error between the numerical and
exact solutions at each time level. The maximum pointwise error for each case is also given
in Tables 1 and 2, where we can see that the error decreases as the mesh size decreases.

Table 1. U1—the component maximum error for Example 1 using the conditional method.

N and δ = 1

M ↓ 64 128 256 512 1024 DM
1,t

64 2.3551 × 10−3 1.1683 × 10−3 5.8188 × 10−4 2.9037 × 10−4 1.4505 × 10−4 5.8188 × 10−4

128 3.9796 × 10−3 1.9611 × 10−3 9.7352 × 10−4 4.8503 × 10−4 2.4209 × 10−4 9.7352 × 10−4

256 8.9886 × 10−3 4.2439 × 10−3 2.0649 × 10−3 1.0186 × 10−3 5.0590 × 10−4 8.9886 × 10−3

512 2.0254 × 10−2 9.2206 × 10−3 4.4098 × 10−3 2.1579 × 10−3 1.0675 × 10−3 9.2206 × 10−3

1024 4.3110 × 10−2 1.8317 × 10−2 8.5104 × 10−3 4.1089 × 10−3 2.0196 × 10−3 8.5104 × 10−3

DN
1,x 8.9886 × 10−3 9.2206 × 10−3 9.7352 × 10−4 4.8503 × 10−4 5.0590 × 10−4 -

Table 2. U2—the component maximum error for Example 1 using the conditional method.

N and δ = 1

M ↓ 64 128 256 512 1024 DM
2,t

64 3.7129 × 10−3 1.8074 × 10−3 8.9174 × 10−4 4.4293 × 10−4 2.2074 × 10−4 8.9174 × 10−4

128 7.2100 × 10−3 3.4536 × 10−3 1.6906 × 10−3 8.3643 × 10−4 4.1602 × 10−4 8.3643 × 10−4

256 1.3467 × 10−2 6.3518 × 10−3 3.0862 × 10−3 1.5217 × 10−3 7.5559 × 10−4 7.5559 × 10−4

512 2.2033 × 10−2 1.0136 × 10−2 4.8746 × 10−3 2.3920 × 10−3 1.1850 × 10−3 4.8746 × 10−3

1024 3.4673 × 10−2 1.4911 × 10−2 7.0017 × 10−3 3.4002 × 10−3 1.6763 × 10−3 7.0017 × 10−3

DN
2,x 7.2100 × 10−3 6.3518 × 10−3 8.9174 × 10−4 8.3643 × 10−4 7.5559 × 10−4 -

Figure 1. The surface plot of the U1—numerical solution of Example 1.
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Figure 2. U2—numerical solution of Example 1 at different time levels.
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Figure 3. U1—numerical solution of Example 1 at different time level.
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Figure 4. U2—numerical solution of Example 1 at different time levels.
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Figure 5. U1—Maximum point wise error of Example 1.

Figure 6. U2—maximum point wise error of Example 1.

Example 2. We consider Problems (10) and (11) with the following coefficients:

ū(x, 0) =
[

x exp(−(6x − 1)2/2), x exp(−(4x − 1)2/4)
]
, x ∈ [0, 4], (13)

a11 =
3 + x3 + t4

1 + 3tx + 4x3 , a22 =
4 + x2 + t4

1 + 2tx + 4x2 , b11 =
1
2

, b12 = −1
4

, b21 =
1
2

, b22 = −1
4

,

c11 = 0, c12 = 0, c21 = 0, c22 = 0, δ = 0.

We assume that δ = 0 in this case. We observe that there is no additional wave
propagation in the solution. Figures 7 and 8 show the numerical solution obtained by
applying the proposed method. We can see the solution curves for different values of
time in Figures 9 and 10, which demonstrates the accuracy and stability of the method.
Figures 11 and 12 display the maximum error between the numerical and exact solutions
at each time level. The maximum pointwise error for various values of M and N is also
given in Tables 3 and 4, which confirm the convergence and consistency of the method.



