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Abstract: Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) virus syndrome caused
the recent outbreak of COVID-19 disease, the most significant challenge to public health for decades.
Despite the successful development of vaccines and promising therapies, the development of novel
drugs is still in the interests of scientific society. SARS-CoV-2 main protease Mpro is one of the key
proteins for the lifecycle of the virus and is considered an intriguing target. We used a structure-based
drug design approach as a part of the search of new inhibitors for SARS-CoV-2 Mpro and hence
new potential drugs for treating COVID-19. Four structures of potential inhibitors of (4S)-2-(2-(1H-
imidazol-5-yl)ethyl)-4-amino-2-(1,3-dihydroxypropyl)-3-hydroxy-5-(1H-imidazol-5-yl)pentanal (L1),
(2R,4S)-2-((1H-imidazol-4-yl)methyl)-4-chloro-8-hydroxy-7-(hydroxymethyl)octanoic acid (L2), 1,9-
dihydroxy-6-(hydroxymethyl)-6-(((1S)-1,7,7-trimethylbicyclo [2.2.1]heptan-2-yl)amino)nonan-4-one
(L3), and 2,4,6-tris((4H-1,2,4-triazol-3-yl)amino)benzonitrile (L4) were modeled. Three-dimensional
structures of ligand–protein complexes were modeled and their potential binding efficiency proved.
Docking and molecular dynamic simulations were performed for these compounds. Detailed
trajectory analysis of the ligands’ binding conformation was carried out. Binding free energies
were estimated by the MM/PBSA approach. Results suggest a high potential efficiency of the
studied inhibitors.
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1. Introduction

SARS-CoV-2, originally identified at the end of 2019 in Wuhan, China, causes a severe
respiratory disease, COVID-19 [1–3]. It spread all over the world and was stated as a
pandemic by the World Health Organization in March 2020 [4]. The disease resulted in
millions of victims, giant losses in world economics, and became one of the most challenging
crises in public health in decades. In May 2023, WHO removed the global health emergency
status of COVID-19, however, it noted that a transition from emergency response to long-
term disease management is required [5]. SARS-CoV-2 has a high mutability rate [6], and
new variants have been documented [7]. However, the danger has not disappeared, and
COVID-19 treatment remains a challenge. The development of new safe, efficient, and
affordable drugs against COVID-19 is still an important task for scientists around the world.

SARS-CoV-2 belongs to the clade b of the genus Betacoronavirus family Coronaviri-
dae [1,2,6]. It means a positive-sense single-stranded RNA virus with a genome size of
about 30 kb [2,8,9]. SARS-CoV-2 virion consists of nucleocapsid (N) and envelope (E)
proteins and membrane (M) and spike (S) glycoproteins [8,10]. S-glycoproteins form spikes
located at the outer surface of the virion. That it is similar to a crown-like shape gives
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the virus its name, “corona”. The S-protein binds directly to angiotensin-converting en-
zyme 2 (ACE2) of the human cell receptor, triggering a mechanism of virus entry into a
cell [11–13]. After entering, the virus releases its RNA into the cell cytoplasm, exploiting
cell machinery for replication [6]. The viral genome contains two overlapping open reading
frames, ORF1a and ORF1ab, which are translated to polyproteins pp1a and pp1ab [14]. The
polyproteins’ cleavage during the maturation process produces non-structural proteins
(NSPs) necessary for the viral lifecycle [15,16]. The process is mediated by 3-chymotrypsin-
like protease (3CLpro), also known as the main protease (Mpro), and papain-like protease
(PLpro). Several NSPs are released in the process, among them—Mpro (NSP5), PLpro (NSP3),
RNA-dependent-RNA-polymerase (RdRp, NSP12), helicase (NSP13) etc. [14,17,18].

Some of these proteins, especially S-protein, RdRp, and Mpro, are often considered to
be targets for drug development [17,19–26]. The main protease plays a key role in virus
replication and its inhibition helps to suppress the propagation of disease. Viral protease
inhibition is a well-known strategy for the treatment of viral infections such as hepatitis C
or HIV [27,28]. Mpro is known to be highly conservative among coronaviruses in sequence
and also its 3D structure has no similarity to any human protease and thus is an excellent
target for anti-COVID-19 drug therapy [29–31].

A 3D structure of SARS-CoV-2 Mpro has been established for unliganded protein, as
well as for numerous complexes (more than 700 reports in RCSB PDB by summer 2023,
see, e.g., 6LU7 as one of the first entries [17]). Its homodimer is asymmetrical and heart
shaped. A protomer has 306 residues and consists of three domains [32], see Figure 1.
Domains I (residues 8–101) and II (residues 102–184) are mostly beta strands while domain
III (residues 185–306) consists of five alpha helixes and is connected with domain II via a
long loop. Mpro’s catalytic dyad, namely His41 and Cys145, is located on an active site in a
gap between domains I and II, see Figure 1. Cysteine residue Cys145 acts as a nucleophile,
while histidine His41 is a proton acceptor [17,33]. Nucleophilic attack of the S atom of
Cys145 on the main chain carbonyl C atom of pp1a or pp1ab leads to the formation of
acyl-enzyme intermediate and the subsequent proteolytic cleavage; in total, 11 conserved
cleavage sites are known [17,34].

