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Abstract: Function approximation is a fundamental process in a variety of problems in computational
mechanics, structural engineering, as well as other domains that require the precise approximation
of a phenomenon with an analytic function. This work demonstrates a unified approach to these
techniques, utilizing partial sums of the Taylor series in a high arithmetic precision. In particular, the
proposed approach is capable of interpolation, extrapolation, numerical differentiation, numerical
integration, solution of ordinary and partial differential equations, and system identification. The
method employs Taylor polynomials and hundreds of digits in the computations to obtain precise
results. Interestingly, some well-known problems are found to arise in the calculation accuracy and
not methodological inefficiencies, as would be expected. In particular, the approximation errors
are precisely predictable, the Runge phenomenon is eliminated, and the extrapolation extent may a
priory be anticipated. The attained polynomials offer a precise representation of the unknown system
as well as its radius of convergence, which provides a rigorous estimation of the prediction ability.
The approximation errors are comprehensively analyzed for a variety of calculation digits and test
problems and can be reproduced by the provided computer code.

Keywords: function approximation; approximation errors; interpolation; extrapolation; numerical
differentiation; numerical integration; ordinary differential equation; partial differential equation;
system identification; inverse problems; Taylor series; Taylor polynomials

1. Introduction

The utilization of a high arithmetic precision (HAP) for the modeling of an unknown
function exhibited a remarkable extrapolation ability in [1], with extrapolation spans
1000% higher than the existing methods in the literature. The basis of this method was
the approximation of an unknown analytic function with a high arithmetic precision.
This is an essential problem in a variety of numerical methods. Standard programming
languages are limited to 16–64 floating point digits, and researchers have been taking
into account a high arithmetic precision for the various computations regarding the nu-
merical integration [2], interpolation [3], and solution of Partial Differential Equations
(PDEs) [4].

Recent research works highlight the importance of a HAP in computations. In [5],
the Clarinet framework is proposed to replace floating point arithmetic in various linear
algebra and computer vision calculations. The effect of round-off errors when utilizing
a standard accuracy for reduction algorithms is highlighted in [6], and a high-precision
“RingAllreduce” algorithm was proposed. A high-precision ray-tracing algorithm is pre-
sented in [7], reducing round-off errors in the numerical examples. A high arithmetic
precision is also significant in the design of Field Programmable Gate Arrays (FPGAs),
and a new representation to tackle programming challenges is proposed in [8]. The GNU
Multiple Precision Arithmetic Library (GMP) [9] is a widely used library in many computer
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languages, like C++, Python, and Julia, and a framework to enable its usage by Java was
recently developed [10].

Nevertheless, standard techniques exist for performing interpolation with Taylor
polynomials [11,12], as well as the solution of differential equations [13–15]. However,
certain problems occur when applying these methods for scientific computing tasks, such
as the well-known Runge phenomenon [16,17], which remains a major complication [18–20].
Taylor series arise in the foundations of differential calculus [21] by associating the behavior
of a function around a point x0 with its derivatives at that particular point.

Accordingly, Taylor series are capable of approximating any analytic function in theory.
However, in the practice of computing, they often fail, and researchers use other approx-
imators than Taylor polynomials, such as radial basis functions, Lagrange polynomials,
Chebyshev polynomials, artificial neural networks, etc., to avoid numerical instabilities.
A variety of numerical methods have been developed for such operations, as researchers
have been observing that Taylor polynomials do not offer stable calculations. Utilizing
a high arithmetic precision, we demonstrate that such need, which arose to address the
computational inaccuracies, does not exist. Taking into account the high extrapolation
spans attained in [1] and obtained with integrated radial basis functions [22,23] and some
hundreds or even thousands of digits for the calculations, we apply a high arithmetic
precision utilizing the “BigFloat” structure of Julia language [24], using the GMP [9] library
to truncate the Taylor series, known as Taylor polynomials or partial sums.

The purpose of this work is to present a unified approach to interpolation, extrapola-
tion, numerical differentiation, solution of partial differential equations, system identifica-
tion, and numerical integration for problems which comprise given data of an unknown
analytic function or the source for PDEs. The paper is organized as follows: the formu-
lation of our approach is presented in Section 2; some basic operations and results for
1-dimensional interpolation, extrapolation, numerical differentiation, numerical integra-
tion, and solutions of ordinary differential equations are presented in Section 3; the results
of multidimensional function approximation, solution of partial differential equations, and
system identification are presented in Section 4; and the conclusions follow in Section 5.

