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Abstract: Closed-loop pipe systems allow the possibility of the flow of gas from both directions
across each route, ensuring supply continuity in the event of a failure at one point, but their main
shortcoming is in the necessity to model them using iterative methods. Two iterative methods of
determining the optimal pipe diameter in a gas distribution network with closed loops are described
in this paper, offering the advantage of maintaining the gas velocity within specified technical limits,
even during peak demand. They are based on the following: (1) a modified Hardy Cross method
with the correction of the diameter in each iteration and (2) the node-loop method, which provides
a new diameter directly in each iteration. The calculation of the optimal pipe diameter in such
gas distribution networks relies on ensuring mass continuity at nodes, following the first Kirchhoff
law, and concluding when the pressure drops in all the closed paths are algebraically balanced,
adhering to the second Kirchhoff law for energy equilibrium. The presented optimisation is based on
principles developed by Hardy Cross in the 1930s for the moment distribution analysis of statically
indeterminate structures. The results are for steady-state conditions and for the highest possible
estimated demand of gas, while the distributed gas is treated as a noncompressible fluid due to the
relatively small drop in pressure in a typical network of pipes. There is no unique solution; instead,
an infinite number of potential outcomes exist, alongside infinite combinations of pipe diameters for
a given fixed flow pattern that can satisfy the first and second Kirchhoff laws in the given topology of
the particular network at hand.

Keywords: gas distribution; networks of conduits; Hardy Cross method; pipe diameters; optimal design

1. Introduction

Distribution networks are a critical part of the infrastructure that delivers natural gas
to households; their design and maintenance play a crucial role in ensuring a consistent
and reliable supply of this energy source. Networks of pipes with loops are commonly used
in urban areas to deliver natural gas to a large number of customers efficiently and reliably.
The design and operation of such distribution networks typically involve the determination
of routes for the delivery of gas, pipe sizing, pressure regulation, gas flow, etc., to meet
demands, while ensuring safety and efficiency [1,2]. A gas distribution network with
loops is a system of interconnected pipes with closed branches that are used to distribute
natural gas to various consumers or endpoints, such as homes, businesses, and industrial
facilities. The term “pipes with loops” indicates that the network is designed in such
a way that it forms closed paths of interconnected circuits, rather than a simple linear
configuration in the form of branches. Loops provide multiple paths for the gas to flow,
ensuring flexibility in the distribution system. This can be advantageous for reliability and
fault tolerance. If one section of the network experiences a problem or needs maintenance,
gas is rerouted through alternative paths to minimise disruptions for consumers. However,
the computation of the parameters of such networks can be challenging due to the nonlinear
relationships among the flow rates, pressures, and pipe diameters. Due to the nonlinearity

Computation 2024, 12, 25. https://doi.org/10.3390/computation12020025 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation12020025
https://doi.org/10.3390/computation12020025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-2502-0601
https://doi.org/10.3390/computation12020025
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation12020025?type=check_update&version=1


Computation 2024, 12, 25 2 of 15

and mutual dependence of the parameters in looped networks, their computation involves
iterative calculus. Such calculations are typically based on the Hardy Cross technique of
analysing and solving flow distribution problems in pipe networks with various versions
and improvements [3–7] (it is based on the analysis of continuous frames in statically
indeterminate structures where the number of unknown reactions exceeds the number of
available equilibrium equations [8–10]).

All versions of the methods of solving problems related to a network of pipes are
based on the mass and energy balance in the network at hand. The amount of gas flowing
in and out of every node of the network and the pressure equilibrium in every loop or any
closed path must be preserved, closely following the first and second Kirchhoff laws [11,12],
keeping the network in a state of balance. To ensure such a balance, two approaches can be
used, as follows.

1. Classical problem: The flows need to be adjusted in an already existing network;
2. Optimisation problem (subject of this article): The flows through the pipes are fixed,

while the diameters of the pipes need to be adjusted (this refers to the design phase,
when the network is still in a blueprint format).

The optimisation methods shown in this article allow for the rough fitting of gas
distribution networks during the design phase. The selection of the optimal pipe diameters
in a looped network for gas distribution is crucial for several reasons, including but not
limited to the following list of goals and objectives.

• Efficiency: The correct pipe diameter ensures efficient gas flow within a network,
minimising pressure drops and energy losses. This efficiency is essential in delivering
gas to consumers without unnecessary waste.