Computation 2024, 12, 18 2 of 23 
 

 

located at the outer surface of the virion. That it is similar to a crown-like shape gives the 
virus its name, “corona”. The S-protein binds directly to angiotensin-converting enzyme 
2 (ACE2) of the human cell receptor, triggering a mechanism of virus entry into a cell [11–
13]. After entering, the virus releases its RNA into the cell cytoplasm, exploiting cell ma-
chinery for replication [6]. The viral genome contains two overlapping open reading 
frames, ORF1a and ORF1ab, which are translated to polyproteins pp1a and pp1ab [14]. 
The polyproteins’ cleavage during the maturation process produces non-structural pro-
teins (NSPs) necessary for the viral lifecycle [15,16]. The process is mediated by 3-chymo-
trypsin-like protease (3CLpro), also known as the main protease (Mpro), and papain-like 
protease (PLpro). Several NSPs are released in the process, among them—Mpro (NSP5), PLpro 
(NSP3), RNA-dependent-RNA-polymerase (RdRp, NSP12), helicase (NSP13) etc. 
[14,17,18]. 

Some of these proteins, especially S-protein, RdRp, and Mpro, are often considered to 
be targets for drug development [17,19–26]. The main protease plays a key role in virus 
replication and its inhibition helps to suppress the propagation of disease. Viral protease 
inhibition is a well-known strategy for the treatment of viral infections such as hepatitis C 
or HIV [27,28]. Mpro is known to be highly conservative among coronaviruses in sequence 
and also its 3D structure has no similarity to any human protease and thus is an excellent 
target for anti-COVID-19 drug therapy [29–31]. 

A 3D structure of SARS-CoV-2 Mpro has been established for unliganded protein, as 
well as for numerous complexes (more than 700 reports in RCSB PDB by summer 2023, 
see, e.g., 6LU7 as one of the first entries [17]). Its homodimer is asymmetrical and heart 
shaped. A protomer has 306 residues and consists of three domains [32], see Figure 1. 
Domains I (residues 8–101) and II (residues 102–184) are mostly beta strands while do-
main III (residues 185–306) consists of five alpha helixes and is connected with domain II 
via a long loop. Mpro’s catalytic dyad, namely His41 and Cys145, is located on an active 
site in a gap between domains I and II, see Figure 1. Cysteine residue Cys145 acts as a 
nucleophile, while histidine His41 is a proton acceptor [17,33]. Nucleophilic attack of the 
S atom of Cys145 on the main chain carbonyl C atom of pp1a or pp1ab leads to the for-
mation of acyl-enzyme intermediate and the subsequent proteolytic cleavage; in total, 11 
conserved cleavage sites are known [17,34]. 

 
Figure 1. A model of the 3D structure of SARS-CoV-2 Mpro (PDB code 7NG6). Cartoon style is used 
for the protein, domain I is magenta, domain II is cyan, and domain III is yellow. A catalytic dyad 
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removed from the figure for clarity. 

Figure 1. A model of the 3D structure of SARS-CoV-2 Mpro (PDB code 7NG6). Cartoon style is used
for the protein, domain I is magenta, domain II is cyan, and domain III is yellow. A catalytic dyad
is represented in licorice style with elementwise CPK coloring. Ligands and water molecules were
removed from the figure for clarity.

A lot of effort was put into suggesting suitable Mpro inhibitors during the COVID-19
pandemic, and numerous candidates were tested (e.g., [18,30,33,35–39]). One of the most
famous inhibitors is N3 (PubChem CID 6323191) [17]. Many studies focus on repurposing
known antiviral drugs [36,40–45], or on studying natural compounds [46–50]. Such an
approach has several advantages, namely, reducing the chance of candidate failure or
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shortening the development time and cost. However, success with treating a new viral
disease is not guaranteed in this way, and side effects still might be rather serious. Examples
of remdesivir and hydroxychloroquine are well known [43–45,51–53]. During a large-scale
outbreak, repurposing could indeed be considered as a right strategy, because saving
development time meant saving human lives. However, a rational drug design seems to be
a more appropriate strategy.

Computational structure-based drug design (SBDD) is a powerful approach, which
has been already shown to be promising in developing drugs against SARS-CoV-2 as well
as against other viruses [54–59]. For example, one of the inhibitors against SARS-CoV-1,
namely N3, was developed by drug modeling. Computational drug design may include
QSAR, screening techniques, or building candidate molecules directly in the target active
sites. What is more, docking and molecular dynamics are used for validation of results.

In this work, we used a 3D structural model of Mpro (PDB code 7NG6 [60]), which
contains information about its active site and cleavage mechanism, in order to design novel
candidate molecules. Different candidates represent different electrophilic warheads to
bind catalytic Cys145 residue of Mpro, the side fragments of the molecules were chosen to
fill known Mpro recognition pockets. The size and shape of candidates’ side fragments were
refined using the 3D structure of Mpro—for better structure-to-structure correspondence to
recognition pockets. Docking was used to find the complex structure. Molecular dynamics
and MM/PBSA techniques were used to check configurations of complexes, their stability,
and binding free energies. Results show the stability of all the complexes, and binding free
energies are high enough to provide a large value of the inhibition constant. The conclusion
has been drawn: the novel structures show potential to further in vitro and in vivo research.
SBDD also allows us to predict some improvement to the candidates’ structure that can
be made.

2. Materials and Methods
2.1. Molecular Design

Molecular modeling of four ligands was carried out by the standard structure-based
drug design (SBDD) technique [61]. First, a molecular target was chosen and the active site
was found. In this study, the main protease of SARS-CoV-2 (Mpro, 3CL) was chosen as a
target, see above.

