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Abstract: This work focuses on optimizing the displacement of a passive particle interacting with
vortices located on the surface of a sphere. The goal is to minimize the energy expended during
the displacement within a fixed time. The modeling of particle dynamics, whether in Cartesian or
spherical coordinates, gives rise to alternative formulations of the identical problem. Thanks to these
two versions of the same problem, we can assert that the algorithm, employed to transform the
optimal control problem into an optimization problem, is effective, as evidenced by the obtained
controls. The numerical resolution of these formulations through a direct approach consistently
produces optimal solutions, regardless of the selected coordinate system.

Keywords: vortex; passive particle; spherical motion; control problem; nonlinear optimization
problem; Cartesian and spherical coordinates

1. Introduction

This study focuses on analyzing the movement of a passive particle within a flow
generated by a specific configuration of point vortices on the surface of a sphere. Point vortices,
which provide finite-dimensional approximations to the vortex dynamics of two-dimensional,
incompressible ideal fluids, can be traced back to Helmholtz [1] and subsequent contributions
by Kelvin [2] and Kirchhoff [3]. More recently, Hassan Aref was one of the world’s leading
researchers in the dynamics of point vortices (see, for instance, [4–6]).

Ongoing research in this domain integrates various disciplines, such as theories of
dynamical systems, differential geometry, numerical analysis, optimal control, and more.
Notably, the exploration of point vortices extends beyond conventional planes to encompass
diverse surfaces, including the sphere [7–9], plane [10], and hyperbolic sphere [11–13].

Point vortices on the sphere are relevant as they provide a simplified representation of
the behavior observed in specific geophysical flows where the curvature of the Earth plays
a crucial role, and these flows persist over extended periods [9]. In fact, vortex point models
play a pivotal role in addressing numerous fundamental dynamics questions related to
atmospheric flows [7]. Conceptual models of point vortices are also used to identify and
evaluate physical phenomena affecting the structure and interaction of atmospheric and
oceanic vortices [14].

This work focuses on optimizing the displacement of a passive particle interacting with
vortices located on the surface of a sphere. More specifically, our focus lies in the optimal
control of the passive particle’s displacement between two fixed points. The objective
is to minimize the energy expended during the displacement while considering a fixed
time for its completion. This problem can be conceptualized as a simplified model of
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an autonomous vehicle moving between two points, utilizing atmospheric circulation or
oceanic currents, to achieve displacement with minimal energy consumption.

To tackle this problem, the displacement of the passive particle is reformulated as
a control problem, and a direct numerical approach is employed for its solution. This
approach, previously utilized in addressing a vortex problem in an infinite plane [15],
involves the discretization of the available time (T) for displacement into n sub-intervals,
each characterized by constant controls. The resulting nonlinear programming problem
(NLP) is numerically solved using the fmincon solver from the MATLAB Optimization
Toolbox [16].

Observe that the proposed approach for solving the control problem is opposed to
Pontryagin’s Maximum Principle methodology [17] that first optimizes and then discretizes
the problem (see, for instance, [18]).

A similar approach was implemented on the sphere in which the equations that govern
the dynamics of the system composed of several vortices and a single passive particle were
deduced using spherical coordinates [19]. It was observed that, in scenarios involving
one, two, and three vortices, it is possible to show the existence of near or quasi-optimal
trajectories for the passive particle.

In a separate study, the problem was addressed using Cartesian coordinates, with con-
trols introduced in the form of tangent vectors to the sphere [20]. In this context as well,
it was found that it is possible to obtain near or quasi-optimal trajectories for the passive
particle, which is advected by one, two, three, or four vortices.

The possibility of modeling the problem through two different coordinate systems
raises the question of whether the solution depends on the chosen coordinate system or
if, on the contrary, it is unique regardless of the system. This study focuses on the answer
to this question. The formulation of the problem is deduced in spherical and Cartesian
coordinates. It is then shown how it is possible to convert the problem formulation from
one coordinate system to another.

This document is structured as follows: In Section 2, we undertake the derivation
of equations governing the dynamics of the passive particle in Cartesian coordinates.
Section 3 explores the modeling of dynamics in spherical coordinates. The formulation of
optimization problems, depending on the type of coordinates, and the presentation of the
numerical strategy employed for their resolution are detailed in Section 4. Results obtained
from the solution of discretized optimization problems are outlined in Section 5. The study
concludes with final considerations presented in Section 6.

2. Modelling the Control Problem in Cartesian Coordinates

The problem under consideration involves the movement of a passive particle be-
tween two specified points on the surface of a non-rotating sphere within a fixed time.
The particle’s autonomy in terms of displacement is governed by control, allowing it to
move freely in any direction on the surface of the sphere.

In this section, we introduce the equations that govern the motion of controlled passive
particles induced by a vortex on the sphere. The sphere is centered at the origin with a
radius of R .

