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Abstract: Machine learning approaches are currently used to understand or model complex physical
systems. In general, a substantial number of samples must be collected to create a model with
reliable results. However, collecting numerous data is often relatively time-consuming or expensive.
Moreover, the problems of industrial interest tend to be more and more complex, and depend on
a high number of parameters. High-dimensional problems intrinsically involve the need for large
amounts of data through the curse of dimensionality. That is why new approaches based on smart
sampling techniques have been investigated to minimize the number of samples to be given to train
the model, such as active learning methods. Here, we propose a technique based on a combination of
the Fisher information matrix and sparse proper generalized decomposition that enables the definition
of a new active learning informativeness criterion in high dimensions. We provide examples proving
the performances of this technique on a theoretical 5D polynomial function and on an industrial crash
simulation application. The results prove that the proposed strategy outperforms the usual ones.

Keywords: active learning; design of experiments; regression; s-PGD

1. Introduction

In the context of multi-parametric problems where one wants to estimate an output
value, Y, that depends on multiple input variables, X = (x1, ..., xn), it is usual to resort
to machine learning [1]. To do so, an algorithm is trained on a few examples grouped as
a training database (Xtraining, Ytraining) to be able then to make predictions for unknown
cases, Xtest. The design of the training database is a main issue because it partly determines
the performances of the algorithm (i.e., the further predictions). However, the generation
of training samples if often costly. For instance, it can be really time-consuming to run
simulations or to realize experiments. It can also be relatively expensive because of the cost
of access to servers or machines.

Moreover, as the problems considered nowadays become more and more complex,
and depend on many input parameters, the models need many samples to be trained.
This issue is known as the “curse of dimensionality” [2]. Indeed, the volume of the space
increases so fast that the data become sparse and the number of necessary points needed to
approximate the space increases too. Therefore, for these reasons, the samples employed
by the algorithm need to be chosen efficiently.

Usually, training databases are constructed thanks to the methodology of Design of
Experiments [3]. Therefore, another approach has been developed over the past few years
with the emergence of active learning [4]. This technique proceeds by iteration with the
assumption that adding at each step the sample that improves the model the most will
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increase the performances quickly. Different ways to evaluate informativeness of a sample
regarding a specific model have been investigated. Various corresponding information
criteria have also been defined for classification and regression. Nevertheless, many of
them have failed when it comes to operating in high-dimensional settings.

Thus, we aim here to develop an efficient, iterative and automatic method to design
a training set for high-dimensional regression problems. To address this issue, a new
information criterion from a combination of the information given by the Fisher matrix [5]
with sparse proper generalized decomposition (s-PGD) [6] has been defined. The proposed
methodology is described in Section 2. It will be then tested on two different applications,
a polynomial function and a crash simulation problem. The results obtained are presented
in Section 3. Finally, the paper is completed with some concluding remarks in Section 4.

2. Methodology

To tackle the issue of high-dimensional regression problems, a new method for de-
signing training databases has been defined following the steps of an active learning
methodology. This method is based on the combination of the properties from the Fisher
information matrix and a model order reduction method through the use of s-PGD.

2.1. Active Learning

Firstly, various ways to design training databases for machine learning problems exist.
One of the most classic ways to build these training databases is to resort to Design of
Experiments (DOE). Indeed, DOE enables better organization of the tests performed in
scientific research or industrial studies. Its objective is to extract the maximum information
with a minimum number of experiments, and there are different ways in the literature to
construct these plans such as full design [7], full factorial design [8], Plackett–Burman [9],
Latin hypercube sampling (LHS), [10,11], etc.

However, their major disadvantage is that their conception only depends on the
input space and does not take into consideration the output. Moreover, the number of
data needed depends on the number of dimensions and levels chosen. Thus, the number
often increases drastically with the number of dimensions, suffering from the “curse of
dimensionality”. That is why other iterative and automatic methods have subsequently
been developed, like active learning methods.

