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Abstract: A simple cell population growth model is proposed, where cells are assumed to have a
physiological structure (e.g., a model describing cancer cell maturation, where cells are structured by
maturation stage, size, or mass). The main question is whether we can guarantee, using the death
rate as a control mechanism, that the total number of cells or the total cell biomass has prescribed
dynamics, which may be applied to modeling the effect of chemotherapeutic agents on malignant cells.
Such types of models are usually described by partial differential equations (PDE). The population
dynamics are modeled by an inverse problem for PDE in our paper. The main idea is to reduce this
model to a simplified integral equation that can be more easily studied by various analytical and
numerical methods. Our results were obtained using the characteristics method.

Keywords: cell population model; physiological structure; conservation law; the characteristics
method

1. Introduction

The central problem in population ecology is determining how the age structure of
a population evolves over time and understanding the factors that regulate animal and
plant populations. But age is just one of the many structure variables that demographers
and ecologists study. Any quantity that is characteristic of an individual’s state can be
used as a structural variable; these include maturation level, size, mass, and so on. Thus,
age-structured models are close to more general physiologically structured models. The use
of physiologically structured models to describe biological systems has attracted the interest
of many researchers and has a long standing tradition. The books by Brauer and Castillo-
Chavez [1], Ewens [2], Edelstein-Keshet [3], Kot [4], Rutz [5], and Murray [6] give a good
survey of the wide spectrum of applications of such models.

In many real-life problems, all of the input (functional) parameters may not be known
a priori and cannot be observed directly. So, in parameter identification problems (a
subclass of inverse problems), we ask whether it is possible to take certain additional
measurements or, mathematically, to impose some additional conditions describing the
modeling process, and thereby determine unknown parameters from these additional
experimental data. Inverse problems are currently of great research interest and, hence,
the development of efficient analytical and numerical methods to deal with such problems
in population biology is an important task of applied mathematics. Direct problems for
population models incorporating physiological structures have been extensively studied
for many kinds of models. In recent years, many researchers have focused their attention
on developing methodologies for solving inverse problems of structured population dy-
namics (see, e.g., Shcheglov [7], Andrusyak [8], Mobius [9], Bansal et al. [10], Kirk [11],
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Charleboisa [12], Gyllenberg et al. [13], Perthame and Zubelli [14], Cortes et al. [15], and
Borges [16]).

This research is devoted to a simple cell population growth model in which cells are
assumed to have a physiological structure (e.g., a model describing cancer cell maturation,
where cells are structured by maturation level, size, or mass). For example, Brauer and
Castillo-Chavez [1] suggested a simplified model for a chemotherapy course of leukemia;
a more detailed motivation is given in Edelstein-Keshet [3] and the role of mathematics in
oncology is also discussed in Logan [17] and Murray [6]. We study the simple case when
cellular dynamics is modeled by a single first-order PDE analogous to the McKendrick-von
Foerster equation. Such an equation is hyperbolic, and the fundamental idea associated
with hyperbolic equations is the notion of a characteristic, a curve in space-time along
which signals propagate. So, using the effective hyperbolic continuous-time models method
of characteristics (see, e.g., Brauer and Castillo-Chavez [1], Logan [17], Mantzaris [18]),
a solution to the inverse problem can be expressed as a fixed point of some appropriately
chosen integral operator in a suitable metric space. We note that the techniques and
methods of this study are close to those used in the author’s previous papers [8,19,20].

