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Abstract: This study presents an algorithmically efficient approach to address the complexities
associated with nonlocal variable-order operators characterized by diverse definitions. The proposed
method employs integro spline quasi interpolation to approximate these operators, aiming for
enhanced accuracy and computational efficiency. We conduct a thorough comparison of the outcomes
obtained through this approach with other established techniques, including finite difference, IQS,
and B-spline methods, documented in the applied mathematics literature for handling nonlocal
variable-order derivatives and integrals. The numerical results, showcased in this paper, serve as a
compelling validation of the notable advantages offered by our innovative approach. Furthermore,
this study delves into the impact of selecting different variable-order values, contributing to a
deeper understanding of the algorithm’s behavior across a spectrum of scenarios. In summary, this
research seeks to provide a practical and effective solution to the challenges associated with nonlocal
variable-order operators, contributing to the applied mathematics literature.

Keywords: fractional calculus; integro spline; quasi interpolation; variable-order fractional derivatives
and integrals; numerical computation using splines

MSC: 26A33; 41A05; 33F05; 65M70; 65D05; 65D07

1. Introduction

In recent years, the field of fractional calculus has garnered substantial interest among
researchers, owing to its extensive applications in various scientific and engineering domains.
This mathematical discipline proves invaluable in refining models employed in fluid mechan-
ics, viscoelasticity, chemistry, physics, finance, and other scientific disciplines [1–4]. This surge
in research activity underscores the dynamic nature of fractional calculus, reflecting its
continual evolution and the ongoing quest to enhance mathematical models crucial for
addressing real-world challenges.

Spline functions and their associated properties have garnered significant attention
from researchers [5,6]. The research by Zahra and colleagues has made notable contribu-
tions to the field. In their work, Zahra et al. proposed a robust uniform B-spline collocation
method for solving the generalized PHI-four equation [5]. Additionally, they developed
a cubic B-spline collocation algorithm for the numerical solution of Newell Whitehead
Segel-type equations [6]. The initial breakthrough in this field was made by Behforooz,
who introduced a novel approach for constructing cubic integro splines. This approach de-
parted from the traditional practice of using function values at nodes and instead relied on
integral values denoted as u(t), as documented in [7]. Subsequently, this method evolved
into cubic Hermit integro spline interpolation, incorporating three additional boundary
conditions. A thorough examination of its characteristics can be found in [8]. Behforooz
further extended the range of integro splines by introducing fifth-order variants in [9].
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However, these functions had complex structures, and the consideration of the derivative
of u(t) was not within the scope of the research. The quest for more localized cubic integro
splines, specifically for computing derivatives ub(t), b = 0, 1, 2, was addressed in [10].
Additionally, integro splines of fourth and sixth orders were put forth in [11,12], respec-
tively. It is important to note that all the existing methods in integro spline interpolation
are based on values within consecutive uniform subintervals. To enhance these algorithms,
the concept of quadratic uniform B-spline was explored in [13,14]. Furthermore, the study
of integro splines quasi-interpolants and their super convergence properties is documented
in [15–17].

Nonlocal variable-order operators (NVOs) find their application in modeling systems
that exhibit memory-related characteristics. These equations encompass both fixed and
variable-order operators, as discussed in [18]. Differential equations rooted in NVOs, often
referred to as NVODEs, play a pivotal role in exploring a wide spectrum of issues and
fields, including economics [19], electric vehicles [20], and physics [21].

In-depth investigations into the existence and uniqueness of NVODEs have been
undertaken, as documented in [22–24]. Furthermore, various efficient and practical nu-
merical techniques have been proposed to solve NVODEs, encompassing methods such as
Adams [25], cubic spline [26], finite difference [27,28], Legendre polynomial [29], Bernstein
polynomial [30], Chebyshev polynomial [31].

We consider an integer q ∈ N, and the unknown function u(t) is assumed to be
continuously differentiable up to (q − 1) times. We describe it as a jointly continuous
function represented by P : Φ × R → R, where Φ := [0, T]. Consequently, we employ
the variable-order (VO) nonlocal operators as introduced in [32] and further developed
in [18,33]. These operators are defined as follows:

Definition 1 ([18]). The VO nonlocal derivative is stated as

vD
ϱ(t)
0,t u(t) =

∫ t

0

(t − ς)q−ϱ(t)−1

Γ(q − ϱ(t))
· u(q)(ς)dς, 0 ≤ q − 1 < ϱ(t) ≤ q ∈ N, (1)

where t, ς ∈ R+ and Γ(·) denotes the Gamma function.

Definition 2 ([18]). The VO nonlocal integral is stated as

vI
ϱ(t)

0,t u(t) =
∫ t

0

(t − ς)ϱ(t)−1

Γ(ϱ(t))
· u(ς)dς, Re(ϱ(t)) > 0, (2)

where t, ς ∈ R+ and Γ(·) denotes the Gamma function.