The catalytic mechanism of Mpro is known [62] and based on the Cys145 sulfur atom
nucleophilic attack at the carbonyl carbon atom of the target protein main chain (Figure 2).
Covalent bonding of the cysteine residue blocks the active site and leads to the inactivation
of protease. Deprotonated cysteine is highly nucleophilic, one should hence consider the
electrophilic group as a warhead (i.e., functional groups, which create a covalent bond with
the amino acid, involved in biocatalysis) of any inhibitor.
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Mpro’s recognition mechanism is provided mainly by two pockets, S1 and S2, located on
both sides of the peptide binding groove between domains I and II (Figures 1 and 3) [63–66]. S1
belongs to domain II and is located near the catalytic dyad; glutamine residue is always found
at the first cleavage position P1. Phe140 and His163 provide H-bonds with the glutamine side
amide group while Ser144 and Glu166 are responsible for main chain binding. The P2 position



Computation 2024, 12, 18 4 of 21

is more variable, but in most cases, it is a leucine. The S2 recognition pocket is located mostly
in domain I, which includes His41 residue in its part. The pocket is rather hydrophobic, but
H-bonds with His41 or with Gln189 are also possible.
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The inhibitor should occupy both S1 and S2 pockets to bind with the protease. A
general scheme of the ligand molecule is depicted in Figure 3. WH here means a warhead
group, which should be located near Cys145, G1 and G2 are substituents designed to fill S1
and S2 pockets, respectively, and Tl is an optional tail that can fill the groove or be just an
artifact of a molecule’s synthesis. The size of G1 should be similar to the one of glutamine,
i.e., the chain length varies from 3 to 5 carbons with single atomic ending functional groups
or 1–2 carbons if the ending group is somewhat larger. Ending groups provide H-bonding
with Phe140 and/or with His163 at the bottom of the pocket, other possible groups can
bind with Ser144 and Glu166 on its entering. G2 should be either a hydrophobic group
or an H-bond aromatic donor/acceptor forming an H-bond with His41 or Gln189. An
attachment point (the black circle in Figure 3) could be a tertiary carbon atom as well as a
small chain group (1–3 carbons) or a 5/6-membered cycle. Having such a scaffold, inhibitor
will be similar in size to the first amino acid dyad of the cleaved peptide and will fill the
binding position. Using Mpro’s 3D structure, one can refine chain lengths manually by
any molecular builder like the Avogadro locating inhibitor in the required position and
adding/removing carbon atoms until the desired distances are obtained.

Warheads are small nucleophilic groups that should be stable in physiological con-
ditions. Four groups are commonly used in drug design, namely aldehyde, ketone, halo-
genide, and nitrile. Considering recognition functional groups, one should follow Lipinski’s
rule of 5: no more than 5 H-bond donors, no more than 10 H-bond acceptors, octanol–water
coefficient of no more than 5, and a molecular weight not over 500 Da [67]. In the recent
work of Kenny [68], H-bond donors commonly used in drug design were considered.
Following this work, we considered using a hydroxyl group (OH) and amino groups (NH2,
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NH) as strong H-donors as well as imidazolyl (C3H3N2) and triazolyl groups (C2H2N3),
which can act as both a H-donor and H-acceptor. The last groups are suitable for the G2
position due to their aromaticity. We considered also the camphor-based substitute as
a hydrophobic group for the G2 position due to the known antiviral effect of camphor
derivatives and their activity regarding viruses of the Coronaviridae family, which was
separately noted [69].

Combining all those reasonings, we can see that there are tens of possibly suitable
scaffolds and hundreds of functional group comfbinations that give us a decision space
of thousands of potential candidates. The common method in such a case is the creation
of a candidate library covering the whole space followed by a screening procedure. It is
clear, however, that most of the variants would be inadequate from the chemical point
of view. The other important note is that the candidate molecule should have a rather
simple synthetic scheme, otherwise, its drug significance will be poor. Hence a systematic
search over the whole library has a low meaning and manual structure selection is required
anyway. We decided to generate structures manually, trying to build them to be highly
different from each other, thus covering possibly far areas in the decision space. Structure
building followed the next principles: we built four structures, L1–L4, one for each warhead
(aldehyde, chloride, ketone, and nitrile); we divided the structures into two sets, with OH
(L1–L3) and with heterocycle (L1, L2, L4) as the main H-donor, we used tertiary carbon (L1),
small chains (L2, L3) and cycle (L4) as an attachment point; at last, we tried many (L1, L2)
groups inside G1 to bind with both the bottom and entry of S1 and one group (L3, L4)
group to bind with the bottom only. While L3 contains no heterocycles, the camphoryl
group was used as G2. Tail Tl was chosen to obtain synthetically accessible structures and
increase the structure solubility.

The following structures were obtained (see Table 1).
For L1 the following combination was obtained: G1 is a three-carbon chain having

NH2 and OH side groups to bind with Ser144 or Glu166 at the entering of S1 and imidazole
ending group to make the H-bond with Phe140 or His163 at the S1 bottom (see Table 1); G2
is an imidazole ring at the end of a three-carbon chain; the warhead is aldehyde; tertiary
carbon is the attachment point; tail Tl improves the structure solubility by OH groups.

In L2 a chlorine warhead is used, G1 is a three-carbon chain with double CH2OH
endings, G2 is an imidazole ring, and carboxyl Tl should increase structure solubility. The
attachment point here is the three-carbon chain.

In L3 a ketone warhead is used, the attachment point is the two-carbon chain, and
no heterocycles are used. G1 is a three-carbon chain with an OH end, G2 is a camphoryl
group, and the Tl tail contains OH groups for solubility increase.

L4 has a nitrile warhead and cyclic attachment point, in contains no OH groups, thus
both G1 and G2 are heterocycles. We choose triazole cycles to increase H-bonding ability
and attach a third ring (see Table 1) as a tail to provide a possibility of binding by any of
the heterocycles.