The authors [21] study the model of cell division and consider the issue of deter-
mining the division rate based on the analysis of the solution of the inverse problem for
the differential expansion of the differential–dilation equation. The results of the theo-
retical analysis are confirmed by several numerical experiments for real data based on
the analysis of tumor cells. In paper [22], the inverse problem that describes the model
of age-structured cell populations is considered. This model uses the McKendrick-Von
Foerster-like equation with a mitosis-dependent death rate. The correctness of the solution
is proved based on Fredholm’s integral equation. The size-structured model of cell division
and the question of determining the birth rate are considered in [23]. For the numerical
analysis, a one-dimensional inverse problem for the integro-differential equation, set on a
half-line, was used. The majority of attention is paid to the comparison of the efficiency
of different algorithms from the computational point of view. The authors of [24] studied
the mathematical properties of a general two-dimensional model of cell division. Since
the problem of eigenvalues was solved, the long-time solution convergence was derived.
Reference [25] considers the problem of determining the inverse coefficient of recovery of
unknown parameters in the biofilm growth model, which is reduced to a problem for a
nonlinear partial differential equation with Dirichlet initial conditions and boundary condi-
tions. The conducted numerical studies made it possible to improve the definition of a set
of physical quantities related to the biofilm growth model. In [26], the inverse optimization
problem with constraints was solved for the partial differential equation, which is the basis
of the convection–diffusion model of colorectal cancer cell growth. The conducted test
studies illustrate the effectiveness of the proposed method of parameter determination
and predict its application to real patient data. The authors of [27] develop and study a
tumor growth model and the related inverse problem. The diffusion equation was used to
determine the growth rate, depending on the oxygen concentration in the cell. It is sup-
posed that the source of saturation is localized on the blood vessels. The inverse problem of
restoring the position of blood vessels under the condition of the distribution of tumor cells
was investigated. In [28], the issue of identifying the usually unknown mutation law of
cancer cells was analyzed. Local and non-local mathematical models of cellular dynamics
and movement were considered. Mutation laws were identified based on macroscopic
images of tumors. Since the investigated inverse problems are incorrect, the Tikhonov
regularization technique was used. Reference [29] presents a model that describes the
dynamics of two adjacent cell populations with different proliferative and mechanical
characteristics. The continuous analogue of this discrete model is reduced to a problem
with a free boundary for cell densities. An existence result for the free boundary problem is
proved and solutions are constructed.

As shown by a review of the problem’s state and an analysis of literary sources,
the problem considered in the article is relevant, and finding effective approaches for
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solving it is an important and challenging task. The purpose of this work is to show the
application of PDE theory to a population model. This approach allows us to reduce a quite
complicated mathematical problem to much simpler integral equation, incorporating all
the required conditions and relationships imposed by the problem.

2. Population Model with Physiological Distribution

Suppose that a population is structured by mass or some other physiological quantity
that is characteristic of an individual’s state, say, maturation level, size, and so on. Let
u(x, t) be an unknown density of the population at time t with respect to a structural
variable x. Here, and in the entire article, we assume, without loss of generality, that x
denotes a mass variable. Thus, the number of individuals (cells) at any time t having a mass
between x1 and x2 is

∫ x2
x1

u(x, t) dx. Therefore, the total number of individuals (cells) at time

t is
∫ M

m0
u(x, t) dx, where m0 is the mass of all newborns, and M is the maximum possible

mass that can be accumulated over lifetime. Assume, also, that individuals (cells) of mass x
accumulate mass with a growth rate g(x) (i.e., all cells with the same mass experience the
same growth rate). In addition, suppose that members may leave the population through
death, and that there is a time-dependent per capita death rate µ(t). This means that,
over the time interval from t1 to t2, the number

∫ t2
t1

∫ x2
x1

µ(t)u(x, t) dx of cells with a mass
between x1 and x2 die. In the case of modeling the population dynamics of malignant cells,
the death rate may vary with chemotherapeutic drug concentration c(t).

But the population may be changed by migration processes, so let the rate of migration
be described by a function f = f (x, t); that is, over the time interval from t1 to t2, the total
number of migrants with masses between x1 and x2 is

∫ t2
t1

∫ x2
x1

f (x, t) dx. In population
models of cancer cell growth, by migration we mean the process of carcinogenesis, that is,
the creation of cancer cells when the genes (DNA) responsible for regulating cell division
are damaged, whereby normal cells are transformed into cancer cells. Damage to DNA
can be caused by exposure to radiation, chemicals, and other environmental sources,
but mutations also accumulate naturally over time through uncorrected errors in DNA
transcription. Certain types of cancer can be caused by oncoviruses, and genetics is also
significant.