The subsequent sections of this manuscript follow the following structure. In Section 2,
we introduce an effective strategy that employs integro spline quasi interpolation to dis-
cretize nonlocal derivatives and integrals, as defined in Definitions 1 and 2, respectively.
This section provides a detailed exploration of the theoretical aspects and methodologies
associated with this approach. To evaluate the precision and dependability of the pro-
posed technique, a series of examples undergo a thorough examination in Section 3. Lastly,
Section 4 presents a comprehensive overview of the primary discoveries and conclusions
drawn from our investigation, along with valuable insights and recommendations for
prospective research directions.

2. Theoretical Results

Let us consider a discrete time interval Φ where tm = m∆ for m = 0, 1, . . . , M. Here, ∆
represents the uniform step size, and h denotes the size of each subinterval. The values of
m and M are positive integers.

We define τ(t) as a quadratic polynomial on each subinterval [tj, tj+1], where 0 = t0 <
t1 < . . . < tm = T. Specifically, τ(t) is referred to as an integro quadratic spline quasi-
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interpolant (IntQuaSpline-QI) function, constructed with respect to the given mesh points
t = [t0, t1, . . . , tm]. Assuming that Jl represents the integral of u(t) over each subinterval
[tl , tl+1], we can express this relationship as follows:

Jl =
∫ tl+1

tl

τ(t)dt =
∫ tl+1

tl

u(t)dt, l = 0, 1, . . . , m − 1, (3)

then,
τ(t) =

1
12∆3

(
(t − tl+1)

2λl−2 −
(
(t − tl−1)(t − tl+1) + (t − tl)(t − tl+2)

)
λl−1 + (t − tl)

2λl
)
, (4)

where

λl =


11J0 − 7J1 + 2J2 l = −2
5J0 + 2J1 − J2 l = −1
8Jl+1 − Jl − Jl+2 l = 0, . . . , m, m = 0, 1, . . . , M − 3
5Jm−1 + 2Jm−2 − Jm−3 l = M − 2
11Jm−1 − 7Jm−2 + 2Jm−3 l = M − 1

. (5)

consequently, λl is solely determined by the integral values over the interval [tl , tl+3].

Corollary 1 ([16]). Assume u(t) ∈ C3(Φ); hence,

∥ ∂
(n)
t τ(t)− ∂

(n)
t u(t) ∥∞= O(△3−n), n = 0, 1. (6)

Corollary 2 ([15]). Assume ∆ = T
M , Φ is divided to m uniform sub-intervals and u(t) ∈ C∞(Φ),

we have

τ(tl) = u(tl)−
h4

30
∂
(4)
t u(tl) + higher term, l = 1, 2, . . . , m − 2, (7)

and
max

2≤l≤m−2
|τ(tl)− u(tl)| = O(△4), (8)

where the term h4

30 ∂
(4)
t u(tl) is the fourth-order accurate approximation of u(tl), and the “higher

term” accounts for the error beyond this fourth-order approximation. The “higher term” includes all
contributions from terms of fifth order and higher in the error expansion.

For the time points tm, where m = 1, . . . , M, we have the following relationships:

vD
ϱ(t)
0,tm

u(t) =
∫ tm

0

(tm − ς)q−ϱ(t)−1

Γ(q − ϱ(t))
· u(q)(ς)dς

=
m−1

∑
l=0

∫ tl+1

tl

(tm − ς)q−ϱ(t)−1

Γ(q − ϱ(t))
· u(q)(ς)dς, (9)

and

vI
ϱ(t)

0,tm
u(t) =

∫ tm

0

(tm − ς)ϱ(t)−1

Γ(ϱ(t))
· u(ς)dς

=
m−1

∑
l=0

∫ tl+1

tl

(tm − ς)ϱ(t)−1

Γ(ϱ(t))
· u(ς)dς. (10)

For each l = 0, 1, . . . , m − 1, we utilize an IntQuaSpline-QI function τ(t) with mesh
points at tl to approximate the function u(t), resulting in the following expressions:

u(t) ≈ τm(t) =
1

12∆3

m−1

∑
l=0

(
(t − tl+1)

2λl−2 (11)

−
(
(t − tl−1)(t − tl+1) + (t − tl)(t − tl+2)

)
λl−1 + (t − tl)

2λl
)

and
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u(q)(t) ≈ τ̃m(t) =
1

12∆3

m−1

∑
l=0

(
(t − tl+1)

2λ
(q)
l−2 (12)

−
(
(t − tl−1)(t − tl+1) + (t − tl)(t − tl+2)

)
λ
(q)
l−1 + (t − tl)

2λ
(q)
l

)
.