The main idea of active learning is summed up in Figure 1. A machine learning
algorithm will be able to achieve better performances with few training samples if it can
choose the data from which it will learn. Therefore, the algorithms ask at each step for
the real output value associated with a sample “query” that an external entity named
“oracle” must then provide. It stops when the objective had been reached according to a
stopping criterion.

Figure 1. Active learning detailed methodology.

As a result, active learning is particularly suitable in many current machine learning
problems, where data can be time-consuming or expensive to obtain.

2.1.1. Scenarios

In active learning, there are different scenarios in which the queries can be made.
Indeed, there are different ways to select or take a sample in order to add it to the training
database of the trained model. That is why a quick overview of the query strategies
proposed in the literature will be presented here.
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The three main methods described in the literature and detailed after are: (i) member-
ship query synthesis [12–14], (ii) stream-based selective sampling [15], and (iii) pool-based
sampling [16].

(i) Membership query synthesis [12]: here, the model can ask for any sample in the
input space, and it can also ask for queries generated de novo rather than for those
sampled from an underlying natural distribution. This method has been particu-
larly effective for problems confined to a finite domain [13]. Initially developed for
classification models, it can also be extended to regression models [14]. However,
this method may leave too much freedom to the algorithm, which can be led to
request samples without any physical meaning.

(ii) Stream-based selective sampling [15]: here, the initial assumption is that it is not
expensive to add a sample. Therefore, the model decides for each possible sample
whether to add it as training data. This approach is also sometimes called stream-
based or sequential active learning because all the samples are considered one by
one and the model chooses for each one whether to keep it or not.

(iii) Pool-based sampling [16]: here, a small set, L, of labeled data and a large set,
denoted U, of unlabeled available data are considered. The query is then made
according to the information criterion, which evaluates the relevance of a sample
from the basis U in comparison with the others. The best sample according to
this criterion is then chosen and added to the training set. The difference with the
previous scenario is that the decision regarding a sample is taken individually. In
pool-based sampling, the other samples still available are taken into account. This
last method is the most used in real applications.

Next, to assess the relevance of a sample and to be able to apply these scenarios, it is
necessary to quantify the information carried by a sample.

2.1.2. Query Strategies

The quantification of the information carried by a sample can also be diverse, and has
led to the definition of various query strategies in the literature. The notation x∗A refers
to the most informative sample (i.e., the best or most relevant sample) for each of given
method A. The input values are noted x, the outputs, yi, range over all possible labeling, i,
and the model estimation, θ.

• Uncertainty Sampling:
Uncertainty sampling [16–19] considers that the most informative sample is the one
the model is most uncertain to predict correctly. With the entropy definition from [19],
this uncertainty can be written:

x∗US = arg max
x ∑

i
Pθ(yi | x)logPθ(yi | x). (1)

• Query by Committee:
A committee of models trained on different hypothesis on the base L is defined as
C =

{
θ(1), ..., θ(C)

}
. Then, a vote is carried out and the sample that generates the most

disagreement is selected and added [20]. There are different ways to measure the level
of disagreement and make the final vote. The two most used are the vote entropy,
described in [21], and the Kullback–Leibler (KL) divergence in [22].

• Expected model change:
For a given model and a given sample, the impact of the sample if added to the training
database, L, is estimated through a gradient calculation. The sample that induces the
biggest change is here the most relevant and is added to the training set [23,24]:

x∗EMC = arg max
x ∑

i
Pθ(yi | x)∥∇lθ({x, yi})∥, (2)
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where ∇lθ({x, yi}) is the gradient of the objective function, l, respectively, to the
parameters, θ, applied to the tuple {x, yi}.

• Variance reduction:
The most informative sample that will be added to the training set is the one minimiz-
ing the output variance (i.e., minimizing the generalization error) [25]:

x∗VR = arg min
x

< σ2
ŷ >+x, (3)

where < σ2
ŷ >+x is the estimated mean output variance across the input distribution

after the model has been re-trained on the query, x, and its corresponding label.

Thanks to theses various definitions of scenarios and queries strategies, many methods
of active sampling design can be set up.