Taylor polynomials provide a fundamental means to approximate complex func-
tions and understand their behavior, such as rate of change, curvature, and higher-order
characteristics. However, when utilizing standard floating-point precision, a variety of
numerical methods fail to produce robust results, and researchers have been developing
complex numerical methods and techniques to tackle numerical instabilities. Interestingly,
when utilizing hundreds of digits of precision, the accuracy obtained is exceptional in
a variety of computational tasks while keeping a unified, fundamental, straightforward,
and interpretable representation with Taylor polynomials.

2. Description of the Method

Let f (x) be an analytic function, which is unknown. It is given that the function takes
values f = { f1, f2, . . ., fN} at specified points x = {x1, x2, . . ., xN} as in Figure 1 for a generic
analytic function. By applying the Taylor series [21] of the function at some point x0, we may

write f (x ± x0) = f (x0)± f ′(x0)
1! (x − x0) +

f ′′(x0)
2! (x − x0)

2 ± · · · ± f (n)(x0)
n! (x − x0)

n + · · · .

The derivatives of the function, df =
{

f 0, f ′, f ′′, . . ., f (n)
}

, at x0, divided by the correspond-

ing factorial n!, are constant quantities. Hence, by truncating the series at the nth power, we

derive that f (x ± x0) ∼= f (x0)± f ′(x0)
1! (x − x0) +

f ′′(x0)
2! (x − x0)

2 ± · · ·+ f (n)(x0)
n! (x − x0)

n +

Rn(x), while the remainder of the approximation is bounded by |Rn(x)| ≤ f n+1(x)
(n+1)! |x −

x0|n+1, ∀x : |x − x0| ≤ r [25].
For a series f (x) = ∑∞

n=0 an(x − x0)
n, we have that the radius of convergence [25] r

is a non-negative real number or ∞ such that the series converges if |x − x0| < r and
diverges if |x − x0| ≥ r. That is to say, the series converges in the interval (x0 − r,
x0 + r). We may compute r using the ratio test, lim sup|an+1/an|, or using the root test,
with r = 1/ lim supn→∞

n
√
|an|. We select the root test because the coefficients ai often
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contain zero elements, making the division computationally unstable. Furthermore, be-
cause lim inf(an+1/an) ≤ lim inf((an)

(1/n)) ≤ lim sup((an)
(1/n)) ≤ lim sup(an+1/an) [26],

the computed r from the root test is more precise, as it is bounded by the ratio test.
A high arithmetic precision was found capable of achieving an accurate computation

of r for a known series, whereas the floating point fails. This is a significant part of the
proposed numerical schemes, as the identification of r offers information on the larger
disk where the series converges. Accordingly, we obtain knowledge of the interpolation
accuracy or even the extrapolation span of the approximated function beyond the given
domain. In particular, at x0 = 0, we may write that

f (x) ∼= a0 ± a1x + a2x2 ± · · ·+ anxn (1)

where a =
{

1, f ′/1, f ′′/2!, . . ., f (n)/n!
}

= df ⊙ {1, . . . , n!}. This is the truncated Taylor
polynomial, which may converge to f [27,28]. By applying the Taylor formula for all the
n given points xi, with i = 1 . . . n, we obtain f = Va, where Vis the Vandermonde matrix,
with elements vi,j = xi

j−1, where j = 1 . . . n [29,30].

V =



1 x1 x2
1 . . . xn−1

1
1 x2 x2

2 . . . xn−1
2

1 x3 x2
3 . . . xn−1

3
...

...
...

. . .
...

1 xn x2
n . . . xn−1

n


Figure 1. Given values of f (x) at points xi for the approximation of f by inverting the corresponding
Vandermonde matrix V.

The square Vandermonde matrix for distinct xi is invertible, with det(V) = ∏1≤i<j≤n
(xj − xi) [31] and inverse matrix V−1=U−1L−1, where the elements lij of L−1, and uij of
U−1, are given by

lij =
{

∏i
k=1(k ̸=j)

1
xj−xk

; 0∀i < j; l11 = 1
}

, and uij = {ui−1,j−1 − ui,j−1xj−1; ui1 = 0;

uii = 1, uoj = 0} [32].
Hence, we have closed-form formulas for the matrix V−1 and for det(V), which is later

used for the comparison among the various digits utilized in the calculations. Accordingly,
we can compute the polynomial factors a = {a1, a2, . . ., an} by using the following:

a = V−1f,

We can also compute the corresponding errors:

e = Va − f.