It should be emphasized that such a “chaotic” structure construction method gives not
the best ligands, but rather allows one to find suitable structures for further improvement
by analyzing protein–ligand interactions. If some of the constructed molecules show high
binding energy values, then further structure refinement can be carried out. Such a refine-
ment includes a small variation of the molecular scaffold (adding/removing 1–2 carbon
at-oms) or changing some of the functional groups. MD analysis of ligand–protein interac-
tions gives us information about necessary modifications. One can consider such a kind
of structure design as a form of Monte-Carlo simulation annealing rather than brute force
search. We will show below that L2 and L3 are not the best candidates, L4 required some
modifications, but L1 has an almost suitable geometry. However experimental verification
of the results obtained is required to make further structure modification meaningful.

To reach the energy minimum, geometric optimizations of potential inhibitor molecu-
lar fragments were carried out using the Gaussian 16 package.
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Table 1. Abbreviation, structures, and binding groups of (4S)-2-(2-(1H-imidazol-5-yl)ethyl)-
4-amino-2-(1,3-dihydroxypropyl)-3-hydroxy-5-(1H-imidazol-5-yl)pentanal (L1), (2R,4S)-2-((1H-
imidazol-4-yl)methyl)-4-chloro-8-hydroxy-7-(hydroxymethyl)octanoic acid (L2), 1,9-dihydroxy-6-
(hydroxymethyl)-6-(((1S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)amino)nonan-4-one (L3), and 2,4,6-
tris((4H-1,2,4-triazol-3-yl)amino)benzonitrile (L4).

Abbreviation Structure Binding Groups Amino Acids Residue

L1
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2.2. Molecular Docking

Molecular docking was performed using the GOLD 2022.3 by CCDC software [70].
The crystal structure of a complex of the main protease dimer with an MG-132 covalent
inhibitor (PDB code 7NG6) was used for molecular docking. Ligands and water molecules
in the protein structure were removed, and the protonation state was identified using
Hermes’protonation tool by the CCDC 2022.3 software.

The geometry of potential inhibitors was optimized by using the Gaussian 16 pack-
age [71], which was carried out with the B3LYP functional and def2-TZVP basis set. The
IR vibrational frequencies were calculated, no imaginary values were found, proving that
a true minimum was reached. Calculation results were visualized and analyzed with
ChemCraft v.1.8 graphical software [72].
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Four ligands were docked in the active sites of one of the Mpro protein chains in a 10 Å
spherical cavity (center of cavity −17.909, −2.355, −27.038) with the ASP scoring function;
the ChemScore scoring function was used to rescore. For each ligand, 200 docking runs
were carried out; the search efficiency parameter of GOLD was set to 200%.

Docking results were visualized and analyzed with Hermes. The selection of leader
poses for each compound was achieved by summing the ASP and ChemScore values. Poses
with the highest summing score were chosen to be leaders, wherein a negative ASP or
ChemScore value for the docking pose was considered to be unacceptable and was removed
from further analysis. BIOVIA Discovery Studio [73] was used to identify the interactions
between selected ligands and the Mpro protein.

2.3. Molecular Dynamic Simulation

Molecular dynamic (MD) simulation of protein–ligand complexes and free protease
was carried out using Gromacs 2023 [74]. The topology of SARS-CoV-2 Mpro was prepared
by the Gromacs 2023 tools with an OPLS-AA/L force field; ligands were parameterized
using the LigParGen web-based service [75]. Protein–ligand complexes were placed in
a periodic cubic box with a minimum distance of 1 nm between the complex and the
box wall. Then a complex was dissolved in SPC/E water [76]. Negative overcharge was
neutralized by replacing 8 water molecules by Na+ ions. The system energy minimization
was achieved by the steepest descent algorithm with a convergence criterion of 10.0 kJ/mol.
After that, the system was equilibrated during 100 ps in an NVT ensemble, and then again
during 100 ps in an NPT ensemble. Position restraints for protein and ligand heavy atoms
were used at both equilibration stages. Two temperature coupling groups were used:
protein–ligand complex and water with ions. Temperature was maintained by a modified
Berendsen thermostat at 300 K [77], and pressure was maintained by C-rescale barostat at
1 bar [78]. H-bonds were constrained using the LINCS algorithm [79]. The production run
was performed in a NPT ensemble, a constant temperature of 300 K (Berendsen thermostat)
and a constant of 1 bar pressure (Parrinello-Rahman barostat [80]), the trajectory length
was 100 ns with an integration step of 2 fs and recording step of 10 ps. PME scheme
was used for long-range electrostatics [81]; the cut-off radius for short-range interactions
was 1.0 nm.

Molecular dynamic trajectories were analyzed using the tools of the GROMACS
suite, including root mean square deviation (RMSD), root mean square fluctuation (RMSF),
solvent-accessible surface area (SASA), number of hydrogen bonds, and radius of
gyration (Rg).

2.4. MM/PBSA

Binding free energies for Mpro-ligand complexes were estimates using the MM/PBSA
approach with the aid of the gmmpbsa tool [82]. The binding free energy is defined as

∆G = ∆EMM + ∆Gpolar + ∆Gapolar − T∆S, (1)

EMM term is calculated for an instant configuration using force-field parameters
from MD simulation, Gpolar is calculated from the Poisson–Boltzmann equation with an
environment dielectric constant of 80 and inner constant of 1, and Gapolar is calculated from
the surface area value. ∆ means a difference between the value for the complex and the
sum of values for the separated protein and ligand. The T∆S term is usually neglected. For
each trajectory, the last half (50–100 ns) was extracted for MM/PBSA analysis, frames were
taken with a timestep of 250 ps, and an averaging over 200 independent configurations
was thus applied. For each frame all three terms (∆EMM, ∆Gpolar, and ∆Gapolar) as well as
each amino-acid contribution were estimated.
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3. Results
3.1. Molecular Docking

Potential inhibitors were docked into the active site of one of the two polypeptide
chains in the GOLD program package. ASP and ChemScore functions were used to
estimate the binding interactions. Configurations with the highest sum value of the two
scoring functions were selected for each structure. The structures obtained were used for
molecular dynamic simulation with the Gromacs program package. The sum of the two
scoring functions was used to compare the interaction strengths for the highest scoring
configurations (Table 2).

