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Abstract: Random vibration analysis is a mathematical tool that offers great advantages in predicting
the mechanical response of structural systems subjected to external dynamic loads whose nature is
intrinsically stochastic, as in cases of sea waves, wind pressure, and vibrations due to road asperity.
Using random vibration analysis is possible, when the input is properly modeled as a stochastic
process, to derive pieces of information about the structural response with a high quality (if compared
with other tools), especially in terms of reliability prevision. Moreover, the random vibration approach
is quite complex in cases of non-linearity cases, as well as for non-stationary inputs, as in cases of
seismic events. For non-stationary inputs, the assessment of second-order spectral moments requires
resolving the Lyapunov matrix differential equation. In this research, a numerical procedure is
proposed, providing an expression of response in the state-space that, to our best knowledge, has not
yet been presented in the literature, by using a formal justification in accordance with earthquake
input modeled as a modulated white noise with evolutive parameters. The computational efforts
are reduced by considering the symmetry feature of the covariance matrix. The adopted approach is
applied to analyze a multi-story building, aiming to determine the reliability related to the maximum
inter-story displacement surpassing a specified acceptable threshold. The building is presumed to
experience seismic input characterized by a non-stationary process in both amplitude and frequency,
utilizing a general Kanai–Tajimi earthquake input stationary model. The adopted case study is
modeled in the form of a multi-degree-of-freedom plane shear frame system.

Keywords: non-stationary random process; covariance analysis; Lyapunov equation; dynamic
response and reliability

1. Introduction

Taking into account how structures behave in a random vibration setting is a prevalent
method used to assess actual response scenarios [1]. This applies to various contexts,
e.g., aircraft, vibrating machinery, and buildings subjected to marine or wind vibrations.
These engineering scenarios involve examining how structures respond to dynamic and
nondeterministic actions, and random dynamic analysis proves to be the most effective
mathematical tool for this purpose [2]. This decision arises from the inherent randomness
in inputs, a well-documented aspect in the field of random vibration theory (as evidenced
by [3–6]). Approaching the problem using these methodologies enables acquiring relevant
and reliable information about the structural response, typically unattainable through
deterministic methods. The strength of the random vibration approach lies in its high-
quality information, including the quantification of structural integrity, which is significant
in probabilistic safety assessments. Failure is generally described as the initial moment
when a structural crisis begins, tying it to the first instance where one or more measurements
of structural response exceed a safe range. This usually involves assessing structural
response indicators like displacements, stresses, buckling loads, or natural frequencies.
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The random vibration problem for linear mechanical systems subject to Gaussian
processes input is posed in stationary environmental conditions as the solution of the
so-called Lyapunov matrix equation [7,8] to obtain the response covariance that defines
completely the statistics of the system. Challenges in solving the Lyapunov equation have
constrained the size of the meshes that could be employed. The Lyapunov equation (i.e.,
Lyapunov matrix equation, AR + RAT + B = 0, A system matrix, R covariance matrix,
and B input matrix, see Section 2) is typically achieved using algorithms like Bartels–
Steward or Hessenberg–Schur. These methods require the Schur factorization of system
matrix A. Various software tools for scientific computing, such as Matlab and Python,
employ adapted versions of these algorithms, delivering satisfactory results for small dense
matrices A and B. This involves O

(
N3) floating-point operations and O

(
N2) memory [9].

Approaches designed for large system dimensions have been developed, for instance, the
Krylov subspace methods [9–11] or the matrix sign function decomposition with Newton’s
iterative method.

In non-stationary cases, under the same assumptions (linear system and Gaussian input)
the time covariance approach is more complex as the Lyapunov matrix covariance becomes
a differential one (i.e., Lyapunov differential matrix equation,

.
R = AR + RAT + B = 0, see

Section 3) whose numerical solution is sometimes more complex, and there are not standard
tools to be implemented, differently from the stationary case.

The main objective of this research is to introduce a numerical technique for evaluating
response covariance in the time domain for linear structures subjected to non-stationary
stochastic loads. This method is tailored for a generic scenario where the input involves a
non-stationary modulated filtered white noise process, capable of simulating various real
physical loads like earthquakes [12–15].