Thus, we obtain the conservation law in integral form∫ x2

x1

u(x, t2) dx −
∫ x2

x1

u(x, t1) dx

=
∫ t2

t1

g(x1)u(x1, t) dt −
∫ t2

t1

g(x2)u(x2, t) dt

−
∫ t2

t1

∫ x2

x1

µ(t)u(x, t) dx dt +
∫ t2

t1

∫ x2

x1

f (x, t) dx dt (1)

for all (x1, t1), (x2, t2) ∈ Ω := {(x, t) : m0 ≤ x ≤ M, 0 ≤ t < +∞}.
Assuming the smoothness of u = u(x, t) and g = g(x), as well as the continuity of

µ = µ(t) and f = f (x, t), Equation (1) may be transformed into the single PDE

∂

∂t
u(x, t) +

∂

∂x

(
g(x)u(x, t)

)
= −µ(t)u(x, t) + f (x, t) (2)

for all (x, t) ∈ Ω.
A parent cell at maturity, which is x = M, divides to form two daughter cells of mass

x = m0. Mathematically, this is translated into a nonlocal boundary condition. Thus, the
total number of cell divisions between time t1 and time t2 is

∫ t2
t1

g(M)u(M, t) dt. Since

this quantity must also be half of
∫ t2

t1
g(m0)u(m0, t) dt, we obtain the renewal boundary

condition
g(m0)u(m0, t) = 2g(M)u(M, t) for all t ≥ 0. (3)

In order to complete the model, we specify an initial density distribution
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u(x, 0) = u0(x) for all m0 ≤ x ≤ M. (4)

In summary, the PDE (2) and two auxiliary conditions (3), (4) define a well-posed mathe-
matical problem to determine how the mass (or some other physiological) structure of the
entire cell population evolves (see [1,6,17]).

3. Formulation of an Inverse Problem; Definition of a Weak Solution

Now we consider the inverse problem of determining how the physiological structure
of a cell population evolves over time, finding an unknown functional parameter, which
is the time-dependent death rate, so that a weighted integral of the density u(x, t) has
prescribed dynamics given by∫ M

m0

w(x)u(x, t) dx = p(t) for all t ≥ 0. (5)

This integral may represent the total number of cells in the case w(x) = 1 or the total
cell biomass in the case w(x) = x. In other words, in the inverse problem (the parameter
identification problem) we seek both the density u(x, t) and the death rate µ(t) that satisfy
the PDE (2) (or, equivalently, the integral Equation (1)) along with conditions (3)–(5).

Note that the physiological variable x and time t are related by the characteristic
equation

dx
dt

= g(x) for all (x, t) ∈ Ω.

This equation has the set of solution curves (called characteristics)∫ x

m0

ds
g(s)

− t = const,

where g is assumed to be a positive function, such that x 7→ g(x)−1 is Lebesgue integrable
in (m0, M). Therefore, the time required for individuals to grow from mass x1 to mass x2 is∫ x2

x1
g(x)−1 dx. Characteristics are the fundamental concept in the analysis of hyperbolic

problems because PDEs simplify to ODEs along these curves. Denote G(x) :=
∫ x

m0
g(s)−1ds.

Since the function x 7→ G(x) is strictly increasing, and thus it is invertible, the characteristic
curve, in τξ coordinate system, passing through the point (x, t) ∈ Ω is easily found to be

ξ = ξ0(τ; x, t) := G−1(τ − t + G(x)),

where ξ0 is regarded as a function of τ with parameters x and t. Here, and subsequently,
for notational simplicity, we drop the variables x, t, and write ξ0(τ) instead of ξ0(τ; x, t),
while keeping in mind that ξ0(τ) depends on the choice of (x, t).

Differentiating the solution u(x, t) along the characteristics yields

d
dτ

u(ξ0(τ), τ) =
∂

∂t
u(ξ0(τ), τ) + g(ξ0(τ))

∂

∂x
u(ξ0(τ), τ). (6)

Using this relation, Equation (2) can be transformed to

d
dτ

u(ξ0(τ), τ) = −
(

g′(ξ0(τ)) + µ(τ)
)

u(ξ0(τ), τ) + f (ξ0(τ), τ). (7)

Then, by the variation of parameters method, which works for all linear equations, we can
find a particular solution to (7)

u(ξ0(τ), τ) =
∫ τ

τ0

f (ξ0(τ2), τ2) exp
(
−
∫ τ

τ2

(
g′(ξ0(τ1)) + µ(τ1)

)
dτ1

)
dτ2.