Let vj =
(
xj(t), yj(t), zj(t)

)
≡

(
xj, yj, zj

)
denote the position of vortex j (j = 1, 2, · · · , N)

on the sphere, where ||vj|| = R . In Cartesian coordinates, the dynamics of this set of vortices
is governed by the system of ordinary differential equations [21]:

v̇i =
1

2πR

N

∑
j=1
j ̸=i

k j
vj × vi

∥vi − vj∥2 , i = 1, 2, . . . , N , (1)

with the corresponding initial conditions. Here, k j represents the circulation of vortex j ,
and N is the total number of vortices on the sphere. The distance along the chord between
vortex i and j can be expressed as:
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∥vi − vj∥2 = 2
(

R2 − vi · vj

)
. (2)

The derivation of Equation (1) is outlined in Appendix A.
A passive particle, defined as a point vortex with circulation k = 0, contributes to

the dynamics of a system, where P such particles are advected by N point vortices. This
behavior is governed by Equation (1), supplemented by equations specifying the motion of
the passive particles:

ẋp =
1

2πR

N

∑
j=1

k j
vj × xp

∥xp − vj∥2 , p = 1, 2, . . . , P , (3)

with the respective initial conditions.
Considering a single controlled passive particle (P = 1) moving in a spherical fluid

induced by N vortices, the corresponding equation is

ẋ =
1

2πR

N

∑
j=1

k j
vj × x

∥x − vj∥2 + Uc(t) , (4)

with the respective initial conditions. In the right-hand side of Equation (4),

Uc(t) =
(
ux(t), uy(t), uz(t)

)
≡

(
ux, uy, uz

)
(5)

is the control vector function. The interdependence among the entries of this control
vector is evident. In the ensuing discussion, it will become clear that these entries must be
configured in a manner to guarantee the particle’s trajectory on the spherical surface.

Considering the single vortex located at the North Pole of the sphere, i.e., its position
vector is

v = (0, 0, R), (6)

then
v × x = (0, 0, R)× (x, y, z) = (−Ry, Rx, 0), (7)

and
∥v − x∥ = x2 + y2 + (R − z)2, (8)

which enables us to write row-wise the Equation (4) for a single passive particle:
ẋ = − k

2π
y

x2+y2+(R−z)2 + ux

ẏ = k
2π

x
x2+y2+(R−z)2 + uy

ż = uz

(9)

The system (9), with the initial conditions (∥x(0)∥ = ∥(x(0), y(0), z(0))∥ = R):
x(0) = x0
y(0) = y0
z(0) = z0

(10)

describes the dynamic of a controlled passive particle on a sphere advected by a point
vortex located at the North Pole.

The problem addressed here is the displacement of the passive particle between two
given points of the sphere. Starting from the point P0, the passive particle has to reach
a final destination point Pf in a fixed time T. The autonomy of the particle in terms of
displacement is given by the control Uc. This control allows the particle to move in any
direction on the surface of the sphere. Indeed, the particle should fully exploit the surface
flow motion generated by the vortex, aiming to minimize the necessity for control input
Uc , since the application of control involves the expenditure of energy.
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Since the particle x is constrained to move on the surface of the sphere with a radius
of R , then

∥x∥2 = R2 ⇔

∥(x, y, z)∥2 = R2 ⇔
x2 + y2 + z2 = R2 ⇔
d
dt

(
x2 + y2 + z2

)
= 0 ⇔

2(xẋ + yẏ + zż) = 0 ⇔
xẋ + yẏ + zż = 0

and, from (9), one obtains (
ux, uy, uz

)
· (x, y, z) = 0 . (11)

In other words, the control and position vectors are perpendicular to each other:(
ux, uy, uz

)
⊥ (x, y, z) . (12)

This indicates that the control vector
(
ux, uy, uz

)
lies within the tangent plane of the sphere

at the point (x, y, z). In simpler terms, for the particle to move on the sphere, the exerted
control must be orthogonal to the particle’s position vector, i.e.,

Uc(t) ⊥ x(t) , ∀t ≥ 0 . (13)

The control vector can be defined as a linear combination of two vectors w1 and w2
belonging to this plane, i.e.,

Uc = α w1 + β w2 , (14)

with α ≡ α(t) and β ≡ β(t) two real (controls) scalars functions. Given two vectors in the
tangent plane, w1 = (y,−x, 0) and w2 = (0, z,−y), where w1 · x = 0 and w2 · x = 0 , the
control vector indeed assumes the form(

ux , uy , uz
)
= α(y ,−x , 0) + β(0 , z ,−y) = (αy ,−αx + βz ,−βy); (15)

the dynamic of the passive particle is then given by
ẋ = − k

2π
y

x2+y2+(R−z)2 + αy

ẏ = k
2π

x
x2+y2+(R−z)2 − αx + βz

ż = −βy

(16)

with initial conditions (10) and control

U = (α(t), β(t)) . (17)

The energy spent on the displacement aimed at minimization is represented by the
integral over the time interval [0, T] of the sum of the squares of the components of U.
Therefore, the objective function of the control problem is given by∫ T

0
∥U∥2dt =

∫ T

0

(
α2(t) + β2(t)

)
dt. (18)
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3. Modeling the Control Problem in Spherical Coordinates

In spherical coordinates, the dynamics of the passive particle under control in identical
conditions, as detailed in the preceding section, is determined by (see [19]):{

θ̇ = uθ

ϕ̇ = k
4πR2

1
1−cos(θ) + uϕ

(19)

with the given initial condition {
θ(0) = θ0
ϕ(0) = ϕ0

(20)

where θ ∈ [0, π] is the colatitude (or polar) angle of the particle position, i.e., the angle
between the radius passing through the North Pole, (0, 0, R) , and the radius passing
through the particle, and ϕ ∈ [0, 2π] is the longitude (or azimuthal) angle, i.e., the angle
that the meridian passing through (R, 0, 0) makes with the meridian passing by the particle
position. The variables uθ and uϕ represent the angular controls applied on the passive
particle, i.e.,

Us = (uθ , uϕ) , (21)

and, as before, the circulation of the vortex located at the North Pole is given by k.
In a previous work [19], Equation (19) was employed to solve the control problem

of displacing the passive particle between two specified points of the superficial sphere
within a fixed time. However, a direct comparison of results with those obtained using
Cartesian coordinates is not feasible due to inherent differences in controls, given that the
controls are independent of each other.