Moreover, recent methods in active learning focus on addressing challenges such as
sample diversity, model uncertainty, or computational efficiency. Techniques like query-
by-committee and Bayesian methods have gained prominence. Advancements in deep
learning have led to the development of active learning strategies tailored for neural
networks [26] to tackle various applications [27,28]. Recent research has also explored
innovative approaches, such as meta-learning for active learning [29–31] or incorporating
human feedback into the loop [32].

In addition, new techniques based on D-optimality, like coordinate-exchange [33,34] or
minmax criterion, [35] have been developed, or alternatives to LHS, like through augment-
ing supersaturated designs [36] or space-filling designs [37].

However, most of them do not work effectively for high-dimensional regression and
few data. Indeed, in active learning methods, many criteria are defined with an euclidean
distance ∥xi − xj∥ between xi and xj points of the input space. In high dimensions, the
distance between two points is high for any points. Therefore, the criterion has similar
value for each point and cannot be used.

2.2. s-PGD Equations

On one hand, to deal with high-dimensional problems, a common solution is to resort
to model order reduction (MOR) methods [38]. These methods allow the reduction of
the computational complexity of mathematical models in numerical simulations. Indeed,
even if using a reduced basis generates some loss of generality, it often allows impressive
computing time savings. Moreover, if the problem solution is in the reduced basis, the
calculated solution with MOR remains quite precise.

Different techniques exist. But, as the aim here is to focus on regression in high
dimensions, PGD is very suitable since it overcomes the limitations of classical approaches.
In particular, PGD avoids the curse of dimensionality, as solving decoupled problems is
computationally much less expensive than solving multidimensional problems. Therefore,
PGD enables the formulation of parametric problems into a multidimensional framework
by setting the parameters of the problem as extra coordinates [39]. Then, a sparsely sampled
counterpart, called sparse PGD (s-PGD), was proposed in [6] So, s-PGD is adapted for
regression in high dimensions while using few data. It is the algorithm that will be used in
this paper and summarized in what follows.

If we consider a function, f , in n dimensions:

f (x1, ..., xn) : Ω ⊂ Rn −→ R, (4)

where x1...xn are the input variables, and s-PGD can be expressed as the following decom-
position:

f (x1, ..., xn) ≈ f̃ M(x1, ..., xn) =
M

∑
m=1

n

∏
k=1

Xk
m(xk). (5)
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Then, X can be decomposed as:

Xk
m(xk) =

M

∑
j=1

Nk
j,mak

j,m = (Nk
m)

Tak
m, (6)

where M stands for the number of terms in the decomposition, Nk
j,m are the set of basis

functions for the corresponding kth dimension and mth mode, and ak
j,m are the coefficients

for the corresponding kth dimension and the mth mode also.
These approximated functions, f̃ M, are calculated step by step thanks to a greedy

algorithm, and the new Mth order term is found using a non-linear solver (Picard or
Newton, for instance):

f̃ M =
M−1

∑
m=1

n

∏
k=1

Xk
m(xk) +

n

∏
k=1

Xk
M(xk). (7)

In a machine learning framework, this approximation allows us to make an estimation
of the output values related to unknown data. Moreover, achieving this is particularly
difficult when confronted with a high-dimensional problem, where the data are sparse
and/or scarce. Indeed, the regression problem described here only guarantees that the
minimization is satisfied by the training. Thus, if the sampling points in the training set are
not numerous enough, high oscillations may appear out of these measured points because
the risk of over-fitting has increased. This affects the predictions of the generated model.

To deal with this issue, a modal adaptivity strategy (MAS) can be set up. The idea of
MAS is to minimize the oscillations outside the training set by starting the PGD algorithm
with only low degree modes. When the residual values then decrease slowly enough or reach
a fixed value, higher order approximation functions are added. This method has proven to
be an efficient way to improve s-PGD performances in many cases [40–43]. However, some
limitations remain. For instance, it has been noted that the desired accuracy is not achieved
before reaching over-fitting or the algorithm can stop too early when using MAS in some
cases. In addition, in problems where just a few terms of the interpolation basis are present,
the method fails in identifying the true model and leads to bad predictions.