Thus, the general solution to (7) has the following form:
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u(ξ0(τ), τ) = u(ξ0(τ0), τ0) exp
(
−
∫ τ

τ0

(
g′(ξ0(τ1)) + µ(τ1)

)
dτ1

)
+
∫ τ

τ0

f (ξ0(τ2), τ2) exp
(
−
∫ τ

τ2

(
g′(ξ0(τ1)) + µ(τ1)

)
dτ1

)
dτ2,

where u(ξ0(τ0), τ0) is to be determined.
Make the change of variables ξ = ξ0(τ1), g(ξ)−1 dξ = dτ1 to obtain

∫ τ

τ0

g′(ξ0(τ1)) dτ1 =
∫ ξ0(τ)

ξ0(τ0)
g′(ξ)g(ξ)−1 dξ = ln

g(ξ0(τ))

g(ξ0(τ0))
,

and, therefore,

g(ξ0(τ))u(ξ0(τ), τ) = g(ξ0(τ0))u(ξ0(τ0), τ0) exp
(
−
∫ τ

τ0

µ(τ1) dτ1

)
+
∫ τ

τ0

g(ξ0(τ2)) f (ξ0(τ2), τ2) exp
(
−
∫ τ

τ2

µ(τ1) dτ1

)
dτ2. (8)

Taking τ0 = 0, τ = t, that is, considering the previous equation on the characteristics
that emanate from points (ξ0(0), 0) on the x axis, where ξ0(0) = G−1(G(x) − t), gives,
for all m0 ≤ x ≤ M, 0 ≤ t ≤ G(x),

g(x)u(x, t) = g(ξ0(0))u(ξ0(0), 0) exp
(
−
∫ t

0
µ(τ1) dτ1

)
+
∫ t

0
g(ξ0(τ2)) f (ξ0(τ2), τ2) exp

(
−
∫ t

τ2

µ(τ1) dτ1

)
dτ2. (9)

Similarly, taking τ0 = t− G(x), τ = t, that is, considering Equation (8) on the characteristics
that emanate from points (m0, t − G(x)), gives, for all m0 ≤ x ≤ M, G(x) < t < +∞,

g(x)u(x, t) = g(m0)u(m0, t − G(x)) exp
(
−
∫ t

t−G(x)
µ(τ1) dτ1

)
+
∫ t

t−G(x)
g(ξ0(τ2)) f (ξ0(τ2), τ2) exp

(
−
∫ t

τ2

µ(τ1) dτ1

)
dτ2. (10)

Definition 1. By a weak solution (a solution in the extended sense) to the inverse prob-
lem we mean a pair of functions (u, µ), where (x, t) 7→ u(x, t) is continuous in the set
[m0, M]× [0,+∞) and t 7→ µ(t) is locally Lebesgue integrable in the interval [0,+∞) (i.e.,
for each T > 0, µ ∈ L1(0, T)), such that Equations (9) and (10), along with conditions
(3)–(5), are satisfied.

4. Reduction of the Inverse Problem to an Integral Equation

Denoting v(x, t) := g(x)u(x, t) and f0(x, t) := g(x) f (x, t), we simplify Equations (9)
and (10) to the form

v(x, t) = v(ξ0(0), 0) exp
(
−
∫ t

0
µ(τ1) dτ1

)
+
∫ t

0
f0(ξ0(τ2), τ2) exp

(
−
∫ t

τ2

µ(τ1) dτ1

)
dτ2, (11)

v(x, t) = v(m0, t − G(x)) exp
(
−
∫ t

t−G(x)
µ(τ1) dτ1

)
+
∫ t

t−G(x)
f0(ξ0(τ2), τ2) exp

(
−
∫ t

τ2

µ(τ1) dτ1

)
dτ2. (12)
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Now we find, from the last two equations, an explicit formula for the unknown v(x, t)
in terms of µ(t). To this end, we first consider the set m0 ≤ x ≤ M, 0 < t ≤ G(x), in which,
by substituting the initial condition (4) into Equation (11), we have

v(x, t) = v0(ξ0(0)) exp
(
−
∫ t

0
µ(τ1) dτ1

)
+
∫ t

0
f0(ξ0(τ2), τ2) exp

(
−
∫ t

τ2

µ(τ1) dτ1

)
dτ2, (13)

where v0(x) := v(x, 0) = g(x)u0(x).
Further, in the set m0 ≤ x ≤ M, G(x) < t ≤ G(x) + G(M), applying the renewal

boundary condition (3) to Equation (12), we obtain

v(x, t) = 2v(M, t − G(x)) exp
(
−
∫ t

t−G(x)
µ(τ1) dτ1

)
+
∫ t

t−G(x)
f0(ξ0(τ2), τ2) exp

(
−
∫ t

τ2

µ(τ1) dτ1

)
dτ2,

from which, by Equation (13),

v(x, t) = 2v0(ξ1(0)) exp
(
−
∫ t

0
µ(τ1) dτ1

)
+ 2

∫ t−G(x)

0
f0(ξ1(τ2), τ2) exp

(
−
∫ t

τ2

µ(τ1) dτ1

)
dτ2

+
∫ t

t−G(x)
f0(ξ0(τ2), τ2) exp

(
−
∫ t

τ2

µ(τ1) dτ1

)
dτ2, (14)

where, for simplicity of notation, we write ξ1(τ) instead of G−1(τ − t + G(x) + G(M))
dropping the variables x, t but keeping in mind that ξ1(τ) depends on the choice of x and t.