Some errors e are inevitable due to the truncation of the Taylor series, which theo-
retically comprise infinite terms, to Taylor polynomials that utilize a number of terms n.
The computation of a with floating point arithmetic exhibits significant errors e in the
inversion as well as the determinant calculation, with respect to their theoretical values
from the closed-form formulas and numerical values computed by a machine.

3. Function Approximation in HAP

We demonstrate the proposed numerical scheme in a variety of numerical methods,
analytic functions, and calculation digits. We begin with some basic operations.
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3.1. Basic Operations

For the simple function f (x) = sin(x), the theoretical Taylor series exhibits an alternat-
ing sign with intermediate zero coefficients

sin x =
∞

∑
n=0

(−1)n

(2n + 1)!
x2n+1 = 0 + x + 0 − x3

3!
+ 0 +

x5

5!
− . . . ,

Hence, according to the presented method, the factors a = {a1, a2, . . ., an} should be equal to{
0, 1, 0,− 1

3! , 0, 1
5! ,− . . . , 1

n!

}
for a truncated series with n terms. However, the computation

of V−1, as well as the det(V), exhibits great variation with the calculation precision in bits
p (approximately equivalent to p/3 digits), when computed numerically or analytically
using formulas. Table 1 presents such variation for f (x) = sin(x), with L = 1, n = 201,
dx = 2L/(n − 1) = 10−2 and x ∈ [−L, L]. The subscript “an” denotes the analytical value
and “nu” the numerical one, as computed in variable precision p = 50 to 2000 bits.

Table 1. Variation of V−1, det(V), and a, with the calculation precision in bits p, for the same example.

Error vs. Precision (p) p = 50 p = 100 p = 500 p = 1000 p = 2000

det Van − det Vnu 3.866 × 10−2341 4.300 × 10−4106 −2.735 × 10−6810 −3.741 × 10−6960 −1.853 × 10−7261

max |V−1
an − V−1

nu | 9.739 × 10100 4.911 × 1094 1.242 × 1038 1.124 × 10−111 5.504 × 10−413

max |aan − anu| 4.029 × 101 1.813 × 100 9.252 × 10−18 9.252 × 10−18 9.252 × 10−18

In Table 1, a high variation in the differences among V−1
an and V−1

nu is revealed,
from 9.739× 10+100 for p = 50 bits, which is approximately equal to floating point precision,
to 5.504 × 10−413 for p = 2000 bits. Accordingly, the maximum differences between a−1

an
and a−1

nu are 4.029 × 10+01 for p = 50 bits and 9.252 × 10−18 for p ≥ 500 bits. It is important
to underline that all the calculations are for the same example and the same approximation
scheme. Apparently, the errors of O( 10−16) cannot be considered as negligible. The signifi-
cance of the precise computation is further demonstrated for the corresponding differences
in the calculation of the determinant, with an analytical value constant at 1.647 × 10−6754

and the corresponding differences from the computed values varying from 3.866 × 10−2341

to −1.853 × 10−7261, with alternating signs, again for the same example. In Table 1, we also
show that as the determinants’ difference shortens, the same stands for the inversion errors.

Digits accuracy exhibits great variation among the computed 1/r, as well. The pre-
cise calculation of V and V−1 makes the computation of 1/rconvergent, as the calculated
lim supn→∞

n
√
|an| ≃ lim infn→∞

n
√
|an|. Particularly in Figure 2a, the computed 1/r with

a high accuracy (p = 2000 bits) exhibits a clear convergent pattern, whereas, for a stan-
dard accuracy (p = 50 bits), the corresponding 1/r is disoriented and does not converge
(Figure 2b). Similarly, for the vector a, the maximum absolute differences among the ana-
lytical and numerical values vary between 4.029 × 10+01 and 9.252 × 10−18.
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0 50 100 150 200
0.00

0.33

0.67

1.00

n

1/
r

(a)

0 50 100 150 200

0.87

0.92

0.97

1.02

n

1/
r

(b)

Figure 2. Radius of convergence for the computed Taylor expansion of f (x) = sin(x) for the same
domain and different computational precisions. (a) p = 2000 bits (b) p = 50 bits.