To achieve a versatile non-stationary approach applicable across different contexts, the
structural response is assessed using a covariance approach, as understanding the evolving
covariance matrix in the space state is crucial for evaluating reliability, particularly in terms
of initial failure events.

To address this, a time-step integration algorithm is proposed, employing the Eu-
ler implicit method to solve the differential Lyapunov matrix equation. The outcome
is a sequential algorithm that requires the numerical solution of a stationary Lyapunov
matrix equation at each time step, a task achievable through standard numerical tools.
This method is implemented to reduce computational expenses and has been specifically
applied to a multi-story building represented by a shear frame structure, examining dy-
namic responses under seismic base motions and assessing the reliability concerning initial
threshold crossings.

2. Linear Elastic MDoF Subject to Non-Stationary Random Vibration

Many instances of real-life structural issues revolve around configurations that match a
linear viscoelastic system of lumped masses. These systems face either steady or fluctuating
forces. This study considers both scenarios to evaluate how structural responses vary
statistically, employing the covariance approach [13,14].

This method presents notable benefits, especially in dynamic conditions, where inputs
are simulated as white noises. These can be filtered to better match real dynamic occur-
rences. By solving the equations of the dynamic equilibrium system, this technique gauges
the structural response of a deterministic second-order linear mechanical system composed
of lumped masses when subjected to probabilistic dynamic input.

M
..
Xs(t) + C

.
Xs(t) + KXs(t) = Gs f (t) (1)

where Xs,
.

Xs and
..
Xs are the structural displacement, velocity, and acceleration process

vectors. M, C and K are the mass, viscous, and stiffness symmetric matrices. While the
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mass matrix is always positive definite, the damping and stiffness matrices are positive
semi-definite. The vector

f (t)T = [ f1(t), f2(t), . . . , fn(t)] (2)

accumulates n stochastic excitations applied to the structure, while Gs represents an m x n
matrix linking the excitation components of the forcing vector to the structural degrees of
freedom. When the elements of the system excitations vector are stationary white noises,
the first- and second-order statistical moments remain unchanged over time.〈

f ST
i (t)

〉
= µ fi

(3)〈
f ST
i (t1) f ST

j (t2)
〉
= [J]ijδ(t2 − t1) =

[
RST

f f (t2, t2)
]

ij
(4)

Moreover, if f ST
i (t) are Gaussian excitations, then the responses and their time derivatives

constitute a Markov vector in the dimension phase state.
The matrix, related to a vector satisfying the shot noise properties (usually denoted as

a shot noise vector), has diagonal elements equal to the autocovariance intensity of each
force and extra-diagonal elements representing the level of correlation between two generic
different forces, so that can vary from if and f j are completely correlated, to zero, if and are
completely un-correlated.

Then, in the case of complete un-correlated forcing loads, the matrix is replaced by the
simpler diagonal matrix of components, where the elements are the input power spectral
density of each entry.

A commonly used method involves expressing a non-stationary input through an
intensity modulation of a stationary process, often referred to as uniform modulation.
This method assumes that the intensity of the process alters over time according to a
deterministic function φ(t), while the spectral contents remain constant. Consequently,
in the case of time modulation, a stationary forcing process vector is substituted by the
following non-stationary vector:

f
NS

(t) =
[

φ1(t) f ST
1 (t), φ2(t) f ST

3 (t), . . . , φn(t) f ST
n (t)

]
(5)

with the stochastic characterization〈
f NS
i (t)

〉
= φi(t)µ fi

(6)〈
f NS
i (t1) f NS

j (t2)
〉
= φi(t1)φj(t2)[J]ijδ(t2 − t1) =

[
RNS

f f (t1, t2)
]

i, j
(7)

and, in case of un-correlated excitations, the covariance matrix RNS
f f (t2, t2) is diagonal

RNS
f f (t1, t2) =

〈
f NS
i (t1) f NS

j (t2)
〉
=

{
2πSi

0 φi(t1)φi(t2)δ(t2 − t1) if i = j
0 if i ̸= j

(8)

Pre Filters Technique

In time-domain stochastic analysis, two primary methods are typically employed.
The first, applicable when the input’s autocorrelation function is known, has been pre-
viously outlined. The second involves modeling input processes by solving differential
equations using filter techniques, where the input is a white noise process—referred to as
the pre-filter technique.