Similarly, in the set m0 ≤ x ≤ M, G(x) + G(M) < t ≤ G(x) + 2G(M), we have

v(x, t) = 4v0(ξ2(0)) exp
(
−
∫ t

0
µ(τ1) dτ1

)
+ 4

∫ t−G(x)−G(M)

0
f0(ξ2(τ2), τ2) exp

(
−
∫ t

τ2

µ(τ1) dτ1

)
dτ2

+ 2
∫ t−G(x)

t−G(x)−G(M)
f0(ξ1(τ2), τ2) exp

(
−
∫ t

τ2

µ(τ1) dτ1

)
dτ2

+
∫ t

t−G(x)
f0(ξ0(τ2), τ2) exp

(
−
∫ t

τ2

µ(τ1) dτ1

)
dτ2, (15)

where we write ξ2(τ) instead of G−1(τ − t + G(x) + 2G(M)), dropping the variables x and t.
Continuing in this way, in each set m0 ≤ x ≤ M, G(x) + (n − 1)G(M) < t ≤

G(x) + nG(M), where n is an integer greater than one, we deduce, after a finite num-
ber of steps, that

v(x, t) = 2nv0(ξn(0)) exp
(
−
∫ t

0
µ(τ1) dτ1

)
+ 2n

∫ t−G(x)−(n−1)G(M)

0
f0(ξn(τ2), τ2) exp

(
−
∫ t

τ2

µ(τ1) dτ1

)
dτ2

+
n−1

∑
k=1

2k
∫ t−G(x)−(k−1)G(x)

t−G(x)−kG(M)
f0(ξk(τ2), τ2) exp

(
−
∫ t

τ2

µ(τ1) dτ1

)
dτ2

+
∫ t

t−G(x)
f0(ξ0(τ2), τ2) exp

(
−
∫ t

τ2

µ(τ1) dτ1

)
dτ2, (16)
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where ξk(τ) := G−1(τ − t + G(x) + kG(M)) for all nonnegative integers k.
For convenience, we also introduce the notation E(t) := exp

∫ t
0 µ(τ1) dτ1. Note that

exp
(
−
∫ t

t0
µ(τ1) dτ1

)
can be interpreted as the probability that a malignant cell will not

be killed by chemotherapeutic agents up to time t, given that it was alive at time t = t0.
Substituting Equations (13) and (14) into the additional condition (5) and changing the
order of integration gives, in the interval 0 ≤ t ≤ G(M),

p(t) =
∫ G−1(t)

m0

w(x)
g(x)

v(x, t) dx +
∫ M

G−1(t)

w(x)
g(x)

v(x, t) dx

=
1

E(t)

(∫ G−1(t)

m0

w(x)
g(x)

2v0(ξ1(0)) dx +
∫ M

G−1(t)

w(x)
g(x)

v0(ξ0(0)) dx

)

+
∫ t

0

E(τ2)

E(t)

(∫ G−1(t−τ2)

m0

w(x)
g(x)

2 f0(ξ1(τ2), τ2) dx

+
∫ M

G−1(t−τ2)

w(x)
g(x)

f0(ξ0(τ2), τ2) dx
)

dτ2. (17)

In a similar way, substituting Equations (14) and (15) into condition (5), we obtain,
in the interval G(M) < t ≤ 2G(M),

p(t) =
∫ G−1(t−G(M))

m0

w(x)
g(x)

v(x, t) dx +
∫ M

G−1(t−G(M))

w(x)
g(x)

v(x, t) dx

=
1

E(t)

(∫ G−1(t−G(M))

m0

w(x)
g(x)

4v0(ξ2(0)) dx +
∫ M

G−1(t−G(M))

w(x)
g(x)

2v0(ξ1(0)) dx
)