3.2. Function Approximation

As f (x) = sin(x), we have that
∣∣ f n+1(x)

∣∣ ≤ 1; hence, the theoretical remainder
of the approximation, when using n = 200 terms of the Taylor series, is bounded by
|Rn(x)| ≤ 1

(n+1)! |1 − 0|n+1 = 6.308 × 10−378. In Table 2, the differences among computed
and analytical values of f at x and xi = x + dx/2 are presented.

Table 2. Variation of approximation errors with the calculation precision in bits p.

Error vs. Precision (p) p = 50 p = 100 p = 500 p = 1000 p = 2000

max | fan(x)− fnu(x)| 1.708 × 10−12 3.045 × 10−28 1.231 × 10−148 3.770 × 10−299 3.475 × 10−600

max | fan(xi)− fnu(xi)| 5.932 × 10−08 2.045 × 10−15 3.673 × 10−96 2.373 × 10−246 9.909 × 10−407

Interestingly, although for p = 50, the approximation error for f (x) on the given points
x is 1.708× 10−12, the corresponding interpolation error on xi is 5.932× 10−8 (Table 2). How-
ever, the Runge phenomenon, which is severe at the boundaries, is eliminated for p > 500.
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3.3. Extrapolation

The extrapolation problem of given data is a highly unstable process [33]. Recent
results have highlighted the ability of extended spans when using a high arithmetic preci-
sion [1]. In Figure 3, the highly extended extrapolation span for f (x) = sin(x) is depicted.
The extrapolation errors start becoming visible only for x > 73L. We should highlight
that this is consistent with the corresponding theory as, for this function, the computed
1/r = lim supn→∞

n
√
|an| takes the values of 0.0178, 0.0169, 0.0161, 0.0152, 0.0145, and 0.0137

for the higher values of n (Figure 2a). Accordingly, we may write that r = 1/0.0137 ≃ 72.99,
which is equal to the observed extrapolation span. Accordingly, the extrapolation lengths
for p = 1000 are 12.141 according to the root test 1/r, and in the actual computations, the
errors are >1 for x > 12.150; and similarly, for p = 500, the root test value is 2.154 and
the computed value is 2.230, as illustrated in Figure 3. Hence, interestingly, utilizing this
approach, we may predict not only determine the behavior of the approximated unknown
function within the given domain, but its extrapolation spans as well, and, hence, the
prediction ability.

0 20 40 60

- 1.0

- 0.5

0.0

0.5

1.0

f(
x)

x

given f
exact f
extrapolated f, p=2000
extrapolated f, p=1000
extrapolated f, p=500

p=1000
p=2000

p=500

accuracy loss
for precision:

Figure 3. Extrapolation of f for varying values of arithmetic precision p. For p = 2000, the extrapola-
tion errors are visible only for x > 73L without any periodicity information given.

Furthermore, in Figure 4, the extrapolation of f (x) = ln(x+ 1) (a) and f (x) = arctan(x)
(b) is illustrated by varying the precision p employed in the calculations. In both cases, when
utilizing the standard precision p = 50, the extrapolation span is very short, in contrast to
increased precision, such as p = 100, p = 200, and p = 1000.

(a) (b)

Figure 4. Extrapolation of (a) f (x) = ln(x + 1) and (b) f (x) = arctan(x) for varying values of
precision p.
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3.4. Numerical Integration

We calculated the vector a; hence, we know an approximation of f (x) ∼= a0 + a1x +
a2x2 + · · ·+ anxn. By integrating the Taylor polynomial of f , the indefinite integral is

F(x) ∼= a0x +
a1x2

2
+

a2x3

3
+ · · ·+ anxn+1

n + 1
+ c.

The only unknown quantity is c, which may be calculated by the supplementary

constraint that F(−L) = 0; hence, c ∼= −a0L − a1L2

2 − a2L3

3 − · · · − an Ln+1

n+1 . f (x) = sin(x),
hence F(x) = − cos(x). The proposed scheme offers a direct computation of the integrals,
as the vector a is known. In Table 3, the very low errors of numerical integration are
demonstrated, as well as the significance of the studied digits. The numerical integration
errors in Table 3 are computed as e = Fan − Fnu, where Fan is the analytical computa-
tion Fan =

∫ L
−L f (x)dx = − cos(−L) + cos(L) = 0, for the case of sin(x), and Fnu is the

corresponding numerical computation, utilizing the computed a.

Table 3. Numerical integration errors.

