
Citation: Oprea, C.; Rosca, M.; Rosca,

E.; Costea, I.; Ilie, A.; Dinu, O.; Ruscă,

A. Analyzing Passenger Flows in an

Airport Terminal: A Discrete

Simulation Model. Computation 2024,

12, 223. https://doi.org/10.3390/

computation12110223

Academic Editor: Xiaoyuan Luo

Received: 8 September 2024

Revised: 5 November 2024

Accepted: 7 November 2024

Published: 11 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Analyzing Passenger Flows in an Airport Terminal: A Discrete
Simulation Model
Cristina Oprea * , Mircea Rosca, Eugen Rosca , Ilona Costea, Anamaria Ilie , Oana Dinu and Aura Ruscă

Transport Faculty, National University for Science and Technology Politehnica, Bucharest, Spl. Independentei,
No 313, RO-060042 Bucharest, Romania; mircea.rosca@upb.ro (M.R.); eugen.rosca@gmail.com (E.R.);
ilona.costea@upb.ro (I.C.); anamaria.ilie@upb.ro (A.I.); oana.dinu@upb.ro (O.D.); aura.rusca@upb.ro (A.R.)
* Correspondence: cristina.oprea@upb.ro; Tel.: +40-744774354

Abstract: This paper introduces a simulation model designed as a decision-making tool to assess and
analyze various crowd management strategies with a focus on enhancing sustainability in airport
operations. This model specifically addresses the challenges and risks associated with managing
passenger flows within airport terminals. By simulating different scenarios, the model aims to
provide valuable insights into how to effectively handle crowd dynamics and enhance overall
terminal efficiency, safety, and sustainability. This case study was conducted at Henri Coanda
International Airport, ARENA 12 simulation software being used in order to model the passenger
flows within the airport terminal. Two scenarios were considered: The first one involves maintaining
a fixed number of security and check-in desks for the two airline groups. In contrast, the second
scenario allows for a variable number of security and check-in desks for the same airline groups.
By optimizing resource allocation and minimizing waiting time, this model contributes to more
sustainable airport management operations. Three measures of performance (MOPs) were selected
to assess the system activity: the average passenger waiting time, the average passenger number
queue length, and the average utilization rate. Comparing the results, we concluded that the second
scenario shows a relative improvement in almost all performance measures when compared to the
first scenario.

Keywords: airport; terminal; passenger flow; simulation; public transport

1. Introduction

The aim of this paper is to develop and apply a simulation model for assessing and
optimizing crowd management strategies in airport terminals, with a focus on enhancing
operational efficiency, safety, and sustainability under variable passenger flow conditions.

Airport terminals must be designed to handle the increasing volume of passengers
while ensuring an adequate level of service. This involves managing waiting times in
queues, reducing overcrowding, and minimizing delays. As air travel continues to grow,
airports face the challenge of scaling up their operations to meet rising passenger numbers
without compromising service quality. This requires a delicate balance between efficiency
and comfort, where passengers experience smooth and timely movement through the
airport from check-in to boarding [1].

As passenger numbers increase, airports face significant logistical challenges in man-
aging the flow of passengers through terminals. Efficient passenger movement is critical
to reducing congestion and minimizing waiting times. Airports must consider the layout
of the terminal, the placement of security checkpoints, and the integration of technol-
ogy to optimize passenger flow. Solutions such as automated check-in kiosks, real-time
queue management systems, and dynamic signaling can help direct passengers more effi-
ciently. Furthermore, airports may need to explore the expansion of terminal spaces or the
construction of new facilities to accommodate the growing number of passengers.
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Due to congestion in the check-in offices and security check area, safety threats have
become prevalent in airport terminals. Consequently, effective crowd management strate-
gies are essential to organize passenger movement during operating times, minimizing
waiting times in lines.

The goal for airports is to strike a balance between operational efficiency and passenger
experience. While it is essential to process passengers quickly and efficiently, it is equally
important to ensure that their journey through the airport is pleasant and stress-free.
This involves providing adequate seating, entertainment, and dining options, as well as
ensuring that the terminal environment is clean, comfortable, and welcoming. Airports
that effectively maintain this balance will not only accommodate the growing demand of
passengers, but also strengthen their reputation and competitive edge in the global market.