To solve these difficulties, other versions of PGD have been developed, such as the
rs-PGD and the s2-PGD, as detailed in [39].

2.3. Fisher Matrix

On the other hand, to develop an active learning methodology, it is necessary to define
an informativeness criterion. Yet, one way to quantify the information quarried in a series
of observations is to use Fisher information [5,44], or, for n parameters, the corresponding
Fisher information matrix.

The likelihood, f (X, µ), is considered a function of X with respect to parameter µ.
In statistics, the Fisher information is a way of measuring the information carried by an
observable random variable about an unknown parameter, µ, of a distribution that models X.

Moreover, the main issue in defining a DOE is the ease of identifying parameters by
maximizing the likelihood. Indeed, where f is sharply peaked with respect to changes in µ,
the data provide much information about the parameter µ. Then, it is easy to indicate the
“correct” value of µ from the data. On the contrary, if f is flat, many samples are needed
to determine the actual parameter values with adequate accuracy. Therefore, the variance
with respect to µ could be a valuable indicator to optimize the design.

To do so, the partial derivative with respect to µ of the log-likelihood, formally called
score, s, can be written as:

s(µ) =
∂ log f (X, µ)

∂µ
. (8)
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Then, the variance of the score is by definition the Fisher information, I,

I(µ) = V(s(µ)) = E(s(µ)2)− (E(s(µ)))2. (9)

Under certain regularity conditions, the first moment of the score vanishes,

E(s(µ)) = E
(

∂ log f (X, µ)

∂µ

)
=
∫ ∂ f (x,µ)

∂µ

f (x, µ)
f (x, µ)dx

=
∂

∂µ

∫
f (x, µ)dx =

∂

∂µ
1 = 0.

(10)

It gives

I(µ) = E
((

∂ log f (X, µ)

∂µ

)2
)

. (11)

Which, taking into account

∂2 log f (X, µ)

∂µ2 =

∂2 f (X,µ)
∂µ2

f (X, µ)
−
(

∂ log f (X, µ)

∂µ

)2

(12)

and

E

 ∂2 f (X,µ)
∂µ2

f (X, µ)

 =
∂2

∂µ2

∫
f (x, µ)dx = 0 (13)

yields

I(µ) = −E
(

∂2

∂µ2 log f (X, µ)

)
. (14)

When considering many parameters, µ = (µ1, µ2..., ), the result is the so-called Fisher
information matrix, whose components read,

Ii,j(µ) = E
((

∂

∂µi
log f (X, µ)

)(
∂

∂µj
log f (X, µ)

))
, (15)

i.e.,
I(µ) = E

(
(∇ log f (X, µ))(∇ log f (X, µ))T

)
. (16)

2.4. Computation of a New Information Criterion

The previous definition of Fisher information (16) can be applied to any model of X.
Then, it can be applied to s-PGD (5).

For the ease of the exposition and without loss of generality, let us begin by assuming
that the unknown objective function lives in R2. If f is decomposed through s-PGD, it gives
for the first decomposition mode:

f = (FTa)(GTb), (17)

where F = (F1, ..., FN) and G = (G1, ..., GN) are the set of basis functions for the correspond-
ing dimensions, and a and b the corresponding vectors of coefficients.

Then, for a fixed value ak of a and bl of b:

∂ f
∂ak

= Fk(G
Tb) (18)

∂ f
∂bl

= Gl(FTa), (19)
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where Fk and Gl are the corresponding basis functions of ak and bl . Here, Legendre
polynomials are used as basis functions. But, other basis functions can be chosen. For
example, a Fourier basis or another polynomial basis can also be considered [39].

Thus, the derivative can be written as:

∂ f
∂µ

=



F1(GTb)
...