Error vs. Precision (p) p = 50 p = 100 p = 500 p = 1000 p = 2000

Fan − Fnu 1.502 × 10−09 3.957 × 10−17 1.226 × 10−97 2.431 × 10−249 −1.028 × 10−548

3.5. Numerical Differentiation

The derivatives of f are directly computed by

a = {a1, a2, . . ., an} =

{
f (x0),

f ′(x0)

1!
,

f ′′(x0)

2!
, · · · ,

f (n)(x0)

n!

}
= df ⊙ n!,

with df denoting the vector of the n ordinary derivatives of f and n! denoting the vector of
the n factorials. The kth < n derivative at any other point x ̸= x0 may easily be computed
by Equation (1), deriving f ′(x) ∼= 0 + a1 + 2a2x + 3a3x2 + · · ·+ nanxn−1, f ′ ′(x) ∼= 0 + 0 +
2a2 + 6a3x + · · ·+ (n − 1)nanxn−2, and, hence,

f (k)(x) ∼= k!akxk + · · ·+ n!
(n − k)!

anxn−k, (2)

where the factors {ak, ak+1, . . ., an} have already been computed by a. We demonstrate the
efficiency of the numerical differentiation in the following example apropos the solution of
differential Equations.

3.6. Solution of Ordinary Differential Equations (ODEs)

The solution we investigate utilizes the constitution of the matrices representing the
derivatives of each element of V in HAP. For example:

dV =


0 1 2x1 . . . (n − 1)xn−2

1
0 1 2x2 . . . (n − 1)xn−2

2
0 1 2x3 . . . (n − 1)xn−2

3
...

...
...

. . .
...

0 1 2xn . . . (n − 1)xn−2
n

, and d2V =


0 0 2 . . . (n − 1)(n − 2)xn−3

1
0 0 2 . . . (n − 1)(n − 2)xn−3

2
0 0 2 . . . (n − 1)(n − 2)xn−3

3
...

...
...

. . .
...

0 0 2 . . . (n − 1)(n − 2)xn−3
n

,

and so on. By utilizing such matrices, we can easily constitute a system of equations
representing the differential equation at points xi. To demonstrate the unified approach
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to the solution of differential equations, we consider the bending of a simply supported
beam [34], with the governing equation given below:

EI
d4w
dx4 = q(x) (3)

where E is the modulus of elasticity, I the moment of inertia, w the sought solution repre-
senting the deflection of the beam, and q the external load. For E = I = L = 1, q(x) = 0,
and fixed boundary conditions w(0) = 0, dw

dx

∣∣∣
x=o

= 0, w(L) = 1/100, dw
dx

∣∣∣
x=L

= 0, we may
write Equation (3) supplemented by the boundary conditions in matrix form as follows:

0 0 0 0 24 . . . (n − 1)(n − 2)(n − 3)(n − 4)xn−5
1

0 0 0 0 24 . . . (n − 1)(n − 2)(n − 3)(n − 4)xn−5
2

0 0 0 0 24 . . . (n − 1)(n − 2)(n − 3)(n − 4)xn−5
3

...
...

...
...

...
. . .

...
0 0 0 0 24 . . . (n − 1)(n − 2)(n − 3)(n − 4)xn−5

n
1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
L 0 0 0 0 · · · 0
0 L 0 0 0 · · · 0





a0
a1
a2
...

an


=



p0
p1
p2
...

pn
w0
w′

0
wL
w′

L


Solving for a and utilizing matrix V, we derive the sought solution using w = Va. The

exact solution is
EIw(x) =

−2EI
L3 x3 +

3EI
L2 x2,

and, hence, the exact a = {0, 0, 3,−2, 0, . . . , 0}. In Figure 5, the ability of a high precision
(p = 1000) to identify the exact weights ais revealed, while the p = 50 bits accuracy fails
dramatically for such identification. However, they exhibit a lower deviation than the
interpolation problem, probably due to the imposition of the boundary conditions.

0 25 50 75 100

- 4

- 2

0

2

4

n

a

p=1000
p=50

Figure 5. Calculated a for p = 50 and p = 1000 bits accuracies. Low arithmetic precision yields
incorrect coefficients a for the same problem and data.