Table 2. Non-dimensional values of scoring functions for L1–L4.

L1 L2 L3 L4

ASP 30.2693 27.4447 23.2161 36.1228
ChemScore 1.9658 6.3231 7.6813 15.7884

Sum 32.2351 33.7678 30.8974 51.9112

BIOVIA Discovery Studio was used for the interaction analysis of a ligand in the
Mpro active site. L1 forms two hydrogen bonds with His164 and Asn142, weak π-sulfur
and π-alkyl interactions and one unfavorable bump between Gln189 and the imidazole
fragment of the ligand. L2 forms four conventional hydrogen bonds with Hsi163, His164,
and Asp187 of the A chain and Ser1 of the B chain, the imidazole fragment has π–π stacking
interaction with His41, Met49, and Cys44 showing weak π–sulfur and π–alkyl interactions,
respectively. L3 forms four conventional hydrogen bonds with Phe140, Asn142, His164, and
Glu166, as well as two carbon–hydrogen bonds and one π–hydrogen bond. L4 builds three
strong hydrogen bonds with Ser144, His163, and Glu166, three π–sulfur interactions with
Cys44, Met165, and Cys145, as well as weak carbon–hydrogen and π–alkyl interactions. It
is interesting to note, that L1–L3 contain large fragments, causing some difficulties during
docking (Figure 4).

3.2. Molecular Dynamics

Molecular docking is a widely used method, which gives the configuration of the
protein–ligand complex and lets us estimate binding energy. The method, however, has
some restrictions, such as the inability to take into account possible effects of solvent, and
neglecting the possibility of conformational dynamics of the ligand and the protein active
site during the docking process. Molecular dynamics (MD), in contrast, takes these effects
into account and thus complements molecular docking.

In this work, MD of unliganded protein and of protein–ligand complexes was per-
formed during 100 ns for each system. Root mean square deviation (RMSD), root mean
square fluctuation (RMSF), solvent-accessible surface area (SASA), radius of gyration (Rg),
and H-bonds analysis were used, in order to check the stability of the model system.

3.2.1. Root Mean Square Deviation

Unliganded protein and protein–ligand complexes, which have a higher docking score,
were simulated in a water box for 100 ns, in order to describe better the interactions between
the protein and the ligand. Trajectories were analyzed by using RMSD and RMSF to check
the stability of the complexes. RMSD values were calculated for protein Cα atoms and for
all ligand atoms. Mean RMSD values for protein and ligands in all systems are listed in
Table 3. It was observed that the RMSD value of protein in four protein–ligand complexes
and of the unliganded protein fluctuates around 0.2 nm for all of the systems, indicating
their stability (Figure 5a). For all ligands, except L1, the mean RMSD value for the protein
was slightly lower than the value for unliganded protein, suggesting some stabilization.
For L4, the decrease in RMSD was rather high, about 20%. The RMSD value of the ligands
fluctuated around 0.2 nm (Figure 5b), indicating the stability of the ligands at the active site.
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Figure 5b illustrates that L4 is the most stable one among other ligands. For L2 and L3 some
large fluctuations were observed. One can suggest that the ligand underwent significant
conformational changes. Visual analysis supports this viewpoint, see Section 4 Discussion.
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Table 3. The average values of RMSD, RMSF, SASA, and number of H-bonds for protein–
ligand complexes.

System
RMSD, nm

RMSF, nm Rg, nm
SASA, nm2 H-Bonds Number

Protein Ligand Protein Burried * Intra-Protein Ligand-Protein

Unliganded Mpro 0.201 - 0.109 2.58 261.49 - 452.8 -
Mpro + L1 0.211 0.130 0.107 2.59 263.64 6.66 425.5 4.3
Mpro + L2 0.180 0.181 0.100 2.59 262.58 6.97 430.7 2.3
Mpro + L3 0.188 0.167 0.096 2.59 262.03 6.93 424.6 2.4
Mpro + L4 0.161 0.115 0.088 2.59 264.03 7.53 433.1 3.2

* SASAburied = SASAprotein + SASAligand − SASAcomplex.
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Figure 5. Root mean square deviation values for (a) Cα atoms of unliganded Mpro and four protein–
ligand complexes, (b) all atoms of four ligands for protein–ligand complexes.

3.2.2. Root Mean Square Fluctuation

The Cα atoms’ RMSF was used to calculate the fluctuation of each amino acid of the
protein (Figure 6). A higher RMSF value means a higher amino acid fluctuation, while a
lower RMSF value means a higher stability of the residue. The average value of RMSF
was calculated to be 0.109 for unliganded Mpro, 0.107 for Mpro + L1, 0.100 for Mpro + L2,
0.096 for Mpro + L3, and 0.088 for Mpro + L4 (Table 3). In general, RMSF plots for each
complex were similar, as well as for unliganded protein. We can speculate that ligands do
not perturb the protein stability during the 100 ns MD simulation. Moreover, a comparison
of average RMSF values showed that the presence of a ligand led to some stabilization of
the protein, especially in the case of L4.

3.2.3. Radius of Gyration

The radius of gyration is a measure of protein size and compactness. Mean Rg values
for all studied systems are listed in Table 3. Rg time dependencies are shown in Figure 7. It
is seen that there is no variance between different complexes and between the complexes
and unliganded protein, so the geometry of Mpro is the same for all systems. No significant
changes occurred during the simulation, only a small decrease in Rg could be noted for
pure Mpro at a time interval of 30–60 ns.
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ligand complexes.