+
∫ t−G(M)

0

E(τ2)

E(t)

(∫ G−1(t−τ2−G(M))

m0

w(x)
g(x)

4 f0(ξ2(τ2), τ2) dx

+
∫ M

G−1(t−τ2−G(M))

w(x)
g(x)

2 f0(ξ1(τ2), τ2) dx
)

dτ2

+
∫ t

t−G(M)

E(τ2)

E(t)

(∫ G−1(t−τ2)

m0

w(x)
g(x)

2 f0(ξ1(τ2), τ2) dx

+
∫ M

G−1(t−τ2)

w(x)
g(x)

f0(ξ0(τ2), τ2) dx
)

dτ2.

Continuing in this way, in each interval nG(M) < t ≤ (n + 1)G(M), where n is a
positive integer, we finally deduce that

p(t) =
∫ G−1(t−nG(M))

m0

w(x)
g(x)

v(x, t) dx +
∫ M

G−1(t−nG(M))

w(x)
g(x)

v(x, t) dx

=
1

E(t)

(∫ G−1(t−nG(M))

m0

w(x)
g(x)

2n+1v0(ξn+1(0)) dx +
∫ M

G−1(t−nG(M))

w(x)
g(x)

2nv0(ξn(0)) dx

)

+
∫ t−nG(M)

0

E(τ2)

E(t)

(∫ G−1(t−τ2−nG(M))

m0

w(x)
g(x)

2n+1 f0(ξn+1(τ2), τ2) dx

+
∫ M

G−1(t−τ2−nG(M))

w(x)
g(x)

2n f0(ξn(τ2), τ2) dx
)

dτ2

+
n−1

∑
k=0

∫ t−kG(M)

t−(k+1)G(M)

E(τ2)

E(t)

(∫ G−1(t−τ2−kG(M))

m0

w(x)
g(x)

2k+1 f0(ξk+1(τ2), τ2) dx

+
∫ M

G−1(t−τ2−kG(M))

w(x)
g(x)

2k f0(ξk(τ2), τ2) dx
)

dτ2. (18)
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Theorem 1. Finding a solution to the inverse problem can be reduced to solving, for the unknown
E, the integral Equations (17) and (18) considered in the corresponding intervals. More precisely,

• a weak solution (u, µ) to the inverse problem gives the solution E(t) = exp
∫ t

0 µ(τ1) dτ1 of
these integral equations, and this solution is locally absolutely continuous in [0,+∞);

• conversely, a positive locally absolutely continuous solution E of the integral Equations (17)
and (18) determines the death rate µ(t) by the formula µ(t) = E′(t)E(t)−1 (provided E(0) =
1), then we can find the unknown v(x, t) from relations (13), (14), (16), and thus obtain the
density u(x, t) by taking u(x, t) = g−1(x)v(x, t).

Note that, from the property of E being locally absolutely continuous in [0,+∞), it
follows that this function is differentiable, i.e., in this interval, and its derivative E′ is locally
Lebesgue integrable (see [19]).

5. An Example of Integral Equation Modelling the Dynamics of an Unknown
Coefficient µ

Let us fix the parameters and known functions of the problem: m0 = a > 0, M = 2a,
g(x) = k > 0, f (t) = −kebt, where b > 0, u0(x) = 3a − x, w(x) = 1, p(t) = 3

2 a2e−bt. Then,
consider the following problem:

∂

∂t
u(x, t) + k

∂

∂x
u(x, t) = −µ(t)u(x, t)− ke−bt, (x, t) ∈ Ω, (19)

u(a, t) = 2u(2a, t), t ≥ 0. (20)

u(x, 0) = 3a − x, a ≤ x ≤ 2a. (21)∫ 2a

a
u(x, t) dx =

3
2

a2e−bt, t ≥ 0. (22)

Using the notation E(t) := exp
∫ t

0 µ(τ1) dτ1 from Equation (19), along with condi-
tions (20) and (21), we deduce the equality

u(x, t) = (3a − x + kt)
1

E(t)
−
∫ t

0
ke−bτ E(τ)

E(t)
dτ (23)

in the set T1 : a ≤ x ≤ 2a, 0 < t ≤ (x − a)/k, and

u(x, t) = 2(2a − x + kt)
1

E(t)
−

− 2
∫ t− x−a

k

0
ke−bτ E(τ)