FN(GTb)
G1(FTa)

...
GN(FTa)


. (20)

Therefore,

I(µ) = E


 ∂ f (X,µ)

∂µ

f (X, µ)

 ∂ f (X,µ)
∂µ

f (X, µ)

T


= E
(

1
f (X, µ) f (X, µ)T

(
∂ f (X, µ)

∂µ

)(
∂ f (X, µ)

∂µ

)T
)

.

(21)

Finally, replacing with the derivative and with the variance noted σ,

I(µ) =
1
σ2



F1(GTb)
...

FN(GTb)
G1(FTa)

...
GN(FTa)





F1(GTb)
...

FN(GTb)
G1(FTa)

...
GN(FTa)



T

=
1
σ2

(
FFT(GTb)2 FGT(GTb)(FTa)

GFT(GTb)(FTa) GGT(FTa)2

)
.

(22)

Then, for a design of experiment of M samples, ξ = (ξ1, ξ2, ..., ξM), the information
matrix is:

I(µ, ξ) ≡
M

∑
i=1

I(µ, ξi). (23)

Finally, as demonstrated in the general equivalence theorem in [45], the equivalent
variance on a new point, χ, is:

d(µ, χ) ≡
(

∂ f (µ, χ)

∂µ

)T
I(µ, ξ)

∂ f (µ, χ)

∂µ
. (24)

The value d will be used as our new information criterion in the active learning process.
As it is an equivalent of the variance, we will seek the point with the highest value of d.
Then, we calculate its corresponding output, f (χ), to add the point to the training database.

The whole methodology to build the training database step by step according to this
criterion is summed up in the following workflow Algorithm 1.



Computation 2024, 12, 24 8 of 17

Algorithm 1 Active Learning: Matrix criterion

1: Inputs: Training data base ξ with few elements (random or small DOE), Pool Data
Base on the input space Xpool (D-dimensional grid), Stopping criteria (R2, error...)

2: Outputs: Trained learner
3:
4: Initialization
5: Train learner on ξ
6: Make a prediction for all elements in Xpool
7:
8: Main
9: while Stopping criteria not reached do

10: for All element in pool database Xpool do
11: Calculate information criterion value d
12: end for
13: Determine best element according to d and calculate its output
14: Add the best element to training database
15: Delete the best element from pool database Xpool
16: Train learner on the new training database
17: Make a prediction for all elements in Xpool
18: end while

Finally, a sampling design method has been obtained and can be applied to the high-
dimensional regression problem.

For general s-PGD with more functions and modes, the same idea can be extended.
Some detailed calculations are shown in Appendix A.

3. Tests and Results

In this section, the proposed method will be applied to two examples. First, one theoret-
ical example with a polynomial function in a 5-dimensional space that is not well estimated
using a simple DOE and s-PGD. Secondly, one industrial crash simulation application.

The results obtained on these two applications are compared with the ones computed
with more usual, or previously used, sampling methods.

3.1. Polynomial Function

As a first example, we are trying to estimate the following polynomial function
from [39] in a 5-dimensional input space.

f (x = (x1, x2, x3, x4, x5))

= (8x3
1 − 6x1 − 0.5x2)

2 + (4x3
3 − 3x3 − 0.25x4)

2 + 0.1(2x2
5 − 1).

(25)

In Figure 2, a plot of the ground truth function is shown for f (x1, x2, x3 = 0, x4 =
0, x5 = 0.7071), as in [39], for comparison purposes.

Figure 2. Ground truth for f (x1, x2, x3 = 0, x4 = 0, x5 = 0.7071).
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The function is defined on the domain Ω = [−0.5, 0.5]5, and the predictions are made
over this space using an s-PGD model trained with the Fisher matrix active learning method.
The results are compared with s-PGD trained on an LHS with the same number of samples
as the active method at the considered step. They are also compared with the results of the
previous article [39], which were obtained through a 4th order MAS s-PGD, and an LHS of
160 points as the training set.

For the training, the s-PGD hyperparameters (modes and degrees) are set to avoid
over-fitting and have good generalization. The value of R² on the training set is constant
and around 0.8.