The first method is advantageous when the input closely aligns with a shot noise
process, providing accurate representation. However, this representation is limited as many
real-world phenomena exhibit noticeable frequency modulation, making it suitable only in
specific cases.
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The second approach is more versatile and capable of representing phenomena with
varying frequency contents, even those changing over time. This flexibility is crucial
for accurately describing phenomena that could lead to resonant effects in structures.
Additionally, this method retains the advantages associated with shot noise inputs, making
it the preferred choice for many real structural issues.

In particular, using the pre-filter approach, the filter response is described by the 2m f
filter space state vector, the solution of the 2m f set of differential equations

.
Z f = A f (t)Z f + G f W f (t) (9)

that generally could have a time-dependent form, when not only the frequency but also
the amplitude of loads has an intrinsic evolutive nature. W is a vector of n f white noise
processes (stationary or non-stationary), G f is a m f xn f matrix that couples the excitation
components of the forcing vector to the filter degree of freedom, and finally, A f (t) is the
2m f X. 2m f filter system matrix, whose generic form is

A f (t) =

(
0 I

H1
f (t) H2

f (t)

)
(10)

Then, adopting the pre-filter technique, the motion differential equations are written in
the space state as

.
Zs(t) =

(
0 I

−M−1K −M−1C

)
Zs(t) +α(t)Z f (t) (11)

.
Z f = A f (t)Z f + G f W f (t) (12)

where

As =

(
0 I

H1
s H2

s

)
(13)

is the structural system matrix

α(t) =
(

0 0
Gsα1(t) Gsα2(t)

)
(14)

is a 2nsx2ms time-dependent matrix

Zs =
(

Xs
.

Xs

)T
(15)

is the structural space vector. Equations for the space state structure can be summarized as

.
Z(t) = A(t)Z(t) + G(t)W f (t) (16)

where
ZT

=

(
Xs, X f ,

.
XS,

.
X f

)T
(17)

G(t) =
(

0
G f

)
(18)

is a new global 2m = 2
(

ms + m f

)
space state vector (structure plus filter) and

d
dt


Xs
X f
.

XS
.

X f

 =


0 0 I 0
0 0 0 I

H1
s Gsα1(t) H2

s Gsα2(t)
0 H1

f (t) 0 H1
f (t)




Xs
X f
.

XS
.

X f

+


0
0
0

G f W f

 (19)
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The structural matrix and response vectors are contingent on the design parameter
vector b, which encompasses elements such as structural stiffness, damping, masses, and
various mechanical parameters like cross-sections, Young’s modulus, and boundary condi-
tions, among others. Filter parameters and input intensity are also included within this set
of design parameters. Consequently, the system matrix and equations, comprising both the
space state structure and filter equation, can be explicitly reconfigured as a function of this
design parameter vector:

A(b, t) =


0 0 I 0
0 0 0 I

H1
s (b) Gsα1(b, t) H2

s (b) Gsα2(b, t)
0 H1

f (b, t) 0 H1
f (b, t)

 (20)

.
Z(b, t) = A(b, t)Z(b, t) + G(b, t)W f (t) (21)

3. Space State Covariance Evaluation

In case of zero initial conditions, the solution of (space state structure + filter equation)
has the following general expression:

Z(t) =
∫ t

0
Φ(t, τ)GW f (t)dτ (22)

where the matrix Φ(t1, t2) (see for example [3]) is usually called transition matrix. The mean
space state vector µz(t) could be determined by the differential vectorial equation:

.
µz

(
b, t
)
= Aµz

(
b, t
)
+ Gµw(t) (23)

The covariance matrix is as follows:

RZZ(t1, t2) =

(
RXX(t1, t2) R

X
.

X
(t1, t2)

R
X

.
X
(t1, t2) R .

X
.