3.7. System Identification

The inverse problems, that is, the identification of the system which produced a gov-
erning differential law [35], is of great interest as this law rigorously describes the behavior
of a studied system. We demonstrate the ability of high-precision Taylor polynomials to
perform a rapid and precise identification of unknown systems.
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Let t be an input variable and s a measured response. As presented above, we may
easily compute a = {a1, a2, . . ., an}, by a = V−1s. Here, we assume the existence of a
differential operator T, such that T(s) = c. According to [35], we may write T as a power se-

ries as T(s) =
2
∑

i,j,k=0
bijksi ṡj s̈k = b000 + b100s + b010 ṡ + b001 s̈+b200s2 + b110sṡ + b101ss̈ +

b020 ṡ2 + b011 ṡs̈ + b002 s̈2 and by setting c′ = c−b000; and assuming a linear approximation,
we derive

1 =
b100s + b010 ṡ + b001 s̈

c′
.

Applying the later for all xi and writing the resulting system in matrix form, we obtain

[Va + dVa + d2Va]bT = {1}, (4)

where {1} = {1, 1, . . . , 1}. Solving for b, we obtain the weights of the derivatives in the
differential operator T(s).

For example, if we apply the previous for data of Newton’s second law [30] of
motion s(t) = t2, with s indicating space and t time, we may calculate vectors a and
solve Equation (4) for b; with c′ = 1 and a p = 1000 bits precision, we derive that
b = {0, 0, 1/2}+ O(10−270), and, hence, 1

2 s̈ = 1 → s̈ = 2, which is equivalent to s̈ = a,
where a = F

m = 2, which represents the external source that produces s(t) = t2.
We assume that 1 = b100s + b010 ṡ + b001 s̈; hence, by integrating s twice, with

S =
∫

s and SS =
∫∫

s, and utilizing the interval [0, t], we obtain t + c1 = b100(S(t) −
S(0)) + b010(s(t)− s(0)) + b001(ṡ(t)− ṡ(0)); however, S(0)= s(0) = ṡ(0) = 0. Accord-
ingly, we may write t = b100S(t) + b010s(t) + b001 ṡ(t), and if we integrate for a second time
in the interval [0, t], we obtain

t2/2 = b100(SS(t)− SS(0)) + b010(S(t)− S(0)) + b001(s(t)− s(0)),

and by using SS(0) = 0, we obtain

s(t) =
t2 /2−b100SS(t)−b010S(t)/b001 (5)

The integrals of s,
∫

s , and
∫∫

s can be approximated with a high accuracy by utilizing,
accordingly, the procedure discussed in Section 3.4, by using the integrals of the obtained
Taylor polynomials, ∫

s ∼= a0t +
a1t2

2
+

a2t3

3
+ · · ·+ antn+1

n + 1∫∫
s ∼=

a0t2

2
+

a1t3

6
+

a2t4

12
+ · · ·+ antn+2

(n + 1)(n + 2)
,

as well as the corresponding matrices for all the given ti,

IV =


1 1/2 t1/3 . . . tn+1

1 /(n + 1)
1 1/2 t2/3 . . . tn+1

2 /(n + 1)
1 1/2 t3/3 . . . tn+1

3 /(n + 1)
...

...
...

. . .
...

1 1/2 tn/3 . . . tn+1
n /(n + 1)



IIV =


1/2 1/6 t1/12 . . . tn+2

1 /(n + 1)/(n + 2)
1/2 1/6 t2/12 . . . tn+2

2 /(n + 1)/(n + 2)
1/2 1/6 t3/12 . . . tn+2

3 /(n + 1)/(n + 2)
...

...
...

. . .
...

1/2 1/6 tn/12 . . . tn+2
n /(n + 1)/(n + 2)

.
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The calculated impact of b001 for the p = 50 and p = 1000 bits accuracy is revealed
by the resulting extrapolation curves beyond the observed domain, utilizing Equation (5).
For the p = 50 bits accuracy, for given data in the domain [0, 1], we may extrapolate
only up to a short time (t′ = 1.343) after the last given tend = 1.000, with threshold for
errors < 1.000, while for p = 2000 bits, the corresponding t′ attains the remarkably high
value of 9.621 × 10+10, highlighting the extrapolation power of high arithmetic precision.