2. Literature Background

The study of passenger flows within airport terminals has attracted considerable
attention in recent years, with various researchers examining terminal operations from a
range of perspectives, including transit capacity, terminal design, passenger flow estimation,
and safety and security concerns. Studies have been conducted to explore the ways in
which airports can optimize operations, improve the passengers’ experience, and enhance
overall efficiency.

Relógio and Tavares (2023) [2] analyzed the degree of client satisfaction among airline
passengers by three factors: the waiting time and service at the airline office, the comfort
during the trip, and the empathy of the cabin staff. The theoretical and practical implications
of this study highlight the necessity of emphasizing service quality, aiming for continuous
improvement across the air transport sector.

Koh, Cal, and Diaz (2011) [3] conducted an in-depth analysis of amenities preferred by
passengers in public transport terminals. They identified patterns in passenger preferences
regarding terminal conditions and amenities, which have implications for improving
terminal planning and design. Their study emphasizes that passenger satisfaction is closely
linked to the quality and availability of services provided in transit terminals, suggesting
that such considerations should be central in terminal development.

Nommika and Antov (2017) [4] focused on developing capacity assessment models
specifically for airport terminals. They introduced an innovative approach for estimating
terminal capacity by analyzing the dynamic patterns of passenger flows. Their research
offers key insights into optimizing capacity to handle fluctuating passenger volumes, which
is crucial for effective airport terminal management.

The integration of multiple transport modes within passenger terminals has also been
a subject of exploration. Margarita et al. (2016) [5] provided an extensive review of eight
intermodal public transport terminals, focusing on design features that facilitate the seamless
integration of different modes of transportation. Their work highlighted the importance of
innovative designs in enhancing the efficiency and functionality of these terminals.

Estimating and managing passenger flow within terminals has also been the focus of
several studies, such as those by Ahn et al. (2017), Liu and Chen (2017), and Rusca et al.
(2013) [6–8]. These studies used a variety of methodologies to analyze passenger flows. Ahn
et al. applied a classical four-step model to identify critical congestion points within terminals.
Liu and Chen used an evolutionary algorithm based on neural networks to predict passenger
flows, while Rusca et al. explored the relationship between train schedules and ticket office
workloads in railway terminals.

Kirlangicoglu (2015) [9] advanced the study of terminal design by investigating how
fundamental passenger needs—such as accessibility, safety, comfort, and satisfaction—influence
the design and operation of terminals. This work highlights the importance of aligning terminal
design with passenger expectations to improve the overall travel experience.

Discrete Event Simulation (DES) has been adopted as a tool for studying passenger
flow management within airport terminals. Alodhaibi et al. (2017) [10] used DES to
analyze processes from curbside to boarding, employing ExtendSim V9.2 software to identify



Computation 2024, 12, 223 3 of 17

bottlenecks and optimize passenger flow. Their findings underline the importance of
simulations in enhancing airport planning and improving operational efficiency. Similarly,
Guizzi et al. (2009) [11] applied Discrete Event Theory to develop a framework for predicting
delays and optimizing the management of check-in and security processes. Their work
emphasizes the significance of simulation models in minimizing delays and improving the
passenger experience.

In a more recent study, Anagnostopoulou et al. (2024) developed a decision-making
tool that incorporates various strategies to manage passenger flows in airport terminals.
Their research demonstrates that optimizing passenger routing through modern technolog-
ical solutions is the most effective method for managing crowds in airports with a capacity
of 800 passengers per hour. The model they introduced is adaptable and can be adjusted to
meet the changing needs of any airport terminal [12].

Overall, these studies demonstrate the value of various methodologies, from capacity
models to simulation tools, in enhancing the efficiency and passenger experience within
airport terminals. Discrete simulation models, in particular, play a crucial role in identifying
bottlenecks and streamlining passenger flow, making them essential for improving terminal
operations and planning.

3. Modeling Passenger Flows

A public transport terminal can be categorized into three main functional areas, each
corresponding to different aspects of passenger activities:

• Access Interface: This area encompasses the initial point of interaction where passen-
gers arrive at the terminal and prepare to use their chosen mode of transport. Key
activities in this zone include vehicle movement and parking, as well as designated
spaces for buses and taxis.