To understand the transformation of controls between Cartesian and spherical coordi-
nates, we will derive the particle dynamics equations in spherical coordinates from their
counterparts in Cartesian coordinates. This approach allows us to observe the changes in
controls that occur during this transformation.

The correspondence between the position vectors of the passive particle in Cartesian
coordinates (x, y, z) and spherical coordinates (θ, ϕ) is given by

x = R cos ϕ sin θ
y = R sin ϕ sin θ
z = R cos θ

(22)

The time derivatives of these coordinates are:
ẋ = −Rϕ̇ sin ϕ sin θ + Rθ̇ cos ϕ cos θ
ẏ = Rϕ̇ cos ϕ sin θ + Rθ̇ sin ϕ cos θ
ż = −Rθ̇ sin θ

(23)

The expression for the chord distance in spherical coordinates, as given by (8), can be
written as

∥v − x∥ = x2 + y2 + (R − z)2

= x2 + y2 + z2 + R2 − 2zR

= 2R2 − 2R(R cos θ)

= 2R2(1 − cos θ) (24)

and the cross product (7) is modified to yield

v × x = (−Ry, Rx, 0) =
(
−R2 cos ϕ sin θ, R2 cos ϕ sin θ, 0

)
. (25)
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Substituting (24) and (25) into Equation (16) gives rise to
ẋ = − k

4πR
sin ϕ sin θ
1−cos θ + ux

ẏ = k
4πR

cos ϕ sin θ
1−cos θ + uy

ż = uz

(26)

Reciprocally, the controls specified in (15) can be transformed into Cartesian coordinates:
ux = αy
uy = −αx + βz
uz = −βy

⇔


ux = Rα sin ϕ sin θ
uy = −Rα cos ϕ sin θ + Rβ cos θ
uz = −Rβ sin ϕ sin θ

(27)

Replacing these controls in Equation (26) leads to
ẋ = − k

4πR
sin ϕ sin θ
1−cos θ + Rα sin ϕ sin θ

ẏ = k
4πR

cos ϕ sin θ
1−cos θ − Rα cos ϕ sin θ + Rβ cos θ

ż = −Rβ sin ϕ sin θ

(28)

The Equations (23) and (28) produce a system of equations that provides the basis for
deriving the equations for θ̇ and ϕ̇. More precisely, the third equation of

−Rϕ̇ sin ϕ sin θ + Rθ̇ cos ϕ cos θ = − k
4πR

sin ϕ sin θ
1−cos θ + Rα sin ϕ sin θ

Rϕ̇ cos ϕ sin θ + Rθ̇ sin ϕ cos θ = k
4πR

cos ϕ sin θ
1−cos θ − Rα cos ϕ sin θ + Rβ cos θ

−Rθ̇ sin θ = −Rβ sin ϕ sin θ

(29)

yields
θ̇ = β sin ϕ , (30)

while the first two equations of (29) provide us with{
θ̇ = β sin ϕ

ϕ̇ = k
4πR2

1
1−cos θ − α + β cos ϕ cot θ

(31)

for which, when compared to Equation (19), the result is

Us =
(
uθ , uϕ

)
= (β sin ϕ, −α + β cos ϕ cot θ) . (32)

This expression allows for the computation of spherical controls uθ(t) and uϕ(t) as
functions of the same parameters α(t) and β(t) utilized in Cartesian control.

4. Numerical Control for Particle Displacement

The control problem arising from controlling the particle’s displacement on the surface
of the sphere is numerically solved using a direct approach, akin to the one previously
employed in the infinite plane [15]. Effectively, this control problem transforms into an
optimization problem involving the minimization of the objective function, as defined by
Equation (18), while taking into account the constraint arising from the passive particle’s
displacement from an initial point P0 to a target point Pf within precisely T units of time.

4.1. Optimization Problems

As explained in the preceding section, the dynamics of the passive particle can be
modeled in various ways, contingent on the choice of coordinates and the type of control.
In the scenario of Cartesian coordinates, the optimization problem is formulated as follows:
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P1: Cartesian Optimization Problem

Minimize : ∫ T
0 ∥U(t)∥2dt

subject to :
ẋ = k

2πR
v×x

||x−v||2 + Uc

x(0) = P0
x(T) = Pf
∥U∥ ≤ umax

where U = (α, β), P0 = x0, and Pf = x f ∈ IR3 represent the initial and final points, T > 0
denotes the time available for the displacement, k is the circulation of the vortex v ∈ IR3,
and umax > 0 is the upper limit value of the control.

In the generic optimization problem P1, the objective function to be minimized corre-
sponds to the energy utilized for the displacement of the passive particle during the time
interval [0, T]. The constraints are linked to the application of the equation governing parti-
cle dynamics, the specified initial and final positions, and the constraint on the maximum
control norm. This last condition stems from the finite energy available for executing the
displacement.