4. Functions in Multiple Dimensions
4.1. Multidimensional Interpolation

The Taylor series of f (x, y), depending on two variables x, y ∈ Ω, where Ω is a closed
disk about the center x0, y0, may be written utilizing the partial derivatives of f [31,32]
in the form of f (x, y) = f (a, b) + (x − a) fx(a, b) + (y − b) fy(a, b) + 1

2! ((x − a)2 fxx(a, b) +
2(x − a)(y − b) fxy(a, b) + (y − b)2 fyy(a, b)) + . . ., which, in vector form, is written as

f (x) = f (x0) + (x − x0)
T D f (x0) +

1
2!
(x − x0)

T
{

D2 f (x0)
}
(x − x0) + · · · ,

where D2 f (x0) is the Hessian matrix at x0.
Let n be the number of given points of f (xi, yj), with i, j ∈ (1, 2, . . . , n). In order

to constitute the approximating polynomial of f (x, y) with high-order terms and for-
mulate the V matrix with dimensions n × n, we consider all possible combinations of{

ni, nj ∈ (0, 1, . . . , n − 1) | ni + nj ≤ n − 1
}

. Hence, we may write the following for all the
given xi:

V(xi,yj) =


1 x1 y1 x1y1 x2

1 y2
1 . . . xnk

1 ynl
1

1 x2 y2 x2y2 x2
2 y2

2 . . . xnk
2 ynl

2

. . . . . . . . . . . . . . . . . .
. . . . . .

1 xn yn xnyn x2
n y2

n . . . xnk
n ynl

n

,

with k + l = n − 1. Thus, we can approximate f with n polynomial terms using the following:

f = Va → a =V−1f (6)

The computation of a with Equation (6) permits the computation of f (
⌢
x i,

⌢
y j), for any

⌢
x i,

⌢
y j ∈ Ω, by utilizing the corresponding

⌢

V.
Let f (x, y) = sin(5x)+ cos(e2y). We approximate f with n = 300 random values xi, yi ∈

[−0.5, 0.5], and, later, we interpolate f with n = 300 random values
⌢
x i,

⌢
y ji

∈ [−0.35, 0.35].

In Figure 6, the exact and approximated values f (
⌢
x i,

⌢
y j) are depicted for p = 2000 and

p = 50 bits accuracies. Apparently, for the same interpolation problem formulation in three
dimensions, the computational precision p dramatically affects the results. The

max
∣∣∣∣ f (xi, yj)analytical

− f (
⌢
x i,

⌢
y j)numerical

∣∣∣∣
equals 8.570 × 10−09 for p = 2000 and 1.286 × 10+01 for p = 50 bits. The polynomials’
weights a were calculated by first computing V−1 by solving V\I; hence, a = V−1f because
a = V\I exhibits significant errors. The calculation of the inverse of generic matrices, as well
as the solution of systems of Equations in a high precision, is a topic for future research.
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x
y

f(
x,
y)

(a)

x
y

f(
x,
y)

(b)

Figure 6. Exact and approximated values of f for precision p = 2000 bits (a) and p = 50 bits (b).
We can observe that by utilizing enough digits, we have a precise approximation in contrast to a
standard precision, indicating a computational deficiency and not a methodological one.

4.2. Solution of Partial Differential Equations

We present the ability of a high precision to solve partial differential equations by
considering a plate without axial deformations and vertical load q(x, y). The governing
Equation [36] has the following form:

∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4 = − q

D
(7)
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that is, ∇2∇2w = − q
D , where D := Eh3

12(1−ν2)
, E is the modulus of elasticity, v is the Poisson

constant, and h is the slab’s height.
The sought solution w(x, y) is the slab’s deformation within the boundary condi-

tions wb(xb, yb) along some boundaries b = {1, 2, . . .}. In order to solve Equation (7),
we approximate

w = Va

using the approximation scheme of Equation (6), and as the vector a is constant, we obtain
wx4=Vx4 a, wy4=Vy4 a, and wx2y2=Vx2y2 a, with wxk yl denoting the partial derivative of w

of order k over x and l over y, ∂k+l w
∂xk∂yl , for all given xi, yj with i, j ∈ (1, 2, . . . , n). Utilizing this

notation, we may write Equation (7) for all xi, yj in matrix form as[
Vx4 + 2Vx2y2 + Vy4

]
a = q.

By applying some boundary conditions, we may write for the same a,


Vx4 + 2Vx2y2 + Vy4

V(x1, y1)
Vx(x2, y2)

. . .

× a =


q

w(x1, y1)
∂w
∂x

∣∣∣
(x1,y1)

. . .

 →

a =


Vx4 + 2Vx2y2 + Vy4

V(x1, y1)
Vx(x2, y2)

. . .


−1

×


q

w(x1, y1)
∂w
∂x

∣∣∣
(x1,y1)

. . .