By substituting Equation (12) into Equation (9), we obtain

vD
ϱ(t)
0,tm

u(t) ≈
m−1

∑
l=0

∫ tl+1

tl

(tm − ς)q−ϱ(t)−1

Γ(q − ϱ(t))
τ̃l(ς)dς

=
m−1

∑
l=0

∫ tl+1

tl

(tm − ς)q−ϱ(t)−1

12∆3Γ(q − ϱ(t))

(
(ς − tl+1)

2λ
(q)
l−2 (13)

−
(
(ς − tl−1)(ς − tl+1) + (ς − tl)(ς − tl+2)

)
λ
(q)
l−1 + (ς − tl)

2λ
(q)
l

)
dς.

Moreover, by substituting Equation (11) into Equation (10), we obtain

vI
ϱ(t)

0,tm
u(t) ≈

m−1

∑
l=0

∫ tl+1

tl

(tm − ς)ϱ(t)−1

Γ(ϱ(t))
τl(ς)dς

=
m−1

∑
l=0

∫ tl+1

tl

(tm − ς)ϱ(t)−1

12∆3Γ(ϱ(t))

(
(ς − tl+1)

2λl−2 (14)

−
(
(ς − tl−1)(ς − tl+1) + (ς − tl)(ς − tl+2)

)
λl−1 + (ς − tl)

2λl
)
dς.

Consequently, we derive the following three propositions:

Proposition 1. Assume that u(t) ∈ Cq+4(Φ) be a function, q − 1 < ϱ(t) ≤ q. The discretization
of the nonlocal derivative can be stated from the IntQuaSpline-QI approximation as shown below

vD
ϱ(t)
0,tm

u(t) =
m−1

∑
l=0

∆q−ϱm−1

6Γ(q − ϱm + 3)
(
αl,l−2λ

(q)
l−2 + αl,l−1λ

(q)
l−1 + αl,lλ

(q)
l

)
, (15)

where for l = 0, 1, . . . , m, λl is defined in (5), and

αl,k =



−(m − l)q−ϱm+2

+
(
(q−ϱm)2

2 + (2l − 2m + 1) q−ϱm
2 + (l − m)2

)
(m − l + 1)q−ϱm , k = l − 2,

(
(q−ϱm)2

2 + (2m − 2l + 5) q−ϱm
2

−2(l − m)2 + (1 + 2l − 2m)
)
(m − l + 1)q−ϱm +

(
− (q−ϱm)2

2

+(2m − 2l − 3) q−ϱm
2 + 2(l − m)2 + (2m − 2l − 1)

)
(m − l)q−ϱm , k = l − 1,

(
− (q−ϱm)2

2 + (2l − 2m − 3) q−ϱm
2 − (l − m)2

+(2l − 2m − 1)
)
(m − l)q−ϱm + (m − l + 1)q−ϱm+2, k = l.

(16)

Proposition 2. Assume that u(t) ∈ C4(Φ) be a function, Re(ϱ(t)) > 0. The discretization of the
nonlocal integral can be stated from the IntQuaSpline-QI approximation as shown below

vI
ϱ(t)

0,tm
u(t) =

m−1

∑
l=0

∆ϱm−1

6Γ(ϱm + 3)
(

βl,l−2λl−2 + βl,l−1λl−1 + βl,lλl
)
, (17)

where for l = 0, 1, . . . , m, λl is defined in (5), and
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βl,k =



−(m − l)ϱm+2

+
(

ϱ2
m
2 + (2l − 2m + 1) ϱm

2 + (l − m)2
)
(m − l + 1)ϱm , k = l − 2,

(
ϱ2

m
2 + (2m − 2l + 5) ϱm

2

−2(l − m)2 + (1 + 2l − 2m)
)
(m − l + 1)ϱm +

(
− ϱ2

m
2

+(2m − 2l − 3) ϱm
2 + 2(l − m)2 + (2m − 2l − 1)

)
(m − l)ϱm , k = l − 1,

(
− ϱ2

m
2 + (2l − 2m − 3) ϱm

2 − (l − m)2

+(2l − 2m − 1)
)
(m − l)ϱm + (m − l + 1)ϱm+2, k = l.