E(t)
dτ −

∫ t

t− x−a
k

ke−bτ E(τ)
E(t)

dτ (24)

in the set T2 : a ≤ x ≤ 2a, (x − a)/k < t ≤ x/k.
Substituting the equalities above into condition (22), we have an integral equation for

the unknown E in the interval 0 ≤ t ≤ a/k:

3
2

a2e−bt =
∫ kt+a

a
u(x, t)dx +

∫ 2a

kt+a
u(x, t)dx =

=
1

E(t)

( ∫ kt+a

a
2(3a − x + kt − a)dx +

∫ 2a

kt+a
(3a − x + kt)dx

)
−

−
∫ t

0

E(τ)
E(t)

( ∫ k(t−τ)+a

a
2ke−bτdx +

∫ 2a

k(t−τ)+a
ke−bτdx

)
dτ =

=
1

E(t)

(
(4a + 2kt)kt − (kt + a)2 + a2 + (3a + kt)(a − kt)− 1

2
(4a2 − (kt + a)2)

)
−

−
∫ t

0

E(τ)
E(t)

ke−bτ(k(t − τ) + a)dτ.
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The last equation can be rewritten in the following form:

E(t) =
a2 + 1/3k2t2 + 2/3akt

a2 ebt−

−
∫ t

0
E(τ)

2/3eb(t−τ)k(k(t − τ) + a)
a2 dτ, 0 ≤ t ≤ a/k, (25)

which is a linear Volterra equation of the second kind. This equation can be solved nu-
merically by the method of successive approximations using programming. To make
visualizations of approximations, fix the constants: a = 1, b = 5, k = 1. Applying four
iterations, we see, in Figure 1, the corresponding exponent-like approximations to the
solution of the integral equation in the interval 0 ≤ t ≤ 1.

0.0 0.2 0.4 0.6 0.8 1.0
t, time

0

25

50

75

100

125

150

175

200

x

iteration #1
iteration #2
iteration #3
iteration #4

Figure 1. Exponent-like approximations to solution of integral equation.

To investigate the exponential behaviour of these curves, let us logarithmize the obtained
approximations. Plotting the logarithm of approximations, we see they tend to a linear
function with a slope of 5, that is the function x = 5t (see Figure 2). Moreover, the graphs of
all approximations starting from the fourth are linear in the considered interval.

t, time
0

1

2

3

4

5

x

x= bt
x= ln(E(t)) iteration #1

t, time

x

x= bt
x= ln(E(t)) iteration #2

0.0 0.2 0.4 0.6 0.8 1.0
t, time

0

1

2

3

4

5

x

x= bt
x= ln(E(t)) iteration #3

0.0 0.2 0.4 0.6 0.8 1.0
t, time

x

x= bt
x= ln(E(t)) iteration #4

Figure 2. Approximations tend to a linear function with a slope of 5.
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Therefore, we conclude that successive approximations of solution E approach the
exponential function x = e5t, which can be clearly seen in Figure 3.

t, time
0

50

100

150

200

x

x= ebt

x= E(t) iteration #1

t, time

x

x= ebt

x= E(t) iteration #2

0.0 0.2 0.4 0.6 0.8 1.0
t, time

0

50

100

150

200

x

x= ebt

x= E(t) iteration #3

0.0 0.2 0.4 0.6 0.8 1.0
t, time

x

x= ebt

x= E(t) iteration #4

Figure 3. Successive approximations approach the exponential function x = e5t.

6. Discussion

In recent decades, integral boundary conditions have been actively used as override
conditions for solving inverse initial boundary value problems for parabolic partial differen-
tial equations [30]. The first-order hyperbolic systems with smoothing boundary conditions
of the integral type (5) appear, in particular, in applications in population dynamics [31,32].
The approaches and results of this paper are a development of the ideas and methods
mentioned above and have a similar work plan for describing a mathematical model of
population growth. The imposition of redefined conditions (5) of the integral type is also
motivated by the results obtained in [33]. The strong regularity properties obtained in
this paper for solutions of hyperbolic problems with integral boundary conditions show
that such problems are well suited for the implementation of numerical schemes (since
these properties ensure the stability of the schemes). The computational complexity of
the method of successive approximations for the numerical solution of the linear Volterra
equation of the second kind is defined as the number of iterations as per the computational
complexity of the numerical quadratures used in the work (the method of numerical inte-
gration). The computational complexity can be estimated approximately by the formula
C ≈ k · N · M, where k is the number of iterations, N is the number of points in the grid to
calculate the integral, and M is the number of calculations to evaluate the integral (depend-
ing on the chosen numerical method). It should also be borne in mind that the accuracy of
the approximation can affect the computational complexity, and some iterative methods
may require a lot of computation to achieve the desired accuracy. Thus, for each iteration of
the method of successive approximations using the Gaussian quadrature formula with N
nodes, the number of calculations is approximately 2N. That is, C ≈ 2kN. In the proposed
work, k = 4, so C ≈ 8N. A small number of iterations will reduce the computational
complexity. This is an advantage of the proposed approach compared to others. Note,
in particular, that the use of the collocation method under the conditions of piecewise
constant approximation of the desired function for the numerical solution of an integral
equation has a computational complexity of 4N3 + 7N2 [34].