Moreover, for the matrix method, the next sample is chosen within a pool of available
samples, like in a pool-based strategy. This pool is defined as a k-dimensional grid (five
here) of N subdivisions, which gives a group of Nk possible elements evenly distributed
over the input parametric space. In our application, a refined research grid of size 205 is
used in order to have a wide choice of queries.

In Figure 3, the output shape of the function is plotted at different steps for the same
fixed parameters as before. For the active method, on the plots on the left side of Figure 3,
the blue dots are the initial training points for the model, and the red ones are the new
added points after different numbers of queries. On the the plots on the right side of
Figure 3, the samples are generated with an LHS. For each step, a new LHS is generated,
with a number of samples corresponding to the number of training samples of the active
method. For example, in the middle of Figure 3, we start with 25 samples (blues dots), and
we add 9 queries (red dots) in the active method (so 34 training samples) and we compare
with an LHS of 34 samples.

Figure 3. Cont.
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Figure 3. Predictions with the matrix method (left) and a classic LHS (right) for x1, x2, x3 = 0, x4 =

0, x5 = 0.7071 after 0 (top), 9 (middle), and 29 (bottom) queries.

With the matrix method, the training points are added accordingly to the shape of the
predicted output function and in order to reduce the output variance. This leads to more
points on the curved areas and borders. While, as expected, the LHS gives a more random
and evenly distributed screening on the input space independent of the output shape. As
shown in Figure 3, the prediction is adapted step by step in the matrix method until there is
no more significant change. This precision can be settled accurately by adapting the value
of the stopping criterion.

To compare more directly the performances of both methods, the correlation coeffi-
cients, defined as follows in Equation (26) and calculated on a test set, are evaluated. The
test set considered includes all the points of the grid that are not used as training. Because
the grid is refined, it is assumed that it is a densely populated and evenly distributed test
set that gives significant results.

R2 =
∑n

i=1(Ypred,i − Ypred)(Ytrue,i − Ytrue)√
∑n

i=1(Ypred,i − Ypred)2
√
(Ytrue,i − Ytrue)2

, (26)

where Ypred corresponds to the prediction made by the model, Ytrue to the real output values
and Ypred, Ytrue to the corresponding means.

The results, from 25 to 55 queries, for both the LHS and matrix method at each step are
plotted in Figure 4. These plots have been repeated for 400 iterations of the whole active
learning process with different initialization databases (constructed with different LHS of
25 values). The average, first, and last quartile of R2 have been extracted for each method.

It appears that the matrix method converges faster than the LHS, reaching a stable
level with a training database of 40 samples, while the LHS performances are still increasing
and lower. Adding samples increasingly gives an average correlation value of 0.824, while
it only reaches 0.647 with an LHS for 35 samples. Compared with the results of the previous
study in [39], where training of an LHS with 160 samples was chosen to reach an R2 of 0.88,
here the same value can be obtained with only 35 samples.

In addition, it is also noteworthy that the initial training database has a large impact
on the results, especially at the beginning of the active learning process. Indeed, the
interquartile range is, at first, around 0.23 for the matrix method and 0.21 for the LHS,
meaning the dispersion is notable. After that, it decreases quickly for the matrix method,
reaching 0.07 against 0.5 for the LHS at around 10 queries. This phenomenon is explained
by the fact that the LHS seeks to increase the inertia by starting in random directions. This
is optimal for a group of tests, but the estimator does not take into account the past training
data. On the contrary, our approach is to seek to optimize the points and the past sets of
points with a criterion of minimization of the variance. Also, for this kind of criterion, after
a while adding a point has less and less impact, and the criterion become stationary. That is
why a stabilization appears.



Computation 2024, 12, 24 11 of 17

Figure 4. Evolution of R² values for the two methods as a function of the number of points in the
training set over 400 runs of the whole active learning process.

Moreover, the grid size can be more or less refined and needs a compromise. Indeed,
this is illustrated in Figure 5, where the final value of R2 after 30 queries is plotted. That is
to say, after the criterion has converged and there is no more variation between the queries
at the state n and n + 1. This shows that, with a wider grid size, the R2 values obtained
by the matrix method can be higher and thus the performances obtained by the model are
better. For example, for 35 queries, an R2 value of 0.790 is obtained for a 105 grid against
0.824 for a 205 grid.