X
(t1, t2)

)
(24)

This second-order statistical moments matrix, due to its symmetry, is described by(
2m2 + m

)
independent elements and can be evaluated by the well-known Lyapunov

differential matrix equation

.
RZZ(b, t) = A(b, t)RZZ(b, t) + RZZ(b, t)A(b, t)

T
+ B(t) (25)

where
B(t) =

〈
Z(t)GTW(t)T

〉
+
〈

GW(t)ZT
(t)
〉
= P(t) + PT(t) (26)

and where P can be written as

P(t) =
∫ t

0
Φ(t − τ)G

〈
W(τ)WT

(t)
〉

GTdτ =
∫ t

0
Φ(t − τ)N(t, τ)dτ (27)

and
N(t, τ) = GRww(t, τ)GT . (28)

It must be noticed that Equation (25), which is valid for the non-stationary case, in a
stationary environmental situation, is simplified in the following equation that contains no
more time dependency:

A
(

b
)

RZZ

(
b
)
+ RZZ

(
b
)

A
(

b
)T

+ B = 0 (29)
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A serious simplification takes place when the forcing vector is a white noise process
as defined in (Rww stationary) or (Rww non-stationary). In these cases, the matrix B(t) is
equal to

B(t) =
(∫ t

0
Φ(t − τ)GRww(t, τ)GTdτ

)
+

(∫ t

0
Φ(t − τ)GRww(t, τ)GTdτ

)T
(30)

where both integrals above are equal due to the Dirac function properties. Finally, B can be
written as follows:

B(t) = 2GRww(t, t)GT =

[
0mxm 0mxm

0mxm L(t)

]
(31)

where the MXM submatrix is diagonal with the elements

[L(t)]k, k =
2πS0k

m2
k

φ2
k(t) (32)

Meanwhile, for some applications, covariance information about structural accelera-
tion is needed so that the matrix

R ..
X

..
X
(b, t) =

〈
..
X

..
X

T〉
(33)

must be determined, and it is easily obtainable by the relation

R ..
X

..
X
(b, t) = D(b, t)RZZ(b, t)D(b, t)T (34)

where
D(b, t) =

[
H1

s (b) Gsα1(b, t) H2
s (b) Gsα2(b, t)

]
. (35)

4. Time Integration BF Procedure for R and R, b

Even if many numerical standard codes exist for the stationary Lyapunov equation (the
Lyapunov equation in stationary conditions is where A and B are the input matrices and X is
the unknown one), there are limited examples for addressing the non-stationary Lyapunov
equation, and so a simple numeric implicit integration method is proposed. In this context,
a straightforward numerical implicit integration method is suggested. Specifically, the
modified Euler method is used, in which the period is divided in m equals time steps d in
each sub-period ∆t, and a linear variation in the time derivative covariance matrix

.
R(t) is

assumed. Under this assumption, we have the (standard implicit Euler method):

R(h+1) = R(h) +
1
2

∆t
[

.
R
(h+1)

+
.
R
(h)
]

(36)

where the symbol a(h) denotes the generic quantity a evaluated at time t = h∆t. By using
the matrix equations evaluated at times t(h+1) and t(h), we obtain the following m algebraic
matrix equations of the Lyapunov type[(

1
2 (I − ∆tA)

)
R(h+1) + R(h+1)

(
1
2 (I − ∆tA)

)T
]
=[(

1
2 (I + ∆tA)

)
R(h) + R(h)

(
1
2 (I + ∆tA)

)T
]
+ ∆t

2

(
B(h) + B(h+1)

) (37)

that are solved in sequence for each time value, starting from the initial time value and the
initial covariance matrix value.

In this way, the m unknown matrices (h = 1, . . . , m) are determined. By assuming a
constant or time variable (depending on the filter parameters variation), the matrices are

PB = 1
2 (I − ∆tA)

PF = 1
2 (I + ∆tA)

(38)
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and we discern that a more compact form of (Rnum1) is[
PBR(h+1) + R(h+1)PT

B

]
=
[
PFR(h) + R(h)PT

F

]
+

∆t
2

(
B(h) + B(h+1)

)
(39)

that could be solved at each step via a standard stationary Lyapunov equation solver, for
example, the leap in the standard Matlab toolbox, in the form

PBR(h+1) + R(h+1)PT
B + C(h+1) = 0 (40)

where C(h+1) = −
([

PFR(h) + R(h)PT
F

]
+ ∆t

2

(
B(h) + B(h+1)

))
.