Thus, in the case of using another method for solving an integral equation, the compu-
tational complexity is O(n3), while based on the proposed algorithm it is O(n). The use
of the method of characteristics made it possible to reduce the solution of the original
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problem to a simplified form. Thus, the computational complexity is reduced and a more
efficient algorithm is obtained. We also note that the use of traditional numerical methods
for solving the original (direct) problem also leads to higher computational complexity [35].
Thus, the use of the inverse problem approach is also motivated by computational aspects.

We additionally provide the link to the GitHub repository https://github.com/ivanna-
andrusyak/volterra-integral-equation/blob/main/volterra_eq.ipynb with (accessed on 20
January 2024) the underlying computer code replicating the calculations in our paper.

Experimental data for real biological problems show, in particular, the significant
heterogeneity observed in cancer populations under physiological conditions. Therefore,
this fact undoubtedly introduces limitations for the mathematical modeling of the growth
process. The mathematical model considered in this paper is no exception. In this regard,
one of the possible improvement strategies is the procedure of homogenising the environ-
ment. The homogenisation (averaging) of the population may make it possible to consider
the model problem studied in this article as a certain approximation of a structurally
homogeneous environment to the actual heterogeneous structure of a cell population.
The possibility of such averaging (homogenisation) has been proposed in many works
investigating processes in structurally heterogeneous environments (see, for example, [36]).
It is clear that only experimental studies should evaluate the effectiveness of the choice of
homogenisation procedure for different types of non-heterogeneous populations. In ad-
dition, they would make it possible to analyze the practical adequacy of the approach,
the theoretical advantages of which are in the significant simplification of the computational
method. This task is interesting in itself for independent scientific research and will be the
subject of further study.

7. Conclusions

Population dynamics have traditionally been and still are a dominant branch of math-
ematical biology. Population models play a critical role in helping us understand the
dynamic processes involved, make actionable predictions, and thus better understand
the natural world. The results obtained in this paper show that the cell population can
be modeled using an inverse problem for an unknown density function and a coefficient
representing the death rate. We have developed a technique for solving such an inverse
problem. It consists of reducing the search for a solution to the problem to solving an
integral equation with an unknown function that depends only on death rate. It is clear that
solving such an integral equation is a simpler problem, and various numerical approaches
can be used to obtain an approximation of the solution. Based on the methodology devel-
oped in this paper and the obtained results, it is possible to consider the conditions required
for the existence of a unique classical solution, as well as a solution in the weak sense for
the inverse problem, in the future, which is important for the justification of numerical
approaches.

The results of this study can be used as a starting point for further research into
complex population models arising in various areas of real life—medicine, ecology, epi-
demiology, etc. Also, they can be used as a mathematical background for developing
programming solutions for population growth modelling, which could contribute to mak-
ing population dynamics more manageable and predictable.

Studying the existence of positive cell death rate µ(t), the model solvability in the
case of monotonic p(t), representing the decreasing total number of cells or the total
cell biomass or, more generally, the conditions under which the problem is well-posed
in the weak sense are all interesting areas for further research, as these properties are
important for controlling cell dynamics and could have applications in real-world problems.
The considered population model was certainly hard to solve numerically, but the results
of our work simplify it significantly and can be easily programmed. This study should be
rather considered as a basis for further investigation in that direction.

https://github. com/ivanna-andrusyak/volterra-integral-equation/blob/main/volterra_eq.ipynb
https://github. com/ivanna-andrusyak/volterra-integral-equation/blob/main/volterra_eq.ipynb
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