For spherical coordinates, the optimization problem can be formulated in the function
of the controls Us =

(
uθ , uϕ

)
, or U = (α, β) . The version corresponding to the first case is:

P2: Spherical Optimization Problem—Version 1

Minimize : ∫ T
0 ∥Us(t)∥2dt

subject to :
ẏ =

(
uθ , k

4πR2
1

1−cos θ + uϕ

)
y(0) = p0
y(T) = Pf
∥Us∥ ≤ umax

Here, y = (θ, ϕ) is the position of the passive particle described by Equation (19),
Us =

(
uθ , uϕ

)
is the control, and P0 = (θ0, ϕ0) and Pf = (θT , ϕT) are the initial and final

point, respectively. The meaning of the objective function and constraints in the generic
optimization problem P2 is identical to that in P1.

The version of the optimization problem in spherical coordinates formulated in the
function of the control U = (α, β) is:

P3: Spherical Optimization Problem—Version 2

Minimize : ∫ T
0 ∥U(t)∥2dt

subject to :
ż =

(
β sin ϕ, k

4πR2
1

1−cos θ − α + β cos ϕ cot θ
)

z(0) = P0
z(T) = Pf
∥U∥ ≤ umax

Here, z = (θ, ϕ) is the position of the passive particle described by Equation (31),
U = (α, β) is the control, and P0 = (θ0, ϕ0) and Pf = (θT , ϕT) are the initial and final point,
respectively. The objective function and constraints of the generic optimization problem
P3 have the same meaning as those in both P1 and P2.
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4.2. Numerical Solutions

To address the optimization problems, the generic control function U(·) is discretized
in n constant vector variables defined as

U(t) = u0 if t0 ≤ t < t1 ,
U(t) = u1 if t1 ≤ t < t2 ,
U(t) = u2 if t2 ≤ t < t3 ,

...
U(t) = un−1 if tn−1 ≤ t ≤ tn ,

(33)

with t0 = 0, tn = T. Each vector variable ui, i = 1, 2, · · · , n, corresponds to a constant
value of the control function exercised in the sub-interval [ti−1, ti) with constant length
∆t = (tn − t0)/n .

Therefore, the discretization of the objective function (18) in n time intervals lead to
the approximation

∆t
(
∥u0∥2 + ∥u1∥2 + . . . + ∥un−1∥2

)
, (34)

which represents the discretization of the energies function (18) using the rule of rectangles.
The Cartesian optimization problem is then replaced by its discretized version:

DP1: Discretized Cartesian Optimization Problem

Minimize :
fn = ∆t ∑n−1

i=0 ∥ui∥2

Subject to :
ẋ = k

2πR
v×x

||x−v||2 + uc
0, x(t0) = x0, ∥u0∥ ≤ umax, t0 ≤ t < t1

ẋ = k
2πR

v×x
||x−v||2 + uc

1, x(t1) = x1, ∥u1∥ ≤ umax, t1 ≤ t < t2

...
ẋ = k

2πR
v×x

||x−v||2 + uc
n−1, x(tn−1) = xn−1, ∥un−1∥ ≤ umax, tn−1 ≤ t < tn

x(tn) = x f

Here, uc
i = (αiy,−αix + βiz,−βiy), ui = (αi, βi), i = 0, 1, . . . , n − 1 are the control

variables, x0 = P0, x f = Pf are the initial and final point, respectively, and tn = T.
The discretization approach for the spherical optimization problem is analogous.

The only difference is that the dynamics of the passive particle in each sub-interval are
governed by Equation (19) in the case of Version 1, and by Equation (31) in the case of
Version 2.

The discretized form of Version 1 of the spherical optimization problem is:

DP2: Discretized Spherical Optimization Problem—Version 1

Minimize :
fn = ∆t ∑n−1

i=0

∥∥us
i

∥∥2

Subject to :
ẏ =

(
0, k

4πR2
1

1−cos θ

)
+ us

0, y(t0) = y0,
∥∥us

0

∥∥ ≤ umax, t0 ≤ t < t1

ẏ =
(

0, k
4πR2

1
1−cos θ

)
+ us

1, y(t1) = y1,
∥∥us

1

∥∥ ≤ umax, t1 ≤ t < t2

...
ẏ =

(
0, k

4πR2
1

1−cos θ

)
+ us

n−1, y(tn−1) = yn−1,
∥∥us

n−1

∥∥ ≤ umax, tn−1 ≤ t < tn

y(tn) = y f

Here, us
i =

(
uθi , uϕi

)
are the control variables, i = 0, 1, . . . , n − 1, y0 = P0 and y f = Pf

are the initial and final point, respectively, and tn = T.
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For Version 2 of the spherical optimization problem, the discretized optimization
problem is:

DP3: Discretized Spherical Optimization Problem—Version 2

Minimize:
fn = ∆t ∑n−1

i=0 ∥ui∥2

Subject to:
ż =

(
β0 sin ϕ, k

4πR2
1

1−cos θ − α0 + β0 cos ϕ cot θ
)

, z(t0) = z0, ∥u0∥ ≤ umax, t0 ≤ t < t1

ż =
(

β1 sin ϕ, k
4πR2

1
1−cos θ − α1 + β1 cos ϕ cot θ

)
, z(t1) = z1, ∥u1∥ ≤ umax, t1 ≤ t < t2

...
ż =

(
βn−1 sin ϕ, k

4πR2
1

1−cos θ − αn−1 + βn−1 cos ϕ cot θ
)

, z(tn−1) = zn−1,

∥un−1∥ ≤ umax, tn−1 ≤ t < tn
z(tn) = z f

Here, ui = (αi, βi) are the control variables, i = 0, 1, . . . , n − 1, z0 = P0 and z f = Pf
are the initial and final point, respectively, and tn = T.