• Cost-Effectiveness: Properly sized pipes help to reduce construction and operational
costs. Oversized pipes require more materials and increase the initial expenses, while
undersized pipes can lead to higher operating costs due to increased compression
requirements.

• Pressure Control: Selecting the correct pipe diameter helps to maintain adequate
pressure levels throughout the network. This is vital in ensuring a consistent and
reliable gas supply to consumers, particularly in high-demand scenarios.

• Safety: An optimal pipe diameter helps to maintain safe operating conditions. If the
pipes are too small, they may lead to over-pressurisation, potentially causing leaks
or other safety hazards. Conversely, oversized pipes can lead to low pressure, which
might result in inadequate gas delivery.

• System Reliability: Proper sizing reduces the risk of network failures, ensuring a more
reliable gas distribution system. This is especially critical for industries, households,
and businesses that depend on a continuous gas supply.

• Future Expansion: Selecting the optimal pipe diameters allows for the easier expansion
of the gas distribution network when needed, accommodating growth and changes
in demand.

The optimisation methods shown in this article are valid for a steady state of gas flow,
while gas is treated as noncompressible due to the relatively small variations in pressure
in the network [13] (modification for unsteady states [14,15], fluctuating demands [16], or
more complex networks [17] can be achieved).

With the modification of the flow friction model, the presented procedures can be
used not only for gas distribution (more about gas flow can be found in [18]) but also for
waterworks [19–48], mine ventilation [49–53], pipe systems for crude oil [54–56], district
heating [57–59], mixtures of gas and hydrogen [60–66], etc. They can also be used as a base
for the balancing of electrical networks [67].

After the introduction given in Section 1, two methods for the optimisation of the
diameters of pipes in networks with loops are given in Section 2; the obtained results are
discussed in Section 3, while conclusions are given in Section 4.
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2. Methods

After some discussion of the literature used in Section 2.1, explanations of the hydraulic
model [68–71] (gas flow, pressure, and pipe diameter’s mutual dependence) used for the
given example of a gas network can be found in Section 2.2 (hydraulics for water networks
are explained in [72–77] and those for ventilation systems in [78], while an analogy with
resistances in electrical networks can be seen in [79,80]). Two iterative methods for the
optimisation of pipe diameters are given further in Section 2.3, where the methods are
described using an illustrative example.

Classical vs. optimisation approaches in the calculation of a network of pipes with
loops can be explained as follows.

(A) Classical flow distribution problem in already existing networks of pipe with
loops: A network for gas distribution is typically assumed to be predefined with an
established topology (route [81]), including the pipe dimensions (length and diameter)
and their characteristics (mostly the roughness of the inner pipe surface, which is a
function of the material and age [82]), as well as the predetermined maximum gas
consumption at network nodes (with gas income in the network treated as negative
consumption). For such a network, assuming that pressure drops cannot compress
the gas significantly, the flow distribution through the pipes of the network can be
calculated for the steady state and usually for the working condition designed for the
maximal load, i.e., for the largest possible consumption. The objective is to calculate
the flow redistribution through the pipes of closed loops (a ring formed by several
pipes), which can typically be achieved using numerous variations of the Hardy
Cross method [3], where the two main variations are (1) loop-oriented methods and
(2) node-oriented methods.

1. Loop-oriented methods: These types of methods were originally introduced by
Hardy Cross in 1936 [3] and later developed by Epp and Fowler in 1970 [38],
Wood and Charles [28] and Wood and Rayes [29]. These types of methods
require an initial assumption of a gas flow through each pipe of the network
(initial guess [36]), which always needs to satisfy the mass balance in each node
(first Kirchhoff law) and which is further adjusted through iterative calculation
to satisfy the energy balance in each loop of the network at the end of calculation
as the stopping criterion (second Kirchhoff law). Two main approaches are
commonly used.

1.1 Hardy Cross method: An adjustment in each iteration is made by cal-
culating flow correction ∆Q, which needs to be algebraically added to
the value from the previous iteration following specific rules [5,7] (accel-
eration was given by Epp and Fowler in 1970 [38], while one possible
rearrangement of this method for gas distribution was given by Brkić in
2009 [5]).

1.2 Node-loop method: Wood and Charles [28] and Wood and Rayes [29], to
avoid the inconvenience of using ∆Q, introduced the node-loop method
(belonging to the group of loop-oriented methods), which gives the new
flow as Q (and not as Q = Qi−1 + ∆Q). The node-loop method for gas
distribution was presented by Brkić and Praks in 2019 [6].