• Processing Area: Located within the terminal, this area is where passengers—whether
arriving, departing, or in transit—are handled and serviced. For high-capacity terminals
such as airports, it is beneficial to separate the flows of arriving and departing passengers
to enhance efficiency. The main activities in this area include the following: passenger
information—providing essential updates and guidance to passengers; ticketing services;
retail and services—offering shopping and dining options; waiting—designated spaces
for passengers to wait before boarding; and check-in and security control.

• Transport Interface: This final component involves the transition from the terminal
to the transport modes. It includes the following: boarding platforms—areas where
passengers board their chosen transport modes, whether they are starting their journey
from the terminal or continuing from transit; alighting areas—spaces where passengers
disembark from their transport and exit the terminal if their destination is the terminal.

Each of these three areas plays a critical role in ensuring a seamless and efficient
experience for passengers as they move through the terminal.

4. Case Study
4.1. Bucharest Henri Coanda International Airport

The present research aims to develop a simulation model able to optimize, in a logical
and rational way, the check-in desks for domestic flights, the security control for all flights,
and the boarding for domestic flights inside the departure terminal at Bucharest Henri
Coanda International Airport. The arrival of passengers in the terminal is a discreet
process. The modeling of the passenger flow in the terminal is suitable for the use of a
discrete-type process model. The software package chosen by the authors is Rockwell
ARENA Simulation, which allows for the creation of a modular logical model that is easy
to represent [11,13,14].

Several studies in the literature have utilized the Rockwell ARENA Simulation tool,
having significant success in modeling and capturing the dynamics of real-life experimental
data. For example, Guizzi et al. [11] used the tool to reduce queue waiting times at
checkpoints in Terminal 1 at Naples airport. Their results provided key insights into
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average queue times, along with minimum and maximum peaks, based on the number of
available resources in the model. Similarly, Rusca et al. [13] applied the tool to simulate a
hypothetical passenger terminal modeled after the main Romanian train station. The study
showed how the simulation could be used to optimize the number of access gates, stairs,
and waiting areas based on the collected data. In another case, Appelt et al. [14] used data
from peak hours across different days to simulate passenger flow through kiosk, counter,
and online check-in processes. Their ARENA-based model explored various scenarios,
focusing on queue waiting times and total system times, allowing for an in-depth analysis
of passenger throughput under different check-in modes. These studies demonstrate the
Rockwell ARENA Simulation tool’s effectiveness in modeling complex systems, offering
actionable insights into resource optimization and system efficiency.

A map of Henri Coanda International Airport is presented in Figure 1.
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Figure 1. The map of Bucharest Henri Coanda International Airport (source: [15]).

Domestic flights from/to Bucharest Henri Coanda International Airport are presented
in Figure 2.

The input data for the developed model are the domestic flights [17] and the number
of passengers that depart from Bucharest Henri Coanda airport in the morning peak hour
(7.00–9.00), presented in Table 1.

The model considers the characteristics of each passenger: flight number, departure time,
with/without ticket, check-in online or in the airport, and with/without a checked-in bag.
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The accuracy of the data used in modeling is crucial because it directly impacts the
reliability of the results [18,19].

Figure 3 illustrates the sequence of actions and flows within the analyzed airport
terminal, highlighting the decision points involved in the various processes accounted
for by the simulation model. The diagram provides a detailed visualization of passenger
movement through key areas such as the check-in, security check, and boarding gates. Each
decision point represents critical junctures where choices are made, influencing the overall
flow and efficiency of operations within the terminal. This model helps in understanding
and optimizing the intricate dynamics of passenger processing and crowd management.

Computation 2024, 12, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 3. The diagram illustrating the departure process for domestic flight passengers (source: authors). 

4.2. The Simulation Model 
The model of passenger flows within the airport terminal was implemented in 

ARENA 12 simulation software. The simulation program follows the diagram of depart-
ing passengers for domestic flights described in Section 4.1. In ARENA 12, the passengers 
are defined as entities, while the check-in and security desks are defined as resources. The 
passengers are passing through different modules of the simulation model, representing 
the defining/changing characteristics of the passengers, decision blocks, and states of the 
resources. The logic model is structured in three sub-models: passenger’s arrivals (A), 
check-in (C), and security control (S) processes (Figure 4). 