To obtain the final position x(T) of the passive particle, the ordinary differential
equation that models the dynamic of the passive particle is solved numerically in cascade
by the fourth-order Runge–Kutta method. The initial position of the passive particle in each
sub-interval is given by the final position in the previous one. The main restriction of the
discretized optimization problem consists of reaching the targeted destination Pf in a given
time T, imposed in the last sub-interval by the condition x(tn) = Pf . Because achieving
an exact value is challenging in finite precision computation, the condition x(tn) = Pf is
replaced by

∥x(T)− Pf ∥ < ε , (35)

where ε denotes a predefined small tolerance. In spherical optimization problems, the equiv-
alent condition is applied by substituting x(T) with y(T) in the case of Version 1, or with
z(T) in the case of Version 2, in (35).

The discretized optimization problems are solved numerically by mean of the MAT-
LAB nonlinear optimization solver fmincon [16] that provides the constrained optimization
algorithms Interior Point and Active-Set (see, for instance, [22,23]).

5. Results

The results presented in this section are related to the trajectory of a passive particle.
The particle is required to move from an initial point P0 =

(
π
6 , π

)
to a designated target

point Pf =
( 3π

4 , 0
)

on the surface of a sphere. The passive particle can be conceptualized as
a representation of autonomous technology. For the sake of simplicity, the radius of the
sphere is fixed at R = 1.

It is considered that the passive particle has reached the destination when its position
x(T) is within a distance of ε = 10−3 from Pf , as indicated in (35). The passive particles
move in a flow that is induced by N = 1, 2, 3 point vortex with circulations ki = 1,
with i = 1, . . . , N.

The discrete optimization problems (DP1, DP2, and DP3), outlined earlier, have been
computationally implemented using the MATLAB Optimization Toolbox [16]. The opti-
mization tool fmincon, employed for nonlinear optimization, is utilized to identify optimal
controls. Given that the solution is sensitive to the initial condition, which is randomly gen-
erated, multiple executions of this built-in function may yield diverse results. To mitigate
the impact of the initial guess, the function is executed multiple times, and the solution lead-
ing to a lower value of the objective function (34) is chosen. For this purpose, the built-in
function multistart is applied with twenty repetitions.
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The nonlinear restrictions corresponding to the displacement of the passive particle
in each sub-interval involve solving ordinary differential equations that govern both its
dynamics and the dynamics of the vortices. These equations are numerically integrated
using the ode45 built-in function, which implements the fourth and fifth-order Runge–
Kutta methods.

The computational runs were conducted on a KVM virtual machine equipped with
16 vCores of an Intel Xeon W-2195 CPU, 64 GB of RAM, and an SSD-based virtual disk,
operating on Linux Ubuntu 20.04 LTS. It is important to note that the computing times
provided in the tables below are indicative, as they are significantly influenced by the
virtual machine’s usage by other users.

Problems DP1, DP2, and DP3 are solved for the cases N = 1, 2, and 3 vortices. For the
case of N = 1, the equations that govern the dynamics are those introduced in the previous
section. For the case of N = 2 and N = 3, the equations that govern the dynamics of the
passive particle and the vortices are given below.

5.1. Flow Created by a Single Vortex (N = 1)

Table 1 displays the results from solving the discrete optimization problems DP1, DP2,
and DP3 with n = 3 controls. It is noteworthy that the solutions for DP1 and DP3 produce
identical values for both the controls and the objective function. This confirms the validity
of the algorithm (33), which is employed for both problems DP1 and DP3. Due to their
equivalence, given that one is derived from the other through a coordinate transformation,
the algorithm is anticipated to yield consistent results for both cases.

The computational time is shorter when solving the DP1 problem. The DP2 problem
takes about four times as long to resolve compared to the other two cases.

Table 1. Solution of the discrete optimization problems with n = 3 controls.

Problem Controls f3 CPU Time

u0 = (−0.189,−0.443)
u1 = (−0.225,−0.529)

DP1 u2 = (−0.344,−0.468) 1.50 41.0

us
0 = (0.695,−0.096)

us
1 = (0.674,−0.096)

DP2 us
2 = (0.673,−0.096) 2.36 208.2

u0 = (−0.189,−0.443)
u1 = (−0.225,−0.529)

DP3 u2 = (−0.344,−0.468) 1.50 60.3

The trajectories corresponding to the solutions presented in Table 1 are illustrated in
Figure 1. Trajectories resulting from the resolution of problems DP1 and DP3 are equal,
as they both reach the final point by moving on the sphere through the same path. The tra-
jectory resulting from DP2 leads to a longer path, leading to a larger value of the objective
function. However, this value cannot be directly comparable with the objective function
values resulting from the two other problems because the control parameters are different.