2. Node-oriented methods: Similar reasoning as for loop-oriented methods applies
to the group of loop-oriented methods, with the difference being that the energy
balance for each contour in the network of pipes (second Kirchhoff law) should
always be satisfied, while the mass balance for each node (first Kirchhoff law)
needs to be achieved at the end of the calculation. This approach was introduced
by Shamir and Howard in 1968 [34].

(B) Optimisation problem (subject of this article): In gas distribution network design
and operation, it is essential to determine the optimal pipe diameters to minimise
energy losses and ensure efficient gas flow. Pipe diameter calculations are often
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intertwined with flow and pressure calculations, requiring an iterative approach to
find the best compromise between the pipe size and price. By adjusting parameters
like the pipe diameter and pressure settings, network operators can aim for an ideal
balance between the satisfaction of consumers and operational expenses. In the
optimisation problem, the distribution of flow through the branches of a network
of pipes (flow pattern) is known in advance and is not subject to changes during
calculation (it is decided to keep the velocity of gas below certain prescribed technical
limits, to allow the further expansion of the network or to satisfy a future increase
in consumption and demand). Following the diagrams from Figure 1, this article
provides two iterative methods for the optimisation of the pipe diameters for a fixed
flow rate.

1. Hardy Cross method with the correction of the diameter ∆D in each iteration:
D = Di−1 + ∆D; see Figure 1a and Section 2.3.1 of this article.

2. Node-loop method with the direct calculation of the diameter in each iteration:
direct calculation of D; see Figure 1b and Section 2.3.2 of this article.

Computation 2023, 11, x FOR PEER REVIEW  4 of 5 
 

 

the best compromise between the pipe size and price. By adjusting parameters like 

the pipe diameter and pressure settings, network operators can aim for an ideal bal-

ance between the satisfaction of consumers and operational expenses. In the optimi-

sation problem, the distribution of flow through the branches of a network of pipes 

(flow pattern) is known in advance and is not subject to changes during calculation 

(it is decided to keep the velocity of gas below certain prescribed technical limits, to 

allow the further expansion of the network or to satisfy a future increase in consump-

tion and demand). Following the diagrams from Figure 1, this article provides two 

iterative methods for the optimisation of the pipe diameters for a fixed flow rate. 

1. Hardy Cross method with the correction of the diameter ΔD in each iteration: 

D = Di−1 + ΔD; see Figure 1a and Section 2.3.1 of this article. 

2. Node‐loop method with the direct calculation of the diameter in each iteration: 

direct calculation of D; see Figure 1b and Section 2.3.2 of this article. 

The difference between an approach with diameter corrections D = Di−1 + ΔD and the 

direct calculation of diameter D is given in Figure 1. 

 

(a)  (b) 

Figure 1. Differences between approaches of the two proposed loop-oriented methods for optimi-

sation: (a) diameter correction D = Di−1 + ΔD, Hardy Cross method—Brkić (2009) [5] and Corfield et 

al. [7]; (b) direct calculation of D, node-loop method. 

It should be noted that the solution of the optimisation problem is not unique and 

that infinite possible combinations of diameters can achieve mass continuity and the bal-

ance of energy through the network, satisfying both Kirchhoff’s first and second laws (on 

the contrary, a classical flow distribution problem where the diameters cannot be changed 

has a unique solution [36]). Although the Hardy Cross method and the node-loop method 

result typically in different pipe diameters, both can be used in the design phase and the 

final decision should be according to the preferences of the designer to fulfil certain goals 

and objectives (see Introduction). 

2.1. Literature Overview 

The main findings from the used literature that are useful for the presented optimi-

sation are as follows: 

Figure 1. Differences between approaches of the two proposed loop-oriented methods for op-
timisation: (a) diameter correction D = Di−1 + ∆D, Hardy Cross method—Brkić (2009) [5] and
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The difference between an approach with diameter corrections D = Di−1 + ∆D and the
direct calculation of diameter D is given in Figure 1.