 
Figure 4. The structure of the logic model (source: authors). 

Figure 3. The diagram illustrating the departure process for domestic flight passengers (source: authors).



Computation 2024, 12, 223 6 of 17

Table 1. The departures from Bucharest Henri Coanda International Airport (regular airline flights)
(source: [20,21]).

Airline Destination Departure
Time Aircraft Number of

Seats
Occupancy
Rate

Transit
Passenger Rate

Number of
Passengers
Originating
from Bucharest

Group G1 TIMISOARA (TSR) 07:00 Airbus 320-232 180

85–100% 5–10% 90–95%

Group G2 TIMISOARA (TSR) 07:20 Boeing 737-78J 116
Group G2 ORADEA (OMR) 07:50 ATR 72-600 74
Group G2 IASI (IAS) 07:50 Boeing 737-82R 160
Group G2 CLUJ NAPOCA (CLJ) 08:10 Airbus A318-111 113
Group G1 CLUJ NAPOCA (CLJ) 08:20 Airbus 320-232 180

4.2. The Simulation Model

The model of passenger flows within the airport terminal was implemented in ARENA
12 simulation software. The simulation program follows the diagram of departing pas-
sengers for domestic flights described in Section 4.1. In ARENA 12, the passengers are
defined as entities, while the check-in and security desks are defined as resources. The
passengers are passing through different modules of the simulation model, representing
the defining/changing characteristics of the passengers, decision blocks, and states of the
resources. The logic model is structured in three sub-models: passenger’s arrivals (A),
check-in (C), and security control (S) processes (Figure 4).
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In the first sub-model (Figure 5), passengers are generated based on a time distribution
between their arrivals within the module Passenger Arrivals. The passengers start arriving at
the airport 2.5 h before the departure of the airplane. The moment of a passenger’s arrival at
the airport is recorded to determine the time spent until the security check is finished.

The next step is to examine if the passengers bought their ticket online or whether
they need to buy it from an office. In the second sub-model (Figure 6), they will follow
the check-in procedure. If the passenger has already checked-in online and does not have
luggage to check, then (s)he proceeds directly to the security control area. If the passenger
has not checked-in online or (s)he has checked-in online, but needs to check the luggage,
(s)he must wait for an available check-in desk. The bags are weighed, and a tag with their
destination is applied to each bag.

In the simulation, the passenger waits in a queue until one check-in desk (a resource
in ARENA) is available, seizes it, and then releases it.

In Table 2, the logical blocks are described.
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Table 2. Description of simulation logical blocks.

ARENA Module Module Type Role and Parameters

Passenger arrivals Create Each passenger is stochastically generated. The creation can be based on a
schedule or on a time distribution between passengers.

Passenger airplane Assign The moment of a passenger’s arrival at the airport is recorded to determine the
time spent until the security check is finished.

Check-in bag G1/check-in bag G2 Assign Initially, all passengers have the attribute bag assigned with value 0.

Arrival station G1/arrival station G2 Station Defines a station corresponding to a logical location where processing
occurs—route check-in G1/route check-in G2.

Online passenger ticket G1/online
passenger ticket G2? Decide The module is used to model whether the passenger bought the ticket online or

needs to buy it from an office. The decision is a “two ways by chance” type.

Buy ticket G1/G2 Process The process of buying a ticket is performed by one airport employee at the ticket
desk. The process type is “seize–delay–release”.

Online check-in G1?/online check-in G2? Decide The module is used to model whether the passenger made online check-in or needs
to make it to a check-in desk. The decision is “two ways by chance” type.

With checked-in bag G1?
With checked-in bag G2? Decide The module is used to decide if the passenger with online check-in has or not bags

to check-in. The decision is “two ways by chance” type.

Route check-in G1/route check-in G2 Route Transfers a passenger to Check in Station Module G1/Check in Station Module G2.
A delay time to transfer to the next station is defined

Check-in G1 station/check-in G2 station Station Defines a station corresponding to a physical location where processing
occurs—Check-in G1/Check-in G2

Check-in G1/
Check-in G2 Process Each passenger occupies a check-in desk if is available. The process type is

“seize–delay–release”. The delay time considers the presence of bags for check-in.