3.2.4. Solvent-Accessible Surface Area

Solvent-accessible surface area (SASA) is the surface area where the protein or a
ligand interacts with solvent molecules. It correlates with the interactions between the
complex and the solvent during the simulation analysis. The SASA values for unliganded
Mpro, four protein–ligand complexes, as well as for four ligands, were calculated and
plotted vs. simulation time (Figure 8); the corresponding mean values are listed in Table 3.
A change in SASA value can be referred to as a change in protein conformation. What is
more, SASA values are stable, and no drastic changes occur. A comparison of the average
values for different systems revealed that they are not different from each other.
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Figure 8. Protein solvent-accessible surface area values for unliganded Mpro and four protein–
ligand complexes.

Buried SASA is the surface area where a ligand interacts with the protein. It can be
considered as a measure of protein–ligand interaction. Buried SASA was calculated using
the expression:

SASAburried = SASAprotein + SASAligand − SASAcomplex (2)

The mean values are listed in Table 3. It is seen that L2 and L3 values are almost the
same, while the value for L1 is slightly lower, and that for L4 is much higher. The latter fact
can be related to the geometry of the ligand molecules and the presence of four cycles. One
can suggest that L4 is pressed down to Mpro more tightly than other ligands. A low SASA
value for L1 should point out the exposure of L1 from protein to solvent and a less tight
protein–ligand contact.

3.2.5. H-Bonds Analysis

Hydrogen bonds (H-bonds) are the key interactions that are responsible for preserving
the protein structure and for protein–ligand binding. A notable change in the number of
inter-protein H-bonds usually correlates with the change in ternary protein structure. Time
dependencies of the number of inter-protein H-bonds are shown in Figure 9a; average
numbers are listed in Table 3. The average number can be expected to be lower for a ligated
system, because some protein H-bond donors and acceptors switch to binding with the
ligand. However, no dramatic changes occur (Figure 9a), and it confirms that the ternary
structure does not change on ligation.

Figure 9b shows the time dependencies of the number of protein–ligand H-bonds;
average numbers are listed in Table 3. The L1 forms the largest number of H-bonds, which is
related to a large number of donor and acceptor groups, and probably with their favorable
spatial distribution. L4 shows also a large number of H-bonds, whereas the binding of L2

and L3 is much poorer.
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3.3. Binding Free Energy

Mpro–ligand binding free energies were calculated as described in MM/PBSA; the
results are listed in Table 4. Molecular mechanic contributions (van der Waals and elec-
trostatic terms) are always negative, whereas the interaction energy is always higher at
short distances than at longer ones. The polar term trend was positive, solvation had led
to lowering of the energy. It was more significant for the separated protein and a ligand
than for their complex due to a larger solvation area. The apolar term is negative as long as
cavity creation costs energy. The effect was larger for the separated protein and a ligand
than for their complex due to a larger cavity area. Note that the absolute value of the apolar
term is always small, and does not influence the results significantly.

Table 4. Mean binding free energies (kJ/mol) of ligands and their contributions *.

System

Energy Term, kJ/mol
EVdW Eelec Epol Eapol Etot

L1 −141.203 ± 2.142 −94.304 ± 2.490 167.428 ± 2.311 −16.778 ± 0.135 −84.858 ± 2.662

L2 −130.295 ± 2.078 −61.892 ± 3.220 143.489 ± 2.465 −17.239 ± 0.152 −65.937 ± 3.063

L3 −125.815 ± 1.630 −37.209 ± 2.021 108.833 ± 1.962 −17.010 ± 0.158 −71.201 ± 2.110

L4 −164.479 ± 1.641 −45.442 ± 1.985 134.414 ± 1.843 −18.085 ± 0.137 −93.592 ± 1.994

* Mean values were calculated over 200 configurations recorded from 50 ns to 100 ns with a step of 250 ns. A
confidence interval was calculated by the standard approach for a confidence level α = 0.95, Student’s t value of
1.972 was used.

For the L1 ligand, the values of both polar and electrostatic terms were the highest,
which can be related to the large number of highly charged oxygen and nitrogen atoms
and to the formation of hydrogen bonds. The values for all contributions of the L2 ligand,
except for the apolar one, were smaller, possibly due to its elongated form with a small
number of charged atoms. This combination had led to the lowest value of total binding
energy. L3 had the smallest value of both electrostatic and polar terms, apparently due to
the presence of a large hydrophobic camphoryl group; its van der Waals interaction energy
was also smaller than that for other ligands. It is interesting, however, that a reduction
of both electrostatic attractive and polar repulsive terms leads in combination to a rather
high total interaction energy, higher than that in the L2 case. Finally, an L4 ligand had the
largest value of van der Waals contribution, due to the presence of four aromatic cycles and
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a large value of SASAburied. Due to the same reason, it had the largest value of the apolar
contribution. At the same time, it had low values of electrostatic and polar contributions,
lower than the other ligands, except for L3. Due to a large value of the van der Waals term,
it had the highest binding energy among all the ligands and can, therefore, be considered
the most promising inhibitor.

We note that docking results (Table 2) lead to the same conclusion: the highest score
value was obtained for L4. For other ligands, however, the docking score values were close
to each other and suggested another binding priority order. The fact is most probably
related to the poor estimation of solvent effects by the docking technique; the solvation
is less important for L4 than for other ligands. On the other hand, docking can give a
rather good estimate of the van der Waals interaction energy, which is the most important
contribution in the case of L4; therefore, the docking and MM/PBSA results match.

Per residue contribution analysis revealed two amino acid blocks, Leu141-Cys145 and
His163-Met165, in the L1 binding. Also, Ser46 and Met49 showed strong attraction to the
ligand (interaction energy lower than <−2.5 kJ/mol). At the same time, Glu166 showed a
high repulsive interaction (about 17 kJ/mol).