It should be noted that the solution of the optimisation problem is not unique and that
infinite possible combinations of diameters can achieve mass continuity and the balance
of energy through the network, satisfying both Kirchhoff’s first and second laws (on the
contrary, a classical flow distribution problem where the diameters cannot be changed has
a unique solution [36]). Although the Hardy Cross method and the node-loop method
result typically in different pipe diameters, both can be used in the design phase and the
final decision should be according to the preferences of the designer to fulfil certain goals
and objectives (see Introduction).
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2.1. Literature Overview

The main findings from the used literature that are useful for the presented optimisa-
tion are as follows:

• Objectives of finding an appropriate model for liquid versus gas pipe flow friction and
adoption of the hydraulic regime [1,2];

• The very first model for the distribution of fluids through pipelines with loops [3,4];
• Explanation of the two shown methods applied to the solution of the classical problem

of flow distribution in looped pipe networks, improved Hardy Cross [5] versus node-
loop method [6];

• Detailed explanation of the correction of flow ∆Q in the Hardy Cross method [7] (with
application to the correction of diameters ∆D during optimisation);

• Sources and foundation of the idea on which the Hardy Cross method for pipe net-
works is based [8–10];

• Topological properties of pipe networks: number of pipes, nodes and loops and
relations among them [11,81];

• Explanations of the first and second Kirchhoff laws for nodes and loops [12];
• Various situations that can occur in gas distribution [13–17];
• Hydraulic models and equations for gas flow and its connection to the pressure

drop [18];
• Differences between loop- [19,22,24] and node-based methods [20,21,23];
• Introduction of methods with increased speed of convergence [21] (see also [4]);
• Classical versus optimisation approach applied to water distribution networks [22];
• A book with explanations of various methods for flow networks with loops applied to

water distribution [25];
• Teaching purpose in water distribution networks [22,26,27];
• Explanation of the first improvements to the Hardy Cross method [28,29,33,34,38]

(useful are also [30–32])—accelerated Hardy Cross and versions of loop- versus node-
oriented approach;

• Flow pattern in already existing pipe network with loops [36];
• Very illustrative but simple example of application of Hardy Cross and node-loop

methods for water distribution [37];
• Approach involving virtual loop that connects two nodes with the same pressure in

order to ensure a linear independent matrix needed for calculation (also application of
the methods to ventilation systems of underground mines) [39];

• Various versions of methods for ventilation [39,49–53], oil [54] (compare also similari-
ties with [2]), water distribution [40–48] and district heating systems [57–59];

• Different requirements [60–66] in use and distribution of city gas derived from coal,
followed by natural gas and a mixture of natural gas and hydrogen;

• Analogy of fluid distribution through pipe networks versus electrical networks [67,79,80];
• Relation between gas flow and pressure drop used in this article by Renouard [68,69]

(see also [18,70]);
• Flow resistance in systems of conduits: gas [71], water [72–77] and air [78];
• Roughness of inner pipe surface [82–84];
• Substitution of manufactured gas for natural gas [85–87];
• Cost-based optimisation of diameters in network of pipes [88–90];
• Pipe diameter problem for a single pipe [91–93] (nominal diameters should be chosen

from [94]);
• Euler’s formula for networks: connection among number of pipes, nodes and loops

(also used in crystallography [95–98]);
• Hydraulic solutions for pipe networks using artificial intelligence [99,100];
• Safety [101].
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2.2. Relation among Gas Flow, Pressure and Pipe Diameter

In the case of gas flow through plastic pipes, the relative roughness can usually be
disregarded, making the flow regime hydraulically smooth [1,2]. Gas is a compressible
fluid exposed to higher pressure in a typical city gas distribution network compared to
atmospheric pressure, resulting in its decreased volume. As a result, the same mass of
gas occupies a smaller volume than under normal (or standard) conditions, as in the case
in this article, where Qst:Q ≈ 4. However, as it is already compressed, and due to the
minimal pressure oscillations within the network, it can be treated as incompressible for
the purpose of this calculation. The Renouard relation for gas flow in such conditions is
given in Equation (1) [68,69,102]:

F = p2
2 − p2

1 = 4810·ρr·L·Q1.82
st

D4.82

F′ = ∂F(D)
∂D = −4.82·4810·ρr·L·Q1.82

st
D5.82

 (1)

where
F is the pressure relation (Pa2);
p is the pressure (Pa);
ρr is the relative density of natural gas (dimensionless); here, ρr = 0.64;
L is the pipe length (m);
Qst is the gas flow at standard conditions (m3/s), i.e., at standard pressure pst of 105 Pa

and standard temperature of 15 ◦C (on the other hand, normal temperature for the same
pressure is at 0 ◦C);

D is the inner pipe diameter (m);
’ denotes the first derivative; and
∂ denotes the partial derivative.
The Renouard relation is derived for city gas, which mostly consists of carbon monox-

ide, predominantly produced from coal [85–87], now abandoned for gas distribution and
replaced with natural gas. However, it is also extensively used for natural gas under rela-
tively lower pressure (a few times higher than the atmospheric pressure) and for systems
with plastic pipes, as is the case here. Hopefully, it can be used in systems with blended nat-
ural gas and hydrogen [60–66], as well as gasses produced from waste gasification [63,64].