Supplemental security desk? Decide
The module is used to decide if it is necessary to open a new security desk. The
decision is “two ways by condition”, the condition being the queue
length threshold.

New security desk opened Assign Increased the number of available security desk by one.

Security check Process Each passenger occupies a security desk if is available. The process type is
“seize–delay–release”.

Not necessarily supplemental security
desk? Decide The module is used to decrease the number of security desks. The decision is a

“two ways by condition” type, based on the queue security desk threshold.

Passengers to gate Dispose The passenger leaves the security checkpoint. This is the ending point for
passengers in the simulation model.
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After this process, all of the passengers proceed to the security control sub-model
(Figure 7).
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The accuracy of our simulation results is dependent on the quality of the input data.
Due to limited publicly available information and strict privacy policies, we cannot ac-
cess exact data from airports. As a result, we rely on distribution-based input data to
approximate real-world conditions. Although this approach lacks the precision of actual
measurements, it enables a generalizable and flexible simulation model. Furthermore, this
methodology can be applied using precise data.

The research conducted by Lee et al. (2022), Brause et al. (2020), and Cui et al. (2018)
on distributions of service time indicated that the triangular distribution is appropriate for
service time for buying tickets and for security processes [22–24].
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The triangular distribution density function is presented in Equations (1) and (2), with
the following specific parameters: minimum (a), mode (m), and maximum value (b):

f (x) = 2
x − a

(m − a)(b − a)
, i f a ≤ x ≤ m, (1)

and
f (x) = 2

b − x
(b − m)(b − a)

, i f m ≤ x ≤ b, (2)

4.3. Experimental Results and Discussion

All airport processes (ticketing, check-in, security control) are characterized in addition
to a specific service time by a queue waiting time. The waiting time in queues cannot be
very high in order to ensure that all of the passengers that arrived in time to the airport
will not miss their airplane flight.

The working scenarios implemented to optimize the number of check-in desks and
security control inside the terminal Henri Coanda are:

• Scenario 1: Fixed number of security and check-in desks for G1 and G2 airline groups.
• Scenario 2: Variable number of security and check-in desks for G1 and G2 airline groups.

To investigate how the passenger flows within the airport terminal is functioning, a set of
experimental input data were defined (Table 3) and used in ARENA simulation experiments.

Table 3. Simulation model input data.

Model Entity/Resource Data Type Values/Variation Range

Airplane A1–A6 Number of seats Constant 180; 116; 74; 160; 113; 180
Occupancy rate Constant 85%, 90%; 95%; 100%

Passengers First passenger generated at t0
into the simulation run Constant t0 for A1 . . . 0; A2 . . . 20; A3, A4

. . .50; A5 . . .70; A6 . . .80 min

Inter-arrival time Triangular (min, mode, max)

A1, A6: TRIA (0.3, 0.33, 0.36)
A2: TRIA (0.46, 0.51, 0.56)
A3: TRIA (0.7, 0.81, 0.88)
A4: TRIA (0.33, 0.37, 0.4)
A5: TRIA (0.47, 0.53, 0.58)
minutes

Number of online ticket
G1/G2 Constant 95%

Number of online check-ins Constant 95%
Number of check-in bags Constant 85%
Travel time to check-in desk Uniform (min, max) Min = 2 min, max = 3 min

Check-in process time Normal (µ,σ) + constant
mean = 1 min; deviation = 0.2 min;
time to weighed and tagged
bag = 1 min

Security process time Triangular (min, mode, max) TRIA (0.8, 1, 1.2) minutes
Ticket desk Resource capacity Constant 1 desk
Check-in desk G1/G2 Resource capacity Variable 3–7; 3–5 desks
Security desk Resource capacity Variable 3–5 desks

Due to the lack of historical data on passenger arrivals, which limited our ability to
determine the best-fit distribution, we decided to use the triangular distribution for security
processing time and the normal distribution for check-in processing time, accounting for
the proportional impact of the number of bags to be checked. We assumed that all of the
passengers would arrive within the interval [t0, t0 + 90], where t0 is two hours prior to the
departure time of flights A1–A6, in order to minimize the risk of missing their flights.