In the L2 case, binding energies were high for Phe140, Asn142, Cys145, Met165, and
Ser46. For His41 the energy was about −14 kJ/mol, and the values of the interaction ener-
gies for Leu27 and Thr25 were also significant. Again, Glu166 manifested a high repulsive
interaction with the ligand, His163 had an antibonding interaction, and, interestingly, a
repulsive interaction was observed with Ser1 from the second chain of the dimer.

For the L3 ligand, no repulsive interactions were found, apparently due to its hy-
drophobic nature and low electrostatic repulsion. Attraction energies were also lower than
in other cases. The highest interaction value was found with Met165 (about −10kJ/mol);
notable interaction with the ligand (<−2.5kJ/mol) was also identified for Gly143, Cys145,
Gln189, Thr25, Leu27, Ser46, Glu47, and Met49.

For the L4 ligand, the only repulsive interaction was found with Ser144. A very strong
attraction (<−10 kJ/mol) was found with His41, Met49, Met165, Asp187, and Gln189.
Among other highly interactive amino acids (energy lower than −2.5 kJ/mol) were Cys44,
Asp48, Lue50, Pro52, Glu166, and Arg188. Note that no catalytic Cys145 residue was found
among them.

4. Discussion

The availability of the crystallographic structure for SARS-CoV-2 Mpro makes an
implementation of computer-aided drug design possible. In this work, the catalytic site of
protease was targeted both in ligand building and docking. Docking analysis suggested
the following order of ligand affinity: L4 >> L2 > L1 > L3. The analysis of both 3D docked
configurations and the 2D docking interaction map revealed that all ligands occupy both
S1 and S2 recognition pockets, closing thus the catalytic site.

Molecular dynamic simulation proved that all complexes are stable. Protein RMSDs
showed similar values for pure Mpro and complexes, there were no significant deviations
from mean values along the trajectory. The absence of protein conformation changes was
also seen on Rg and SASA. RMSF showed similar behavior for all systems, which meant the
similarity of secondary and ternary structures for Mpro in all complexes as well as for the
unliganded protein. The hydrogen bond analysis of the protein also revealed no significant
differences between the systems. Altogether, these results showed that all ligands can form
stable complexes with Mpro.

Ligand RMSD demonstrated the stability of L1 and L4 in the binding position and
the existence of at least two binding positions for L2 and L3; two shells were observed for
both RMSD time dependencies. MM/PBSA showed also highly negative binding energy
values for L1 and L4, which explains their relative stability. The nature of such stability
differs for L1 and L4. In the case of L4, based on a large SASAburied, as well as a large
van der Waals contribution to the total binding energy, one can conclude that L4 occupies
some geometrically suitable positions in protein pockets, forming a large number of weak
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contacts. L1, on the contrary, has a large electrostatic contribution to the binding energy
and forms the highest number of H-bonds. Its stability is provided by a small number of
strong bonds. It has a suitable distribution of H-bond donors and acceptors, rather than
a suitable size and form of molecular scaffold. For L2 and L3 we see that SASAburied is
as small as for L1, but the H-bonds number is even smaller than for L4. That makes their
binding with protein less favorable, and their configuration less stable. A closer analysis of
a MD trajectory can reveal details of such binding.

For the L1 ligand MM/PBSA showed a large negative value of binding free energy
with the highest electrostatic term among all the ligands. This can be related to the highest
number of protein–ligand hydrogen bonds. The binding was stable during MD simulation,
which follows from RMSD time dependence. From the docking structure, it follows that
L1 occupies predominantly the S1 pocket. In the docking structure, one of the OH groups
formed an H-bond with Asn142, but during the simulation it was switching between
Met143 and Glu166 residues, while the terminal OH group formed H-bonds with Met143,
Ser144, and His163. The OH-containing branch was stretched in S1 during almost all
the simulation time, being strongly fixed by two hydrogen bonds from both edges of the
pocket. OH and NH2 groups on the second branch fixed a catalytic His41 residue, forming
H-bonds with it (mostly NH2) and with Glu166, capping thus a catalytic site. The imidazole
ring of that branch was located in the docked configuration in the S2 pocket. During the
simulation, however, it went out soon, and was located between S2 and S4 pockets most of
the time. The last imidazole branch was located in S4 between Gln189 and Glu166, forming
an H-bond with the latter. A weak π–alkyl interaction with Met49 (mentioned in the 2D
docking interaction map) was also observed sometimes during the simulation. Per residue
MM/PBSA calculation supported the conclusion that these residues stabilized the ligand.
A large positive value was also observed for Glu166. This may be related to the disturbing
H-bonds between Glu166 and Asn142, covering the S1 pocket in an unliganded protein. L1

thus covered a binding groove and was anchored in the S1 pocket by an acyclic branch. Its
aldehyde warhead was located near the target Cys145, forming occasionally the H-bond
with Asp142 and Met143. We suggest that Mpro can be inhibited by L1.

For L2, MM/PBSA gave the value of the binding energy, which was the smallest
among the other ligands, but still highly negative. It formed a comparatively low number
of H-bonds with the protein and demonstrated a strong fluctuation in RMSD (between
0.15 nm and 0.20 nm). At least two positions could be selected on the RMSD plot, which
allowed us to assume that there are two binding conformations.