The relation for the diameter is given in Equation (2):

D =

√
4·Q
u·π ·

pst
p

(2)

where
D is the inner pipe diameter (m);
Q is the gas flow through the pipe in real conditions of pressure and temperature

(m3/s); note that the Renouard relation, on the contrary, operates with Qst, gas flow at
standard conditions;

pst is the standard pressure of 105 Pa;
u is the gas velocity (m/s); here, used for optimisation, u = 15 m/s;
p is the real pressure in pipes (Pa); here, p/pst ≈ 4;
π is the Ludolpf number ≈ 3.1415.
Pipe diameters as part of a gas network with loops are optimised in this article, which

is a different problem [88–90] compared to determining the diameter of a single pipe (a
solution to the problem of a single pipe in particular conditions is given in [91–93,103]). In
any case, pipes are standardised and therefore they must be chosen from the prescribed list
available for sale on the market [94].

2.3. Iterative Methods for Optimisation of Pipe Diameters

Two proposed iterative methods for the optimisation of pipe diameters based on the
principles of the loop-oriented Hardy Cross method are explained in an illustrative network
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in Figure 2. The white arrows in Figure 2 represent the flow through the pipes, while the
black arrows denote the consumption and supply of gas assigned to nodes (they also form
virtual pipes for the purpose of the optimisation methods explained in this article).
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The network consists of ten pipes and has eight interconnections of pipes (nodes)
where these quantities are related to the Euler polyhedron formula from the topology [95,96]
(used, e.g., in crystallography [97]). As given in Table 1, it has two inflow points of gas (the
interconnections of pipes 1 and 2 and of pipes 6 and 9) and two outflow points of gas (the
interconnections of pipes 7 and 8 and of pipes 4, 5 and 10).

Table 1. Constant inflow and outflow of gas at interconnections of pipes.

Nodes between/among Pipes Inflow/Outflow 1
Flow Qst

m3/h m3/s

1 and 2 Inflow +1000 +0.27778
6 and 9 Inflow +500 +0.13889

4, 5 and 10 Outflow −750 −0.20833
7 and 8 Outflow −750 −0.20833

Σ 0 0
1 plus sign denotes input of gas in the network, while minus sign denotes output.

The distribution of the flow through the pipes is established to satisfy consumers at
peak demand and to satisfy flow continuity for each interconnection (node) in the network,
following the requirements posed with Kirchhoff’s first law, as given in Table 2, where
these values are fixed for the whole calculation using the presented iterative methods. The
flow rates in each pipe, shown in Table 2, should be based on engineering judgement and
prediction based on experience where the main consumers are located or will be located.
The values of the flow rates through the pipes will not change through the shown iterative
procedures for the optimisation of pipe diameters.

The goal is to adjust pipe diameter D in the network with loops to satisfy the energy
balance by the second Kirchhoff law for every closed path of pipes in the network, i.e.,
to reach the algebraic sum of the pressure function F for each closed path to be approxi-
mately zero, ΣF = Σ(p 2

2 − p2
1

)
≈ 0, which is provided for the given illustrative network in

Equation (3):
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FI = F1 − F2 + F3 − F4 + F5
FII = F4 − F7 + F8 − F10

FIII = −F5 − F6 + F9 + F10


Loop I
Loop II
Loop III

(3)

where FI, FII and FIII are pressure functions (Pa2) with reference to the flow directions
through the pipes in Loop I, Loop II and Loop III, respectively, in a counterclockwise
direction. At the end of calculation, when the network is in balance, FI ≈ 0, FII ≈ 0 and
FIII ≈ 0.

Table 2. Fixed flow of gas per pipe and initial pipe diameters.