Covariance could be integrated as proposed in the following integration scheme
(Algorithm 1), where nt is the number of time integration steps, T is the total analysis
time, nb the number of design parameters, and, for the sake of simplicity in notation,
S(h, j) = R, bj((h − 1)∆t):

Algorithm 1: Integration scheme
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5. Numerical Example 
The method proposed is used to analyze a multi-story building under earthquake 

forces. To maintain a balance between simplicity and generality, a shear-type plane frame 
structure is chosen as the model (as shown in Figure 1). This choice is reasonable because, 
in many buildings, the floor slabs possess very high in-plane stiffness, allowing them to 
be treated as rigid diaphragms. This simplification significantly enhances analysis 
efficiency without substantially compromising the accuracy of response assessment to 
ground forces. 
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5. Numerical Example

The method proposed is used to analyze a multi-story building under earthquake
forces. To maintain a balance between simplicity and generality, a shear-type plane frame
structure is chosen as the model (as shown in Figure 1). This choice is reasonable because,
in many buildings, the floor slabs possess very high in-plane stiffness, allowing them to be
treated as rigid diaphragms. This simplification significantly enhances analysis efficiency
without substantially compromising the accuracy of response assessment to ground forces.
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m
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m
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N-3

N-2

N-1

N

Figure 1. Mechanical scheme of analyzed plane frame shear type.

Moreover, to further enhance computational efficiency, the matrix condensation tech-
nique is employed. The primary assumption in modeling the building’s mechanics is
linearity, which remains valid considering the limitations on horizontal displacements
necessary for operational service levels. This assumption holds when the maximum inter-
story drift approaches or reaches the elastic limit of structural displacements, typical in full
operational design demands.

For the sensitivity analysis, the design vector comprises the masses, stiffness, and
damping of each floor. This comprehensive vector allows for the evaluation of how
variations in these parameters impact the final structural reliability.

b = (b1, b2, b3) =
(

mT , k
T

, cT
)

where b2 = k
T
= (k1, k2, k3, . . . , kn).
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5.1. Equations of Motion

To capture the essential seismic characteristics involving spectral and time modulation,
a non-stationary modulated Kanai–Tajimi process is utilized to model stochastic ground
motion. This process characterizes the base acceleration

..
Xg(t) acting at the structure’s base

as follows: { ..
Xg(t) =

..
X f (t) + ϕ(t)w(t)

..
X f (t) + 2ξgωg

.
X f (t) + ω2

gX f (t) = −ϕ(t)w(t)

where X f (t) is the response of the Kanai–Tajimi filter, with a frequency ωg and damping
coefficient ξg, and w(t) is the white noise, whose constant bilateral power spectral density
(PDS) function is S0. This last parameter is related to the peak ground acceleration (PGA)
..
X

max
g by means of relation [16]

S0 = 0.2222
ξg

( ..
X

max
g

)2

πωg

(
1 + 4ξ2

g

)
The non-stationary nature is introduced through the deterministic temporal modula-

tion function ϕ(t), regulating the intensity variations while preserving the earthquake’s
frequency characteristics. In this scenario, the specific modulation functions proposed by
Jennings [17] are adopted:

φ(t) =


(

t
t1

)2
t < t1

1 t1 ≤ t ≤ t2

e−β(t−t2) t > t2

(41)

The motion equations for the complete structural system are then as follows:

..
X(t) + M(bC(b)

.
X(t) + M(bK(b)X(t) = r

..
Xg(t)..

X f (t) + 2ξ f ω f
.

X f (t) + ω2
f X f (t) = −w(t)ϕ(t)

where the drag vector nx1 is r = [1, 1, 1, . . . , 1, 1]T , M(b), C(b), and K(b) are, respectively,
mass, viscosity, and stiffness nxn principal structure matrices, whose general expression
are reported in Appendix A with reference to the rigid floor assumption. The three vectors
..
X(b, t),

.
X(b, t), and X(b, t) are ground relative acceleration, velocity, and displacement

nx1 vectors. In the case of the analyzed structure, the mass matrix is diagonal and the two
viscous and stiffens matrices are tri-diagonal once. The mechanical filter parameters, the
damping ratio and frequency, are ξ f and ω f , and the base excitation

..
Xg(t) is then equal to

ϕ(t)w(t) +
..
X f (t).