For each scenario, 100 simulation replications were conducted. Each replication lasted
200 min, with the independent input data values selected within the range specified in
Table 3.
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The effectiveness of the passenger flows in the airport terminal is analyzed using three
measures of performance (MOPs):

• The average passenger waiting time within check-in and security process is the mean
time elapsed from the moment of the passenger joining the terminal resource queue
to the moment of leaving that resource; it is a quality measure directly perceived by
passengers, influencing their satisfaction, so smaller waiting times are desirable.

• The average passenger number queue length within check-in and security process.
• The average utilization rate of the check-in and security desk, a service parameter that

illustrates the level of service of terminal resources.

4.3.1. Scenario 1—Fixed Number of Terminal Resources

In the first scenario, we ran simulations with different numbers of security and check-in
desks for the G1 and G2 airline groups. These numbers are fixed for simulation time.

The evolution of the number of passengers in queues with six check-in desks for group
G1, three check-in desks for group G2, and three security desks (6G1-3G2-3S) is depicted in
Figure 8a. At the end of the simulation time, there are more than 200 passengers waiting for
security processing, so more open security desks are necessary. As shown in Figure 8b, if
two more security desks are open, then no more passengers will wait in the security queue,
but there will still be some in the check-in queue in the G1 airline group (green line).
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Adding one more check-in desk for the G1 airline group leads to the dissipation of all
queues, as shown in Figure 9.
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The solution 6G1-4G2-5S with six check-in desks for the G1 airline group, four check-
in desks for the G2 airline group, and five security desks used the terminal’s resources
inefficiently, so we reduced by one the number of check-in desks for G2—Figure 10.
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Figure 11 summarizes the results obtained in the different simulations in terms of
minimizing the waiting times (a) or the number of passengers waiting (b) during the
different processes within the airport terminal.
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airport terminal in Scenario 1.

The simulation 6G1-4G2-5S gives minimum check-in and security waiting times, but
the utilization rate of the terminal resources (desks) is lower than the case with five security
desks and between six and four check-in desks for the G1 and G2 airline groups (simulation
5G1-4G2-5S), as shown in Figure 12.
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4.3.2. Scenario 2—Variable Number of Terminal Resources

In this scenario, we added or reduced the number of available check-in and security
desks depending on whether they exceeded the threshold of the desk queue length, as
mentioned in Table 3. As depicted in Figure 13(a1), the simulation 3-7G1 3-4G2 3-5S
described as having from three to seven desks for check-in group airlines G1, from three
to four desks for check-in group airlines G2, and from three to five desks for security
procedures conducts to non-zero queue length at security desks at the end of the simulation
run. To avoid this, we increased by one the number of available security desks and
decreased by one the available check-in G1 desks, but, as shown in Figure 13(a2), this
configuration 3-6G1 3-4G2 3-6S does not improve the final security queue, but just reduces
the peak of this queue from an average of 71 passengers to 37. Also, we can observe in
Figure 13(b1,b2) the variation in desk numbers for the above-mentioned simulations.
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simulation 3-7G1 3-4G2 3-5S (1) and 3-6G1 3-4G2 3-6S (2).

If we maintained the maximum desks from the above simulations, we obtain the
results in Figure 14 for simulation 3-7G1 3-4G2 3-6S. In this case, all queues are dissipated
until the end of the simulation run.

We add one or two security desks in simulations 3-7G1 3-5G2 3-7S (3) and 3-7G1 3-5G2
3-8S (4) to find the optimal solution for the number desks required for the airport terminal
(Figure 15).

As depicted in Figure 15(a3,a4), the queue length evolution of check-in and security
desks are similar, but the rate utilization of security desks is better in configuration (3)
according to Figure 15(b3,b4) and Figure 16.

The other two measures of performance, the average passenger waiting time and the
average passenger number queue length within check-in and security process, are similar
and lower than in the previously presented simulations (Figure 17).