Pipe
Length L Fixed flow Qst

1 Initial Diameter D

m m3/h m3/s m

1 200 300 0.083333333 0.042052209
2 100 700 0.194444444 0.064235810
3 100 300 0.083333333 0.042052209
4 100 200 0.055555556 0.034335485
5 100 400 0.111111111 0.048557708
6 100 100 0.027777778 0.024278854
7 100 500 0.138888889 0.054289168
8 100 250 0.069444444 0.038388239
9 100 400 0.111111111 0.048557708
10 100 150 0.041666667 0.029735402

1 Using Equation (2).

2.3.1. Improved Hardy Cross Method

The Hardy Cross method in its original form [3] can easily be used manually but its
convergence is slow. In 1970, Epp and Fowler [38] accelerated the method, which is used as
a basis for the iterative optimisation of the diameters in looped networks of pipes shown
here. This improved version requires matrix calculation. The original vs. the improved
version of the Hardy Cross method for the classical gas distribution problem was shown
by Brkić in 2009 [5], while, in this article, the improved method is used for the optimisation
of the pipe diameters in the gas distribution network from Figure 2.

In the original Hardy Cross method adjusted for diameter optimisation [61,66], the
correction of diameter ∆ for each pipe in the particular loop from Figure 2 is calculated
using Equation (4):

∆I(D)i = ∆I =
(

FI(D)
F′I

)
i−1

∆II(D)i = ∆II =
(

FII(D)
F′II

)
i−1

∆III(D)i = ∆III =
(

FIII(D)
F′III

)
i−1


Loop I
Loop II
Loop III

(4)

Equation (4) can be expressed in matrix form as in Equation (5):F′
I 0 0

0 F′
II 0

0 0 F′
III


i−1

×

 ∆I
∆II
∆III


i

=

 FI
FII
FIII


i−1

(5)

In Equations (4) and (5), F is calculated using Equation (3), i represents the count of
iterations, and ∂FI(D)

∂D = F′
I,

∂FII(D)
∂D = F′

II and ∂FIII(D)
∂D = F′

III represent the first derivatives of
the pressure function for the diameter as a variable, as given in Equation (6):

F′
I =

∂FI(D)
∂D = ∂F1(D)

∂D − ∂F2(D)
∂D + ∂F3(D)

∂D − ∂F4(D)
∂D + ∂F5(D)

∂D
F′

II =
∂FII(D)

∂D = ∂F4(D)
∂D − ∂F7(D)

∂D + ∂F8(D)
∂D − ∂F10(D)

∂D
F′

III =
∂FIII(D)

∂D = − ∂F5(D)
∂D − ∂F6(D)

∂D + ∂F9(D)
∂D + ∂F10(D)

∂D


Loop I
Loop II
Loop III

(6)
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Finally, the improved (accelerated) method that converges faster is given in Equation (7): F′
I −F′

4 −F′
5

−F′
4 F′

II −F′
10

−F′
5 −F′

10 F′
III


i−1

×

 ∆I
∆II
∆III


i

=

 FI
FII
FIII


i−1

(7)

In Equation (7), F′ is defined as F′
4 = ∂F4(D)

∂D , F′
5 = ∂F5(D)

∂D and F′
10 = ∂F10(D)

∂D .
The terms in the diagonal of the first matrix in Equation (7) are positive and all others

are negative, while the matrix is symmetrical with respect to the main diagonal.
For each pipe in Loop I, correction ∆I should be multiplied by −1 and added alge-

braically to the diameter of each pipe, e.g., D1 + (−1)·∆I, etc. Additionally, some pipes share
two loops and they need to receive both corrections [5,37], from the adjacent loop without
multiplication with −1, i.e., without a change in sign, e.g., for Loop I, D4 + (−1)·∆I+ ∆II,
while, for Loop II, D4 + (−1)·∆II+ ∆I.

The values obtained for the first iteration using the accelerated method are given in
Equation (8):  ∆I

∆II
∆III

 =

−0.003400943
−0.001280657
−0.000240858

 (8)

The final results using the accelerated method (Improved Hardy Cross Method) are
listed in Section 3.

2.3.2. Node-Loop Method

The node-loop method has similar converging properties, i.e., it requires similar
numbers of iterations to reach a balanced solution as the improved Hardy Cross. The main
advantage of the node-loop method is that it directly provides a new value of the diameter
D in each subsequent iteration, rather than a correction of flow ∆D as in the original and
the improved Hardy Cross. For the classical gas distribution problem solved with the
node-loop method, Brkić and Praks from 2019 can be consulted [6].