Introducing the state vector Y(b, t) =
{

XT
(b, t), X f (t)

}T
, the motion equation system

(motion Equation (1)) can be rewritten as
..
Y(b, t) = −H1(b)

.
Y(b, t)− H2(b)Y(b, t)− f (t)

where the two matrices H1(b) and H2(b), with the vector f (t), are defined for this specific
problem and shown in Appendix B.

The N = n+ 1 degree of freedom 2nd-order differential system (second-order moment
equals complete) can be replaced with a 2N DoF 1st-order differential equation in the space
state as follows:

.
Z(b, t) = A(b)Z(b, t) + F(t)
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where the space vector 2N is Z(b, t) =
{

Y(b, t),
.

Y(b, t)
}

and the system matrix (2N X. 2N)

A(b) =
(

0n+1 In+1

−H2(b) −H1(b)

)
and the 2N forcing vector F(t) =

{
0n+1

f (t)

}
.

5.2. Reliability Evaluation

With reference to the proposed problem, it is required to evaluate the probability that
each story drift Uh of the floor exceeds the thresholds, at least once in a given earthquake
duration. Then, for each hth level, this failure event is associated with the condition
|xh+1 − xh| = |uh| = βh. For each level h, the reliability vector element rh(b, T) is defined as
where, under the Poisson hypothesis for threshold crossing (that is an acceptable hypothesis
for rare events as in [18]), we obtain

rh(b, βh, T) =

exp

{
− 1

π

∫ T
0

(
σ .

Uh
(b, τ)

σUh
(b, τ)

√
1 − ρ2

Uh
.

Uh
(b, t) exp

{
− 1

2 η2
h(b, βh, τ)

}
χ
[
dUh(b, βh, t)

])
dτ

}

and the final global structural reliability is then

rglobal(b, β, t) = ∏n
h=1 rh

(
b, βh, t

)
Although exact analytical solutions for this are generally unavailable, it is known that

the equation (approximate upper-bound global reliability) provides an approximate, upper-
bound estimate, as stated above, and can be used for design and pre-design purposes from
a practical viewpoint, as in this study. In order to evaluate the reliability vector (adopting
the Poisson approach) related to the inter-floor relative displacement threshold crossing,
one needs to introduce the inter-story drift vector with the associated covariance matrix
RZU ZU (t) (see Appendix C).

The reliability vector rU previously defined can be evaluated as the collection of

rUh(T) = r0 e−
∫ T

0 υ+Uh(τ)dτ

where v+Uh
(ηVh) is a function of σ2

Uh
, σ2.

Uh
, and ρ

Uh
.

Uh
, accordingly, and are, respectively, the h

and the n + h diagonal elements of RZU ZU (t) and ηUh = βh
σUh

, with βh being the hth barrier.

The equation represents the probability that the inter-story displacement will cross
the maximum acceptable value βh during the time interval [0, T]. All the barriers can be
collected in the barrier vector. Its elements are assumed constant and equal to 3.0 cm for
each floor, that is, there is a lateral drift equal to 1.0% in the case of inter-story height of 3 m.

5.3. System Parameters

The chosen building configuration consists of three stories, each with a uniform mass
equal to x 105 (kg) for each level. Lateral stiffness to the first floor is present, and it
is assumed that a linear reduction decreases its value to the at the top floor (k2 = 5.1 ·
107(N/m) and k3 = 4.2 · 107(N/m)). Finally, damping is evaluated by setting ci = 2

√
miki

(ci = [3.0 2.8 2.5] 105(N s/m)).
The seismic characterization is based on a peak ground acceleration (PGA) of 0.45 (g),

and four distinct total durations (10, 20, 30, and 40 s) are employed. Figure 2 displays the
structural inter-story covariances, measured in terms of displacement (a) and velocity (b).
It is noteworthy that for durations exceeding this, structural responses attain a stationary
level. Moreover, for this particular structural configuration, the covariance response of the
first level is greater than the other two, even though the third is approximately half, while
the second is only slightly smaller.
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Figure 2. Inter-story displacements (a) and velocities (b) covariance response of a 3DoF system
subject to modulated filtered white noise with different time durations. Continuous lines are for
t_{d} = 10 (s), dashed lines are for t_{d} = 20 (s), dash–dot lines are for t_{d} = 30 (s), and finally, dotted
lines are for t_{d} = 40 (s). Blue lines represent the inter-story drift response on the first floor, magenta
lines on the second floor, and red lines refer to the third floor.