It can be seen that DP1 and DP3 present the same solution because they minimize
the same objective function given by Equation (34). The optimization algorithm found the
same minimum for the two problems.

Table 2 displays the results obtained as a function of the number of controls n. As the
number of control variables increases, the objective function shows a decreasing trend.
The solution of DP1 and DP3 reaches a plateau after n = 6. This indicates that the incre-
mental gains in the objective function become marginal, remaining below a few hundred
units. Notably, DP1 and DP3 consistently yield the same values for the objective function.
Regarding computing time, there is a prevailing trend of an increase with the number, n , of
control variables, but with many irregularities. The computation times for solving DP1 are
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typically shorter compared to the other cases. Moreover, the times required for DP3 are
lower than those observed for DP2.

Figure 1. Trajectories resulting from the solutions of the optimization problems DP1, DP2, and DP3
with a set of n = 3 controls.

Table 2. Discrete problem solutions in a flow generated by a single vortex.

DP1 DP2 DP3

n fn CPUt [s] fn CPUt [s] fn CPUt [s]

1 1.53 21.2 1.84 265.5 1.53 25.9
2 1.51 25.8 1.65 371.9 1.51 43.3
4 1.50 24.7 1.30 385.8 1.50 87.0
6 1.49 16.3 1.30 188.3 1.49 127.4
8 1.49 17.7 1.29 575.1 1.49 181.3

10 1.49 25.5 1.25 185.5 1.49 181.5
12 1.49 55.9 1.23 728.1 1.49 181.5

5.2. Flow Created by Two Vortices (N = 2)

In this section, the flow on the surface of the sphere is generated by two vortices. Con-
sidering Cartesian coordinates, the position of the two vortices, v1 and v2 , are described by

v̇1 = k2
2 π R

v2×v1
∥v1−v2∥2

v̇2 = k1
2 π R

v1×v2
∥v2−v1∥2

(36)

with the respective initial conditions where the initial position of the vortices are
v1(0) = (−0.3090, 0, 0.9511) and v2(0) = (0.8660, 0,−0.5000), and the passive particle,
initially at x(0) = P0 , is modeled by the equation

ẋ =
1

2 π R

(
k1

v1 × x
∥x − v1∥2 + k2

v2 × x
∥x − v2∥2

)
+ α (y,−x, 0) + β (0, z,−y) , (37)

for i = 0, 1, . . . , n − 1, where α and β are the controllers, as presented in Section 2.
The determination of the optimal trajectory of the passive particle is obtained by

solving a discrete optimization problem similar to DP1, where Equation (16) is replaced by
Equations (36) and (37).

In spherical coordinates, the dynamics of the two vortices v1 = (θ1, ϕ1) and
v2 = (θ2, ϕ2) are given by
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θ̇1 = − k2
4πR2

sin(θ2) sin(ϕ1−ϕ2)
1−cos(γ12)

ϕ̇1 = − k2
4πR2

cos(θ2)−cot(θ1) sin(θ2) cos(ϕ1−ϕ2)
sin(θ1)(1−cos(γ12))

θ̇2 = − k1
4πR2

sin(θ1) sin(ϕ2−ϕ1)
1−cos(γ21)

ϕ̇2 = − k1
4πR2

cos(θ1)−cot(θ2) sin(θ1) cos(ϕ2−ϕ2)
sin(θ2)(1−cos(γ21))

(38)

with the given initial conditions v1(0) = (π/10, π) and v2(0) = (2π/3, 0) . In Equation (38),
the value of cos(γ12) and cos(γ21) are computed in agreement with

cos(γij) = cos(θi) cos(θj) + sin(θi) sin(θj) cos(ϕi − ϕj) . (39)

The motion of the passive particle is significantly influenced by the interaction between the
two vortices and by the controls,

θ̇p = − 1
4πR2

(
k1

sin(θ1) sin(ϕp−ϕ1)

1−cos(γp1)
+ k2

sin(θ2) sin(ϕp−ϕ2)

1−cos(γp2)

)
+ uθ

ϕ̇p = 1
4πR2

(
k1

cos(θ1)−cot(θp) sin(θ1) cos(ϕp−ϕ1)

1−cos(γp1)
+ k2

cos(θ2)−cot(θp) sin(θ2) cos(ϕp−ϕ2)

1−cos(γp2)

)
+ uϕ

(40)

with the initial conditions P0 = (θp0, ϕp0) . As in the case of a single vortex, the control
applied to the passive particle is represented by the vector Us =

(
uθ uϕ

)
. The determination

of the optimal trajectory of the passive particle using spherical coordinates (Version 1) is
obtained by solving a discrete optimization problem similar to DP2, where Equation (19) is
replaced by Equation (38) together with Equation (40).

The spherical controls Us =
(
uθ , uϕ

)
can be expressed in terms of the Cartesian

controls α and β. Using a methodology similar to that used in Section 2, an analogous
relationship between these two types of controls is obtained:{

uθ = β sin ϕ
uϕ = −α + β cos ϕ cot θ

(41)

By employing (41) in Equation (40), the model of the passive particle’s dynamics in
a flow induced by two vortices with spherical coordinates is obtained through the use of
Cartesian control (Version 2). The solution of this equation together with Equation (38)
enables us to determine the optimal trajectory of the passive particle.