A new value of the diameter in each new iteration is calculated according to the
node-loop method using Equation (9):

[D]i = inv[NL]i−1×[V]i−1 (9)

where [NL] and [V] are given in Equations (10) and (11), respectively, and where × means
matrix multiplication.

In the node-Loop matrix for the illustrative network from Figure 2, the first seven
rows are for nodes (interconnection of pipes) while the last three are for loops (closed
paths of pipes). The network has eight nodes, while seven are arbitrarily kept for the
calculation to preserve the linear independence (a slightly different approach with an
additional pseudo-loop can be seen in [39]). Columns refer to pipes.

[NL] =

pipes 1 to 10

0
0
0
0
−1
0
0

−F′
1

0
0

0
0
0
0
−1
1
0
F′

2
0
0

1
0
0
0
0
0
0

−F′
3

0
0

0
0
1
0
0
−1
0
F′

4
−F′

4
0

−1
0
1
0
0
0
0

−F′
5

0
F′

5

1
−1
0
0
0
0
0
0
0
F′

6

0
0
0
0
0
−1
1
0
F′

7
0

0
0
0
−1
0
0
1
0

−F′
8

0

0
−1
0
1
0
0
0
0
0

−F′
9

0
0
1
−1
0
0
0
0

F′
10

−F′
10





node3−5−6
node6−9
node4−5−10
node8−9−10
node1−2
node2−4−7
node7−8
Loop I
Loop II
Loop III

(10)



Computation 2024, 12, 25 10 of 15

The same nodes as used for the first seven rows of [NL] are used in the first seven rows
of the unique column of matrix [V] as given in Equation (11). For example, the node in the
intersection of pipes 6 and 9 has an input of gas of 500 m3/h (+0.13889 m3/s) at standard
conditions of pressure and temperature (Figure 2 and Table 1), and the diameter of the
virtual pipe (black arrows in Figure 2) for this flow should be calculated using Equation (2)
and multiplied by −1 (taken with opposite sign), while the virtual diameters will not be
changed throughout the whole iterative calculation. The last three rows of [V] refer to loops
and are calculated as given.

[V] =



0

−D6−9 = −
√

4·Q6−9
u·π ·pst

p

D4−5−10 =
√

4·Q4−5−10
u·π ·pst

p
0

−D1−2 = −
√

4·Q1−2
u·π ·pst

p
0

D7−8 =
√

4·Q7−8
u·π ·pst

p
FI +

(
D1·F′

1 − D2·F′
2 + D3·F′

3 − D4·F′
4 + D5·F′

5
)

FII +
(
D4·F′

4 − D7·F′
7 + D8·F′

8 − D10·F′
10
)

FIII +
(
−D5·F′

5 − D6·F′
6 + D9·F′

9 + D10·F′
10
)





node3−5−6
node6−9 ∼ Dinput
node4−5−10 ∼ Doutput
node8−9−10
node1−2 ∼ Dinput
node2−4−7
node7−8 ∼ Doutput
Loop I
Loop II
Loop III

(11)

The final results using the Node-Loop Method are listed in Section 3.

3. Results and Discussion—Selection of Standardised Diameters

The results of the optimisation of the diameters in the illustrative network of pipes
from Figure 2 are given in Table 3. The results are obtained after 10 iterations for both the
improved Hardy Cross method and the node-loop method; they are also different, which
is possible because the optimisation problem has an infinite number of solutions. The
reason for the different final results, although the initial values are identical, is that some
optimisation maximums or minimums are skipped in one method and taken by another
(an infinite number of combinations can satisfy the second Kirchhoff law).

Table 3. Recapitulation of diameters with velocities.

Initial
Improved Hardy Cross Node Loop

Final Standard
Diameter Dn

Final Standard
Diameter Dn

Pipe
1 Diameter D Velocity u Diameter D 2 Velocity u Diameter D 2 Velocity u

m m/s M m/s mm m m/s mm

1 0.042052209 15 0.045862467 12.61 40 0.045306252 12.92 40
2 0.06423581 15 0.060425552 16.95 65 0.108246703 5.28 90 or 100
3 0.042052209 15 0.045862467 12.61 40 0.049136481 10.99 40
4 0.034335485 15 0.032068353 17.20 40 0.03146551 17.86 40
5 0.048557708 15 0.052026572 13.07 50 0.073402904 6.56 50 or 65
6 0.024278854 15 0.023937460 15.43 25 0.024266423 15.02 32
7 0.054289168 15 0.052746042 15.89 65 0.076781193 7.50 50 or 65
8 0.038388239 15 0.039931365 13.86 32 0.056199567 7.00 32 or 40
9 0.048557708 15 0.048899102 14.79 40 0.084311913 4.98 90 or 100

10 0.029735402 15 0.028533670 16.29 32 0.028112346 16.78 32

1 Repeated from Table 1. 2 If u > 15, a larger Dn should be selected, and if u < 15 m/s, a smaller Dn should
be selected.