This can be easily explained because, with a more refined grid, more “next points” are
available, and the algorithm can choose more precisely where to add a new point. However,
it is also more time-consuming to compute the criterion for the whole grid, and it is more
memory consuming to save and calculate the corresponding values. Thus, a compromise is
necessary. Moreover, it appears in Figure 5 that after 10 subdivisions the slope of increase
is lower. For this problem, a subdivision after 10 should be chosen, still taking into account
the calculation time.

Figure 5. Impact of the grid size on the performances of the matrix method.
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Globally, the results obtained with the matrix method appear to be significantly better
than with usual samplings. Although at first it is more time-consuming or computationally
more expensive to determine the next point to add at each step, time and costs are saved
in the end because fewer samples are required by the model to converge. This aspect is
particularly interesting for industrial applications where simulation or experimental costs
need to be minimized.

3.2. Application on a Box-Beam Crash Absorber

Now, this method was applied to an industrial mechanical problem through a box-
beam deformation example. The idea here is to study and predict the deformation of a
beam separated in three parts. Each part (part 1, part 2, and part 3) has a specific thickness.
The whole beam is subjected to a loading along its main axis (y) on one side and clamped
on the other. The model is represented in Figure 6.

Figure 6. Structure of the box-beam and settlement of the problem.

The application of the stress smashes the beam along the y-axis. The corresponding
deformation depends on the thickness chosen for the three boxes. Some cases are repre-
sented in Figure 7. The first, intermediate, and last time steps for different input values of
thicknesses for the three parts are illustrated.

Figure 7. Cont.
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Figure 7. Visualisation of 3D box-beam simulation results at an intermediate and at last time steps for
different input values of thicknesses for the three parts.

In this case, the model’s aim is to estimate the displacement along the main axis of
a point located at the edge of the beam at the final simulation time step function of the
thicknesses chosen for each box as input parameters (h1, h2, h3). The box-beam is a classic
test for computational mechanics of particular interest in the automotive industry. The
simulations were carried out using the commercial the software VPS (version 2022) from
ESI Group. ESI Group is considering the proposed technology addressed in the present
paper within the AdMoRe ESI solver. The ranges of the thicknesses area 1 to 1.7 mm.

As before, we will compare the performances (in terms of R2 values) for s-PGD models
trained with our active method and with an LHS with the same number of training samples.
As only three parameters are involved here, the initialization for the matrix method is
performed with a small LHS of 10 samples.

Moreover, the whole process is repeated 100 times to produce an average of the results
obtained, which is plot in Figure 8.

The grid is refined with a 350 size to be precise enough.
It appears in Figure 8 that, as for the previous example, the matrix method reaches

higher values of R2 faster than the use of a usual DOE. Indeed, it gives on average a value
12% higher than with the LHS. However, the increases with the two methods are more
similar here than before. The differences are also less important. This can be explained
by the fact that there are only three parameters involved and the behavior of the output is
quite simple. There is also still a variability associated to the initialization state, with a 19%
average variation for the matrix method and 22% for the standard LHS.

As for this kind of criterion, where a stable level is often reached for the reasons
detailed before, a stable level is probably reached but for more queries. For an industrial
application, it is assumed that an R² of 0.8 is enough (regarding the computing time of those
simulations). Therefore, the active method allows us to achieve good global predictions
with few samples here also.
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Figure 8. Evolution of R² values for the two methods as a function of the number of points in the
training set over 100 runs of the whole active learning process with and without active learning.

4. Conclusions and Future Works

To sum up, a new information criterion was proposed to determine which sample
would be the most valuable to add to the training database of a high-dimensional regression
model to improve its performances step by step. The results of this method appear to be
quite conclusive. Indeed, the precision of the predictions function of the number of samples
in the training database increases faster with this method than with a more usual DOE (such
as LHS). Moreover, this criterion does not only depend on the shape of the input space, but
also takes into account the output values. This way, the models are automatically refined
where there are variations in the output space and can adapt faster to a specific problem.