Table 3 presents the results obtained from solving the discretized optimization prob-
lems DP1, DP2, and DP3 in the case of a flow induced by two vortices.

Table 3. Discrete problem solutions in a flow generated by two vortices.

DP1 DP2 DP3

n fn CPUt [s] fn CPUt [s] fn CPUt [s]

1 1.35 181.5 1.37 106.2 1.35 41.8
2 1.27 181.8 1.33 225.4 1.27 101.6
4 1.27 181.7 1.25 112.4 1.27 101.2
6 1.26 181.8 1.23 101.7 1.26 101.2
8 1.26 183.3 1.36 101.8 1.26 101.4

10 1.25 182.8 1.66 101.0 1.25 101.8
12 1.25 182.4 1.58 207.2 1.25 101.5

As in the case of a single vortex, DP1 and DP3 achieve the same values of the objective
function of all number n of controls. In all three problems, the objective function values
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decrease as the number of controls increases. The computation times exhibit considerable
constancy with the variation of n. Generally, the computation times for DP3 are lower than
those for DP2 and lower than those for DP1.

Figure 2 illustrates the trajectories corresponding to the minimum values of the objec-
tive function obtained in the resolution of DP1, DP2, and DP3 (see Table 3) in the case of a
flow induced by two vortices. Notably, the trajectory resulting from DP1 is the same as the
one resulting from DP3. The trajectory resulting from DP2 differs from the other two, being
more extensive.

Figure 2. Trajectories corresponding to the minimum values of the objective function in the case of a
flow induced by two vortices.

5.3. Flow Created by Three Vortices (N = 3)

This section focuses on a flow generated by three vortices. Initially, we present the
equations governing the displacement of a passive particle, introducing them in both
Cartesian and spherical coordinates.

In Cartesian coordinates, the positions of the three vortices, v1(t), v2(t), and v3(t), are
governed by the following system of equations:

v̇1 = 1
2 π R

(
k2

v2×v1
||v1−v2||2

+ k3
v3×v1

||v1−v3||2
)

v̇2 = 1
2 π R

(
k1

v1×v2
||v2−v1||2

+ k3
v3×v2

||v2−v3||2
)

v̇3 = 1
2 π R

(
k1

v1×v3
||v3−v1||2

+ k2
v2×v3

||v3−v2||2
)

(42)

with the respective initial conditions for the vortices v1(0) = (−0.3090, 0, 0.9511),
v2(0) = (0.8660, 0,−0.5000), and v3(0) = (0, 0,−1). The constants k1, k2, and k3 represent
the circulation of each vortex.

The dynamics of the passive particle is governed by the equation

ẋ =
1

2 π R

3

∑
i=1

ki
vi × x

∥x − vi∥2 + α (y,−x, 0) + β (0, z,−y) , (43)

with the given initial condition x(0) = P0.
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In spherical coordinates, the dynamics of the vortices positions v1(t) = (θ1, ϕ1),
v2(t) = (θ2, ϕ2), and v3(t) = (θ3, ϕ3) are given by

θ̇1 = − 1
4πR2

(
k2

ρ12
1−cos(γ12)

+ k3
ρ13

1−cos(γ13)

)
ϕ̇1 = 1

4πR2

(
k2

σ12
sin(θ1)(1−cos(γ12))

+ k3
σ13

sin(θ1)(1−cos(γ13))

)
θ̇2 = − 1

4πR2

(
k1

ρ21
1−cos(γ21)

+ k3
ρ23

1−cos(γ23)

)
ϕ̇2 = 1

4πR2

(
k1

σ21
sin(θ2)(1−cos(γ21))

+ k3
σ23

sin(θ2)(1−cos(γ23))

)
θ̇3 = − 1

4πR2

(
k1

ρ31
1−cos(γ31)

+ k2
ρ32

1−cos(γ32)

)
ϕ̇3 = 1

4πR2

(
k1

σ31
sin(θ3)(1−cos(γ31))

+ k2
σ32

sin(θ3)(1−cos(γ32))

)

(44)

with the initial conditions v1(0) = (π/10, π) , v2(0) = (2π/3, 0) , and v3(0) = (π, π). In
Equation (44), the values of γij are given, as before, by (39), and ρij and σij are given by the
Bogomolov notation [24,25]:

ρij = sin(θj) sin(ϕi − ϕj) , (45)

and
σij = sin(θi) cos(θj)− cos(θi) sin(θj) cos(ϕi − ϕj) . (46)

Hence, the dynamics of the controlled passive particle in a flow created by the
three vortices is expressed as:

θ̇p = − 1
4πR2

(
k1

ρp1
1−cos(γp1)

+ k2
ρp2

1−cos(γp2)
+ k3

ρp3
1−cos(γp3)

)
+ uθ

ϕ̇p = 1
4πR2

(
k1

σp1
sin(θp)(1−cos(γp1))

+ k2
σp2

sin(θp)(1−cos(γp2))
+ k3

σp3
sin(θp)(1−cos(γp3))

)
+ uϕ

(47)

with the given initial conditions P0 = (θp0, ϕp0) . As in the previous cases, the variables uθ

and uϕ represent the angular controls applied on the passive particle.
Table 4 showcases the results obtained from solving the discrete optimization problems

DP1, DP2, and DP3 for the spherical flow created by three vortices. In the resolution of DP1,
the dynamics of the passive particle are determined by solving Equations (42) and (43). Similarly,
for DP2, the dynamics of the passive particle are governed by resolving Equations (44) and (47).
In DP3, analogous to the one and two vortex cases, the equations governing the displacement
of passive particles are Equations (44) and (47). Here, the spherical controls uθ and uϕ are
substituted with Cartesian controls α and β, as indicated in Equation (32).