. (8)

By computing a, we then obtain the sought solution as w = Va.
For example, for a simply supported slab, the boundary conditions are w(xb, yb) = wb

for some boundary b. We consider a square slab, with n = 20 divisions per dimension,
dx = 1/99, L = (n − 1)dx, and w(xb, yb) = 0, at the four linear boundaries, and q =
1, the normalized load to comprise values of 1 everywhere (Equation (7)). After the
computation of a with Equation (8), we may easily compute the corresponding shear forces,
which are defined by

Qx = −D
∂

∂x

(
∂2w
∂x2 +

∂2w
∂y2

)
, Qy = −D

∂

∂y

(
∂2w
∂x2 +

∂2w
∂y2

)
.

We utilize the computed a and matrices Vxxx, Vxyy, Vyxx, Vyyy. Newton’s equilibrium
states that the total shear force at the boundaries should be equal to the total applied force.
For a constant load over the plate, the Equilibrium error

max
∣∣∣∣∫A

q(x, y)− ∑ Qx,y

∣∣∣∣,
for p = 50 bits is 6.924 × 10−05, and for p = 2000, it is 2.242 × 10−591. We observe that
there is a large difference, though the errors are small, even with p = 50 bits. Interestingly,
utilizing a concentrated load by loading the nodes close to (0, 0), the inversion error

max

∣∣∣∣∣∣∣∣∣


Vx4 + 2Vx2y2 + Vy4

V(x1, y1)
Vx(x2, y2)

. . .


−1

×


Vx4 + 2Vx2y2 + Vy4

V(x1, y1)
Vx(x2, y2)

. . .

− I

∣∣∣∣∣∣∣∣∣,
for p = 50 bits is 43.988, and for p = 2000, it is 4.381 × 10−587, further highlighting the
significance of accuracy in the calculations.
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5. Conclusions

Function approximation exists in the core calculations of computational mechanics,
with implications for other disciplines. In this work, a high arithmetic precision, when
applied to Taylor polynomials, is found capable of executing various numerical tasks
precisely. Particularly, a high arithmetic precision significantly improves accuracy in solving
beam deflection equations, demonstrating the importance of computational precision in the
solution of ODEs. A high precision significantly enhances the solution accuracy of partial
differential equations for slab deformation under a vertical load, highlighting the critical
role of computational precision in PDEs. Furthermore, traditional issues like the Runge
phenomenon, commonly encountered in numerical approximations, are eliminated with
the use of a HAP. The radius of convergence for the Taylor series is precisely computable
using a HAP, providing valuable insights into the interpolation accuracy and potential
extrapolation range of an unknown function.

Overall, the use of Taylor polynomials in a high arithmetic precision showcases poten-
tial as a unified approach to various numerical computations, delivering highly accurate
results and revealing that some numerical instabilities are due to computational inaccu-
racies rather than methodological issues. Future research can include parallel computing
techniques or optimized matrix inversion strategies to deal with the Vandermonde matrix
and other related computational challenges in HAP. Taylor polynomials with a high pre-
cision could also be applied to more complex systems and geometries in computational
mechanics, as well as other engineering problems involving function approximation, such
as fluid dynamics and quantum physics. Extending the research to high-dimensional
problems where function approximation becomes significantly more complicated could
also be an important field, addressing the practical aspects of high-precision calculations for
partial differential equations and integral equations in a high-dimensional space. The study
of precision in calculations illustrates the odd but fundamental epistemological principle
that even 1 + 1 = 2 might be falsified [37].

Funding: We acknowledge support from project “SimEA” funded by the European Union’s Horizon
2020 research and innovation program under Grant Agreement No. 810660.

Data Availability Statement: All the data and results may be reproduced by the computer code on
GitHub https://github.com/nbakas/TaylorBigF.jl. The code is in generic form, so as to solve for
any numerical problem with the discussed methods. The code is written in Julia [24], utilizing the
MPFR [38] and GMP [9] Libraries.

Conflicts of Interest: The author declares no conflict of interest.

Nomenclature

x Variable x, corresponding to f (x)
x0 Initial point in the approximation
n Number of terms in the Taylor series, also number of nodes
L Length of the given domain
E Modulus of elasticity
I Inertia of the beam
f (x) Analytic function
f Vector of function values
x Vector of points
r Radius of convergence
V Vandermonde matrix
df Vector of the derivatives of the function f (x)
D Flexural rigidity of plate
w Deflection of the beam/plate
q External load of beam/plate
a Coefficient vector for Taylor polynomials
v Poisson constant
h Slab’s thickness

https://github.com/nbakas/TaylorBigF.jl
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