In the docked conformation, a 2D interaction map for the OH-containing branch
showed hydrogen bonds with Glu166, Ser1B, His163, Ser144, and Leu141. Among them,
only H-bonds with Glu166 and Ser144 existed more than 10% of the time during an
MD simulation. The branch forming such H-bonds is located in the S1 pocket, which
corresponds to the first type of bound conformations. The branch in the S1 pocket can
either stretch along the pocket or bend inside it, forming an intramolecular H-bond linking
OH-groups. The imidazole ring was located in the docked conformation in the S2 pocket,
forming an H-bond with Asp187 and weak π-interactions with Hys41, Cys44, and Met49.
During the first third of the simulation, the ring position was preserved, and an H-bond
was formed mostly with Asp187.

In the second bound conformation the imidazole ring went out of S2 and was located
between the S2 and S4 positions, forming H-bonds with Cys44 via an NH group and with
Ser46 via an N atom; a carboxyl group was binding with Thr25. The OH-containing branch
at the same time fell out of the S1 and was located near the catalytic site in the binding
groove. It was stabilized by H-bonds with Ser144 and Met143. Note that, in the elongated
start configuration, the electrophilic C atom is far from the catalytic Cys145 residue, but
during bending and conformation change they became very close in some configurations.
Per residue MM/PBSA confirmed these results.

For L3, the ligand RMSD was stable until 70 ns, after which it grew sharply and came
to a plateau. The existence of two positions can be thus inferred. At the beginning of the
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trajectory, the docked configuration was preserved. In this configuration, the CO-containing
branch was located in the S1 pocket, the OH group formed an H-bond with Phe140, and the
CO-group was H-bonded to Glu166. During the simulation, CO remained connected with
Glu166 almost all the time during which this conformation was preserved, while the -OH
was switching its H-bond to His163. In the bent sub-configuration, the -OH could be placed
near the catalytic site, forming H-bonds with Gly143 and Cys145. A short OH-containing
chain was located near the catalytic site in the docked configuration, forming an H-bond
with Asn142; however, during the simulation, the H-bond existed less than 9% of the
time. The largest OH-containing branch was directed to the S4 pocket and fixed by an
H-bond with His164; in the simulation it was H-bonded mostly with Gln189 and Glu166.
The camphoryl group was placed under the S2 pocket. Such a position was preserved
during the whole simulation. It is clear that the size of the group was too large to be placed
into the S2. Significant conformation changes occurred after approximately 70 ns of the
simulation and were related to the opening of the S1 pocket by moving Glu166 outwards.
After that, the CO-containing chain fell out of it, and took place near S4, interacting mostly
with solvent. The fact explains the lowest solvent contribution to the binding free energy,
even if the interaction of the bound state with the solvent was large enough. Per residue
MM/PBSA supported most of these findings. Note, that there were no H-bonds formed
by the ligand with Met165, but it made the largest contribution to the interaction energy,
which was related apparently to a change in intra-protein interactions.

For L4, the binding interaction energy was the highest, and an RMSD was stable,
suggesting a single binding conformation. In the docked conformation, one of the orto-
triazole rings was located in S1, and the second one in S2. The first one was stabilized by
H-bonds with Ser144 and His163, and the second one was stabilized by π-interactions with
Met165, Cys44, Met49, and His41. Per residue H-bond statistics over the trajectory showed
that the abovementioned H-bonds existed for a large percentage of time. Strong H-bonds
were also formed with Glu166 in S1 and with Asp187 in S2. A triazole ring in para-position
was placed near the catalytic site between S1 and S2, interacting strongly with Asn142.
The 2D interaction map of the docked state revealed also a π–sulfur bond with Cys145.
The “inversed” position of a ligand with a cyano-group in S4 and a para-triazole ring at
the catalytic site was thus preferred. Per residue MM/PBSA supported these results and
revealed that π-interactions existed not only in the docked configuration, but were also
preserved during the whole simulation.

To conclude, the geometry and functional group distribution in L1 is optimal for Mpro

inhibition. L4 has a proper geometry and can inhibit Mpro just by closing the recognition
pockets, but it is necessary to change the position of the electrophile in order to form a
covalent bond with the catalytic Cys145 residue. L2 is too long, and this does not allow it to
fit properly into the pockets. L3 has too many chains and a too large hydrophobic camphor
group. Taking this consideration into account, it is possible to design much more efficient
Mpro inhibitors.

5. Conclusions

Computer-aided drug design is a powerful approach that allows one to save research
time and resources. In the present work, structure-based drug design, molecular docking,
molecular dynamics, and MM/PBSA methods were used in combination, in order to
design novel inhibitors against the SARS-CoV-2 main protease and check their efficiency.
In summary, four potential inhibitors were constructed on a base of the known Mpro

3D structure, recognition, and catalytic mechanism. Docking presented a 3D structure
of ligand–protein complexes and proved their potential binding efficiency. Molecular
dynamics and MM/PBSA were used to validate the docking results. RMSD, RMSF, Rg,
and SASA values showed that all complexes were stable. The analysis of hydrogen bonds
revealed the nature of protein–ligand interactions. All the ligands have highly negative
binding free energies, lower than −60 kJ/mol.
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All the ligands are bound in a recognition groove. Side groups of ligands occupy S1
and S2 pockets, interacting in a way similar to natural peptides. The binding energies of
the ligands show that the inhibition constant should be high to provide deactivation of
Mpro, thus stopping virus reproduction. In the cases of L2, L3, and L4, further optimization
is required; however, in the case of L1 the warhead was located near the catalytic Cys145
residue. Thus favors a covalent bonding of the ligand with the protease. It may be
considered as a good candidate for further in vitro and in vivo studies of their activities.
We believe that the outcome of this work can be exploited in the development of antiviral
candidates against SARS-CoV-2.

Although someone might assume that COVID-19 has been defeated, we need to
remain vigilant. New emergencies may appear, and we have to be ready. As WHO says,
“. . . we cannot become complacent and fall victim to the cycle of panic and neglect” [5].
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