Table 4. Discrete problem solutions in a flow generated three vortices.

DP1 DP2 DP3

n fn CPUt [s] fn CPUt [s] fn CPUt [s]

1 1.46 181.3 2.13 105.9 1.46 101.3
2 1.37 181.3 1.90 101.1 1.37 101.8
4 1.35 181.4 1.68 101.6 1.35 101.4
6 1.34 181.9 1.68 101.5 1.34 101.9
8 1.34 182.5 1.62 102.5 1.34 101.9

10 1.33 182.4 1.62 104.9 1.33 103.1
12 1.33 183.9 1.59 104.8 1.33 103.1
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In this scenario, a consistent pattern is observed in the gradual decrease of objective
function values as the number of controls increases for all three problems. As before, DP1
and DP3 exhibit the same values of the objective function that attains the lowest value (1.33)
for n ≥ 10. DP2 attains the smallest value (1.59) for n = 12. Generally, computation times
slightly increase with the number n of controls, with DP2 and DP3 achieving lower times
than DP1.

Figure 3 depicts the trajectories corresponding to the minimum values of the objective
function achieved in the solutions of DP1, DP2, and DP3 (refer to Table 4) for a flow induced
by three vortices. As expected, the trajectories from DP1 and DP3 are the same. It is also
observed that the trajectory resulting from DP2 is close to the other two.

Figure 3. Trajectories corresponding to the minimum values of the objective function in the case of a
flow induced by three vortices.

6. Conclusions

The results discussed in this research originate from an exploration into the modeling
of surface displacement for a controlled passive particle. This displacement takes place
in a flow generated by a set of vortex points, ranging from one to three, on the surface of
a sphere.

The equations governing the dynamics of the passive particle are presented in both
Cartesian and spherical coordinates. For each coordinate system, the task of determining
the particle’s trajectory between two points is translated into an optimization problem
aimed at minimizing overall control. In the case of spherical coordinates, two forms of
controls were applied. Initially, the problem was conceptualized with angular controls,
and subsequently, the control parameters from the Cartesian formulation were employed
in a second approach.

The three optimization problems arising from this study were solved using a direct
method. This method involves dividing the available time for displacement into a predeter-
mined number of sub-intervals. Throughout each sub-interval, the controls are constant.

The results obtained from resolving the three discretized problems suggest that each
formulation produces a feasible solution. In simpler terms, each approach allows the
passive particle to attain the desired displacement within the allocated time. These
two versions of the same problem affirm the effectiveness of the algorithm used to convert
the optimal control problem into an optimization problem, as demonstrated by the ob-
tained controls. The numerical resolution of these formulations through a direct approach
consistently yields optimal solutions, irrespective of the chosen coordinate system.

Generally, as the number of controls increases, the objective function’s value decreases.
However, beyond a certain threshold, the objective function ceases to decrease and re-
mains constant.

Computation times generally rise, when addressing the problem using spherical
coordinates and angular controls. In general, the most efficient computational times
are achieved through either the Cartesian formulation or the spherical formulation with
Cartesian controls.
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In the context of this work, it is worth noting that several interesting problems come
to light. For instance, real-world applications involving point vortices on a sphere often
utilize the rotating sphere to simulate Earth’s rotation. How the sphere’s rotation impacts
the control of passive particles will be the focus of an upcoming investigation.
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Appendix A. Derivation of the System of Equation (1) for R = 1

The evolution of vorticity, ω, on the unit sphere, S, is governed by the Euler equation
Dt ω = 0 , where ω = x · (∇× u) [7,8]. Here, Dt ≡ ∂t + u · ∇ is the material derivative, u
is a two-dimensional incompressible velocity field, and the vector x points from the center
of the sphere to a point in the sphere. The incompressiblity condition ∇ · u = 0 indicates
the presence of a streamfunction ψ(x) , where

u = x ×∇ψ . (A1)

The latter equality leads to the Poisson equation:

∇2ψ = ω . (A2)

The vorticity arising from point vortices corresponds to a specific scenario where the
vorticity field is localized at discrete points. In other words, assuming that: (i) there are N
point vortices on the unit sphere, each characterized by spherical coordinates vi = (θi, ϕi),
and circulation ki, (i = 1, 2, . . . , N), and (ii) the vorticity has the form

ω =
1

sin(θ)

N

∑
i=1

ki δ(θ − θi) δ(ϕ − ϕi) , (A3)

where δ(·) denotes the δ−Dirac function [26], the solution to Equation (A2) is expressed as:

ψ(x) =
∫∫

S
G(x, x′)ω(x′) dA , (A4)
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where G(x, x′) = −(4π)−1 ln ∥x − x′∥2 represents the Green function of the Laplacian
operator on a unit sphere, and ∥ · ∥ signifies the Euclidean norm in R3 . Combining (A1)
with (A4), one obtains the velocity field at location x :

u(x) =
1

2π

N

∑
i=1

ki
vi × x

∥x − vi∥2 . (A5)
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