However, this methodology can still be improved in different ways:

• First, the samples in this study, are added one by one, but it could be interesting to
add them by group. Indeed, it seems that the algorithm needs to select some points in
the same area to estimate it before moving to others. This behavior can be explained
by the fact that the information criterion used aims to minimize the global output
variance. Adding points by group could be an interesting way to solve this issue.
In further studies, studying how many points to add would be relevant. Moreover,
when the real output value (given by the “oracle”) comes from experiments, it is more
pertinent to add more than one point simultaneously to have better organization.

• Another point that could be optimized is the search for the criterion optimum value.
As for now, a simple search along a refined grid is used. Using an optimized method
to find the optimum (such as a gradient descent for example) or using another model
for the criterion could be an option. This is also interesting for the purpose of reducing
the computational cost of the algorithm. Indeed, finding the optimal value without
generating a huge grid would be a good improvement and should be optimized.

• In terms of practical use, developing an algorithm to determine and maybe adapt
the s-PGD parameter (number of modes, function degrees) during the whole active
learning process would also improve the speed of convergence.

• Finally, the mix of the criterion with a more specific cost function is also considered to
improve the results, as was studied in the preliminary step of the method development.

In the end, let us highlight that the matrix method criterion is particularly efficient for
high-dimensional problems. Indeed, unlike the usual active learning regression criterion, it
does not depend on any distance. This will be confirmed by applying this new methodology
for a much higher dimensional problem.
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Appendix A. Matrix Method Criterion Detailed Definition

Let us consider an unknown function whose approximation is precisely the objective
of this work. A function, f , depending on n input variables x1, x2, ..., xn such as:

f (x1, x2, ..., xn) : Ω ⊂ Rn −→ R. (A1)

With s-PGD, it can be also written as:

f (x1, ..., xn) ≈ f̃ M(x1, ..., xn) =
M

∑
m=1

n

∏
k=1

Xk
m(xk). (A2)

The modes will be noted m, the degrees of the functions d, and the dimensions k and
Xk

m and Nk
d are the decomposition vectors.

The corresponding vector for an example where m = [1, 2], d = [1, 2] and
k = [1, 2, 3] can be written:

J(µ, x1, x2, x3) =



m = 1, d = 1


k = 1
k = 2
k = 3

 N1
1 (x1)X2

1(x2)X3
1(x3)

N2
1 (x1)X2

1(x2)X3
1(x3)

N3
1 (x1)X2

1(x2)X3
1(x3)



m = 2, d = 1


k = 1
k = 2
k = 3

 N1
1 (x1)X2

2(x2)X3
2(x3)

N2
1 (x1)X2

2(x2)X3
2(x3)

N3
1 (x1)X2

2(x2)X3
2(x3)



m = 1, d = 2


k = 1
k = 2
k = 3

 X1
1(x1)N1

2 (x2)X3
1(x3)

X1
1(x1)N2

2 (x2)X3
1(x3)

X1
1(x1)N3

2 (x2)X3
1(x3)



m = 2, d = 2


k = 1
k = 2
k = 3

 X1
2(x1)N1

2 (x2)X3
2(x3)

X1
2(x1)N2

2 (x2)X3
2(x3)

X1
2(x1)N3

2 (x2)X3
2(x3)





(A3)

According to the methodology seen in Section 2.4, on a considered point (x1, x2, x3)
and for a model previously trained on the database, ξ, we have the criterion:

d(µ, x1, x2, x3) ≡
(

∂ f (µ, x1, x2, x3)

∂µ

)T
I(µ, ξ)

∂ f (µ, x1, x2, x3)

∂µ

= J(µ, x1, x2, x3)
TI(µ, ξ)J(µ, x1, x2, x3).

(A4)

This value, d, will be the new criterion used to determine the information in one point
of the database. Therefore, it controls whether or not the point should be added to the
training set.
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