Computation 2024, 12, 64 12 of 15

Figure 7. The surface plot of U1—numerical solution of Example 2.

Figure 8. The surface plot of U2—numerical solution of Example 2.
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Figure 9. U1—numerical solution of Example 2 at different time levels.
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Figure 10. U2—numerical solution of Example 2 at different time levels.

Figure 11. U1—maximum point wise error of Example 2.

Figure 12. U2—maximum point wise error of Example 2.
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Table 3. U1—the component maximum error for Example 2 using the conditional method.

N and δ = 0

M ↓ 64 128 256 512 1024 DM
1,t

64 1.5319 × 10−3 7.5986 × 10−4 3.7843 × 10−4 1.8885 × 10−4 9.4332 × 10−5 9.4332 × 10−5

128 2.5359 × 10−3 1.2540 × 10−3 6.2355 × 10−4 3.1093 × 10−4 1.5525 × 10−4 6.2355 × 10−4

256 4.7023 × 10−3 2.2893 × 10−3 1.1298 × 10−3 5.6127 × 10−4 2.7973 × 10−4 5.6127 × 10−4

512 9.7474 × 10−3 4.5751 × 10−3 2.2226 × 10−3 1.0958 × 10−3 5.4407 × 10−4 9.7474 × 10−3

1024 2.2033 × 10−2 9.5061 × 10−3 4.4622 × 10−3 2.1665 × 10−3 1.0678 × 10−3 9.5061 × 10−3

DN
1,x 9.7474 × 10−3 9.5061 × 10−3 6.2355 × 10−4 5.6127 × 10−4 9.4332 × 10−5 -

Table 4. U2—the component maximum error for Example 2 using the conditional method.

N and δ = 0

M ↓ 64 128 256 512 1024 DM
2,t

64 1.2625 × 10−3 6.2681 × 10−4 3.1231 × 10−4 1.5588 × 10−4 7.7871 × 10−5 7.7871 × 10−5

128 2.0230 × 10−3 1.0021 × 10−3 4.9875 × 10−4 2.4881 × 10−4 1.2426 × 10−4 4.9875 × 10−4

256 3.5823 × 10−3 1.7576 × 10−3 8.7066 × 10−4 4.3331 × 10−4 2.1616 × 10−4 8.7066 × 10−4

512 7.3619 × 10−3 3.5035 × 10−3 1.7114 × 10−3 8.4594 × 10−4 4.2067 × 10−4 8.4594 × 10−4

1024 1.7733 × 10−2 7.7339 × 10−3 3.6528 × 10−3 1.7789 × 10−3 8.7813 × 10−4 8.7813 × 10−4

DN
2,x 7.3619 × 10−3 7.7339 × 10−3 8.7066 × 10−4 8.4594 × 10−4 8.7813 × 10−4 -

7. Conclusions

This article deals with the system of first-order hyperbolic delay differential equations
which include spatial delay terms. This system can model various phenomena in science,
such as wave propagation, population dynamics, and neural networks. To obtain numerical
solutions for this system, we adopt a semi-discretization technique in the time direction,
using a backward finite difference formula on a uniform grid. This method reduces the
original system to a set of algebraic equations, which have a truncation error of order O(∆t)
for a fixed x. We then discretize the resulting system further by applying the fourth-order
Runge–Kutta method, which is a well-known and efficient method for solving ordinary
differential equations. We also use piecewise cubic Hermite interpolation to approximate
the spatial delay terms. This method offers us an overall error of order O(∆t + h̄4), where
∆t is the time step and h̄ is the average spatial step. We discuss how to handle Problem (1)
with both smooth and non-smooth data functions, and we investigate the characteristics of
the solutions. The theoretical results are also verified by numerical examples (Figures 1–12)
and Tables 1–4. From these examples, we observe that, for fixed integer M, increasing
the value of N leads to a decrease in the maximum error. On the other hand, for a fixed
N, increasing the value of M causes the maximum error to increase. We also notice the
conditional stability of the method, which requires that h̄ < 1, further the method is stable
hi ≤ C∆t.
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