Thereby, the airport desk configuration 3-7G1 3-5G2 3-7S (3), with three or up to seven
check-in G1 desks, three or up to five check-in G2 desks, and three or up to seven security
desks, gives the best results if we consider the three MOPs defined at the beginning of
this section.
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Figure 16. The utilization rate of the terminal resources in Scenario 2.
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Figure 17. The average passenger waiting times (minutes) (a) and number waiting (b) within the
airport terminal in scenario 2.

Figures 18 and 19 compare the average passenger waiting times and the average num-
ber of passengers waiting in Scenario 1 (hatched graphical representation) and Scenario 2
(plain graphical representation).
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Figure 19. The average number of passengers waiting in Scenario 1 and Scenario 2.

Table 4 presents a comparison between the optimal desk configurations from Scenario 1
and Scenario 2, with the airplane occupancy rate set at 100%.
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Table 4. Measures of performance comparison between the best configurations for Scenarios 1 and 2.

Scenario/Simulation
Measures of Performance

Scenario 1
5G1-4G2-5S

Scenario 2
3-7G1 3-5G2 3-7S

Average waiting time (minutes)
Check-in G1.Queue 30.1 22.0
Check-in G2.Queue 7.6 18.9
Security check.Queue 3.1 8.1
Average number waiting
Check-in G1.Queue 60.3 44.0
Check-in G2.Queue 11.8 29.3
Security check.Queue 12.8 33.3
Rate utilization
Check-in desk G1 0.79 0.86
Check-in desk G2 0.76 0.90
Security desk 0.82 0.96

There is a relative increase in nearly all performance measures in Scenario 2 compared
to Scenario 1.

5. Conclusions

This paper presents a simulation model designed to simulate passenger flow within an
airport, addressing the challenges of managing high volumes of passengers and mitigating
the associated risks.

A notable strength of the developed simulation model is its adaptability; it can be
updated and modified to meet current requirements. This research involved studying
passenger flows at Romania’s main airport and identifying the key components of the simu-
lation model, including operational processes, resource utilization, and service discipline at
workstations. The variability in passenger volume was instrumental in establishing input
data, enabling the accurate representation of interactions between flows and operations in
the area studied. Two scenarios were examined: Scenario 1 maintains a constant number
of security and check-in desks for the two airline groups, while Scenario 2 allows for a
flexible allocation of these desks. The results indicate that Scenario 2 shows significant
improvements across nearly all performance metrics (the average number of passengers
waiting, the average passenger waiting times, and utilization rate) compared to Scenario 1.

The model demonstrates utility at the operational level by allowing for the terminal
authorities to adjust the number of control teams in real-time based on incoming passenger
flow. Its true value, however, lies at the strategic level, where it serves as a critical tool
during the design phase of new airports or in projects aimed at enhancing airport security
control areas. Utilizing a widely recognized software tool like ARENA 12 facilitates the
standardization of the model, allowing for minimal calibration and application across any
transportation terminal.

By incorporating dynamic elements and enabling scenario adjustments, this model
contributes significantly to both academic research and practical applications. It provides a
robust framework for exploring and implementing effective crowd management solutions
in the complex environment of airport terminals. Thus, the flexible allocation strategy pre-
sented in Scenario 2 incorporates real-time adjustments that differ from static approaches
often used in crowd management studies. This dynamic approach reduces passenger wait-
ing times and queue lengths more effectively than static resource allocation, as evidenced by
our performance measurements, thus supporting a more sustainable airport environment.
Future research will focus on integrating additional process categories occurring within
passenger terminals to identify critical and vulnerable areas more effectively.

This study faces limitations due to data accessibility and model complexity, making
it challenging to implement a full optimization approach. The manual tuning of input
variables was a practical solution given these constraints, allowing us to examine key
scenarios without the additional complexity of formulating an optimization problem.
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Future work could expand on this by developing a rigorous optimization framework to
refine the insights provided by our initial simulations.

Author Contributions: Conceptualization, C.O. and M.R.; methodology, C.O. and E.R.; resources,
I.C. and A.R.; writing—original draft preparation, C.O. and M.R.; writing—review and editing, A.I.
and O.D.; project administration, C.O. All authors have read and agreed to the published version of
the manuscript.

Funding: The research work contained in this paper was supported within the frame of the grant
no. 113/04.12.2023 from the National Program for Research of the National Association of Technical
Universities—GNAC ARUT 2023.