Figure 3 illustrates the structural safeties assessed at each lateral inter-story drift
threshold for failure, along with the overall reliability calculated as an approximate upper-
bound global reliability. It is important to observe that the probability of failure is highest
for the first inter-story drift threshold, followed by a slightly lower probability for the
second one, and finally, the third threshold has a considerably negligible probability of
failure (i.e., r3 = 1).
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Figure 3. System reliability of a 3DoF system, evaluated as the probability of maximum inter-story drift
exceeds a given threshold of 3 (cm). Results are obtained for different values of t_{d}: continuous lines
are for t_{d} = 10 (s), dashed lines are for t_{d} = 20 (s), dash–dot lines are for t_{d} = 30 (s), and finally,
dotted lines are for t_{d} = 40 (s). Blue lines are for first-level reliability, magenta lines are for second-level
reliability, and red lines are for third-level reliability. Black slight lines are for global system reliability.
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6. Conclusions

A numerical time integration algorithm is proposed to deal with non-stationary ran-
dom vibration problems utilizing a covariance approach. The algorithm is developed to
solve the differential matrix equations that govern the evolution of the stochastic response
of structures subjected to random inputs. To create a versatile non-stationary approach
applicable in various contexts, the structural response is assessed through a covariance
approach. The reliability concerning first-crossing failure events is then derived based
on the knowledge of the evolving covariance matrix in the space state. The algorithm is
proposed for a generic Gaussian input of filtered non-stationary processes, representing
diverse real-world physical loads. To solve this problem, the time integration algorithm
involves differentiating the Lyapunov equation using an adapted Euler implicit scheme,
which can be easily implemented using standard tools in various programming codes.
Finally, the proposed algorithm is applied to analyze the dynamic responses of a multistory
building, idealized as a shear frame structure.
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Appendix A

Matrices, C and K are, for a shear-type frame, respectively diagonal and tri-diagonals:

M =



m1 0 0
0 m2 0

0 m3
. . .

. . . . . .
0 mn−1 0

0 mn


(A1)

K =



k1 + k2 −k2 0
−k2 k2 + k3 −k3 0

0 −k3 k3 + k4
. . .

0
. . . . . . −kn−1 0

−kn−1 kn−1 + kn −kn
0 −kn kn


(A2)

C =



c1 + c2 −c2 0
−c2 c2 + c3 −c3 0

0 −c3 c3 + c4 −c4

0
. . . . . . . . . 0

−cn−1 cn−1 + cn −cn
0 −cn cn


(A3)
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Appendix B

Matrices H1 and H2 are

H1 =



2ξ f ω f
2ξ f ω f

.
M−1C .

2ξ f ω f
2ξ f ω f

0 0 0 . . . . . . 0 0 −2ξ f ω f


(A4)

H2 =



ω2
f

ω2
f

.
M−1K .

ω2
f

ω2
f

0 0 0 . . . . . . 0 0 −ω2
f


(A5)

where ω2
f and ξ f are filter characteristics and the forcing vector is

f (t) = [0, 0, 0, . . . . . . , 0, φ(t)w(t)]T .

Appendix C

The covariance matrix RZU ZU

(
b, t
)

is defined in the linear space of stochastic pro-

cesses as a linear equation related to the inter-story drift U(b, t) and displacement X(b, t)
vectors, holds U(b, t) = TX(b, t) where the transform matrix T is a bi-diagonal one, and is
independent of the design vector:

T =



1 0 0 0 · · · 0
−1 1 0 0

0 −1 1 0
...

−1 1
. . .
. . . 1 0 0

... 0 −1 1 0 0
0 −1 1 0

0 · · · 0 1


(A6)

The covariance matrix RZU ZU

(
b, t
)

is then related to RZZ

(
b, t
)

through the following
connection:

⌢
T =

(
T 0
0 T

)
(A7)

ZV(b) =
⌢
TZ(b) (A8)

RZU ZU (b, t) =
⌢
TRZZ(b, t)

⌢

TT (A9)
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