Based on the calculated diameters, using the velocity of the gas through the pipes,
standard diameters should be selected from the appropriate catalogues [94] to reduce or to
increase the velocity (larger diameter reduces velocity and vice versa).

The different values for the optimised diameters obtained using the two presented
methods can be explained using the general illustrative example in Figure 3, where the two
methods select different maximal and minimal values of the optimisation function.
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4. Conclusions

The two presented methods typically give different final results, caused by oversee-
ing the local extrema of the optimisation function due to the different steps during the
calculation. A typical outcome will involve half of the pipes having a larger diameter and
the other half having a smaller diameter, or with all pipes having similar and moderate
values for the diameters. Between these two options, a designer should choose one based
on the available stock of pipes or based on the future expansion of the network, places
where larger consumers or many smaller consumers are located, etc. Whichever of the
two options is chosen, the network will be balanced in terms of the velocity of gas during
extreme conditions.

The appropriate steps would be as follows:

1. Estimate consumption (maximal amount of gas consumed by households or industry);
2. Assign the consumption to the nodes of the future network and choose locations for

the nodes (it is fixed during calculation);
3. Connect nodes with pipes, forming closed paths, i.e., loops (assign length of pipes,

but not diameter);
4. Redistribute the desired flow through the network considering the first Kirchhoff law

for every node (it is fixed during calculation);
5. Calculate the initial diameters using Equation (2) and optimise them using the

methods shown;
6. Select the diameters from the standardised values using the recommendations from

Table 3;
7. Repeat the classical calculation of the flow distribution for the known diameters using,

e.g., [5,6].
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67. Vysocký, J.; Foltyn, L.; Brkić, D.; Praksová, R.; Praks, P. Steady-State Analysis of Electrical Networks in Pandapower Software:
Computational Performances of Newton–Raphson, Newton–Raphson with Iwamoto Multiplier, and Gauss–Seidel Methods.
Sustainability 2022, 14, 2002. [CrossRef]

68. Renouard, M.P. Nouvelles règles à calcul pour la détermination des pertes de charge dans les conduites de gaz. J. Usines À Gaz
1952, 10, 337–339. (In French)

69. Renouard, P. Méthode de calcul concernant l’écoulement du gaz en conduits. Travaux 1962, 329, 179. (In French)
70. Piotrowski, R.; Ujazdowski, T. Designing control strategies of aeration system in biological WWTP. Energies 2020, 13, 3619.

[CrossRef]
71. Bagajewicz, M.; Valtinson, G. Computation of natural gas pipeline hydraulics. Ind. Eng. Chem. Res. 2014, 53, 10707–10720.

[CrossRef]
72. Ouyang, L.B.; Aziz, K. Steady-state gas flow in pipes. J. Pet. Sci. Eng. 1996, 14, 137–158. [CrossRef]
73. Schroeder, D.W., Jr. A Tutorial on Pipe Flow Equations. In Proceedings of the PSIG Annual Meeting, Bonita Springs, FL, USA,

11–14 May 2010; Paper Number: PSIG-1008a. Available online: https://onepetro.org/PSIGAM/proceedings-abstract/PSIG10/
All-PSIG10/2431 (accessed on 3 October 2023).

74. Colebrook, C.F. Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe
laws. J. Inst. Civ. Eng. 1939, 11, 133–156. [CrossRef]
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91. Brkić, D.; Praks, P.; Praksová, R.; Kozubek, T. Symbolic regression approaches for the direct calculation of pipe diameter. Axioms
2023, 12, 850. [CrossRef]

92. Lamri, A.A.; Easa, S.M. Explicit solution for pipe diameter problem using Lambert W-function. J. Irrig. Drain. Eng. 2022,
148, 04022030. [CrossRef]
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