Data Availability Statement: Additional data can be obtained from the authors.

Acknowledgments: This work was supported by a grant from the National Program for Research of
the National Association of Technical Universities—GNAC ARUT 2023.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. International Air Transport Association (IATA). Available online: https://www.iata.org/contentassets/d1d4d535bf1c4ba695f4

3e9beff8294f/passenger-terminal-design.pdf (accessed on 22 April 2024).
2. Relógio, A.T.; Tavares, F.O. An Evaluation of Passenger Satisfaction among Users of Huambo Airport in Angola. Urban Sci. 2023,

7, 57. [CrossRef]
3. Koh, K.; Cal, P.; Diaz, C.E. Preferences of Amenities in Public Transport Terminals Desired by Makati CBD Workers. J. East. Asia

Soc. Transp. Stud. 2011, 9, 1170–1185.
4. Nõmmik, A.; Antov, D. Modelling regional airport terminal capacity. Procedia Eng. 2017, 178, 427–434. [CrossRef]
5. Margarita, L.; Durán, B.M. Basic parameters for the design of intermodal public transport infrastructures. Transp. Res. Procedia

2016, 14, 499–508.
6. Ahn, Y.; Kowada, T.; Tsukaguchi, H.; Vandebona, U. Estimation of passenger flow for planning and management of railway

stations. Transp. Res. Procedia 2017, 25, 315–330. [CrossRef]
7. Liu, L.; Chen, R. A novel passenger flow prediction model using deep learning methods. Transp. Res. Part C 2017, 84, 74–81.

[CrossRef]
8. Rusca, F.; Rosca, E.; Rosca, M.; Rusca, A. Queueing systems with non-uniform arrivals applied to estimate services quality in

passengers transport terminals. In Advances in Automatic Control, Modelling & Simulation—Proceedings of the 15th International
Conference on Automatic Control, Modelling & Simulation; Bras, ov, Romania, 1–3 June 2013, recent advances in electrical engineering
series; WSEAS Press: Bras, ov, Romania, 2013; Volume 13, pp. 86–91.

9. Kirlangicoglu, C. Modeling passenger flows in public transport stations. J. Hum. Sci. 2015, 12, 1485–1500.
10. Alodhaibi, S.; Burdett, R.L.; Yarlagadda, P. Framework for airport outbound passenger flow modelling. Procedia Eng. 2017, 174,

1100–1109. [CrossRef]
11. Guizzi, G.; Murino, T.; Romano, E. A Discrete Event Simulation to Model Passenger Flow in The Airport Terminal. In Proceedings

of the 11th WSEAS International Conference on Mathematical Methods and Computational Techniques in Electrical Engineering,
Athens, Greece, 28–30 September 2009; Mastorakis, N., Demiralp, M., Rudas, I., Bulucea, C.A., Rogozea, L., Eds.; WSEAS Press:
Athens, Greece, 2009; pp. 427–434.

12. Anagnostopoulou, A.; Tolikas, D.; Spyrou, E.; Akac, A.; Kappatos, V. The Analysis and AI Simulation of Passenger Flows in an
Airport Terminal: A Decision-Making Tool. Sustainability 2024, 16, 1346. [CrossRef]

13. Rusca, A.; Rosca, E.; Rusca, F.; Popa, M.; Oprea, C.; Dinu, O. Discrete Simulation Model for Urban Passenger Terminals. In
Transformation of Transportation; Springer: Cham, Switzerland, 2021; pp. 65–76. ISSN 2193-4614/2193-4622. [CrossRef]

14. Appelt, S.; Batta, R.; Lin, L.; Drury, C.G. Simulation of passenger check-in at a medium-sized US airport. In Proceedings of the
Winter Simulation Conference, WSC 2007, Washington, DC, USA, 9–12 December 2007. [CrossRef]

15. Bucharest Airports. Available online: https://www.bucharestairports.ro/files/pages_files/Harta_Terminale_Henri_Coanda_
Airport_2019.png (accessed on 8 February 2024).

16. Bucharest Airports. Available online: https://www.bucharestairports.ro/ro/acces/harta-destinatii (accessed on 8 February 2024).
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