(18)

Proposition 3. Let u(t) ∈ Cq+3(Φ) be a function, q − 1 < ϱ(t) ≤ q, and ∥∂
(q+3)
t u(t)∥∞ ≤ Ξ,

where Ξ > 0. Under these assumptions, the truncated error of the presented algorithm is bounded,
satisfying the following inequality:

AEm =

∥∥∥∥vD
ϱ(t)
0,tm

[u(t)]−
(

vD
ϱ(t)
0,tm

[u(t)]
)

approx

∥∥∥∥
∞
≤ Ξmq−ϱ(tm)

Γ(q − ϱ(tm) + 1)
∆q−ϱ(tm)+3. (19)

Proof. Suppose τ̃Φ(t) is an IntQuaSpline-QI function that approximates u(t) within the
subinterval [tl , tl+1] ⊆ Φ, where l = 0, 1, . . . , m − 1. For an arbitrary value µl ∈ (tl , tl+1),
we can establish the following relationship:

EΦ(t) = u(q)(t)− τ̃
(q)
Φ (t) =

∆3

12
∂
(q+3)
t u(µl),

thus,∥∥∥∥vD
ϱ(t)
0,tm

[u(t)]−
(

vD
ϱ(t)
0,tm

[u(t)]
)

approx

∥∥∥∥
∞

=

∥∥∥∥vD
ϱ(t)
0,tm

[u(t)]− vD
ϱ(t)
0,tm

[τ̃Φ(t)]
∥∥∥∥

∞

=
∫ tm

0

∥∥∥∥ (tm − ς)q−ϱ(t)−1

Γ(q − ϱ(t))
EΦ(ς)

∥∥∥∥
∞

dς

=
m−1

∑
l=0

∫ tl+1

tl

(tm − ς)q−ϱ(t)−1

Γ(q − ϱ(t))

∥∥∥∥∆3

12
∂
(q+3)
t u(µl)

∥∥∥∥
∞

dς

≤ tq−ϱ(tm)
m Ξ

Γ(q − ϱ(tm) + 1)
∆3 =

Ξmϱ(tm)

Γ(q − ϱ(tm) + 1)
∆q−ϱ(tm)+3.

Proposition 4. Let u(t) ∈ Cq+4(Φ1) be a function defined on the interval Φ1 = [t2, tM−2] ⊆ Φ.
Here, q − 1 < ϱ(t) ≤ q and ∥∂

(q+4)
t u(t)∥∞ ≤ Ξ1, where Ξ1 > 0. Under these conditions,

the truncated error of the presented algorithm is bounded and can be expressed as follows:∥∥∥∥vD
ϱ(t)
0,tm

[u(t)]−
(

vD
ϱ(t)
0,tm

[u(t)]
)

approx

∥∥∥∥
∞
≤ mq−ϱ(tm)Ξ1

Γ(q − ϱ(tm) + 1)
∆q−ϱ(tm)+4, (20)

where m = 2, 3, . . . , M − 3.
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Proof. Consider τ̃Φ1(t) as an IntQuaSpline-QI function utilized to approximate u(t) within
the subinterval [tl , tl+1] ⊆ Φ, where l = 2, 3, . . . , m. Hence, for any arbitrary value ψl ∈
(tl , tl+1), the following relation holds:

EΦ1(t) = u(q)(t)− τ̃
(q)
Φ1

(t) =
(t − tl)

2(t − tl+1)
2

30
∂
(q+4)
t u(ψl),

hence,∥∥∥∥vD
ϱ(t)
0,tm

[u(t)]−
(

vD
ϱ(t)
0,tm

[u(t)]
)

approx

∥∥∥∥
∞

=

∥∥∥∥vD
ϱ(t)
0,tm

[u(t)]− vD
ϱ(t)
0,tm

[τ̃Φ1(t)]
∥∥∥∥

∞

=

∥∥∥∥ ∫ tm

0

(tm − ς)q−ϱ(t)−1

Γ(q − ϱ(t))
EΦ1(ς)

∥∥∥∥
∞

dς

=
m−1

∑
l=0

∫ tl+1

tl

(tm − ς)q−ϱ(t)−1

Γ(q − ϱ(t))

∥∥∥∥ (ς − tl)
2(ς − tl+1)

2

30
∂
(q+4)
t u(ψl)

∥∥∥∥
∞

dς

≤ tq−ϱ(tm)
m Ξ1

Γ(q − ϱ(tm) + 1)
∆4 =

mq−ϱ(tm)Ξ1

Γ(q − ϱ(tm) + 1)
∆q−ϱ(tm)+4.

Proposition 5. Let u(t) ∈ C3(Φ) be a function, and ∥∂3
t u(t)∥∞ ≤ χ, where χ > 0. Under these

assumptions, the truncated error of the presented algorithm is bounded, satisfying the following
inequality:

AEm =

∥∥∥∥vI
ϱ(t)

0,tm
[u(t)]−

(
vI

ϱ(t)
0,tm

[u(t)]
)

approx

∥∥∥∥
∞
≤ χmϱ(tm)

Γ(ϱ(tm) + 1)
∆ϱ(tm)+3. (21)

Proof. Suppose τΦ(t) is an IntQuaSpline-QI function that approximates u(t) within the
subinterval [tl , tl+1] ⊆ Φ, where l = 0, 1, . . . , m − 1. For an arbitrary value µl ∈ (tl , tl+1),
we can establish the following relationship:

EΦ(t) = u(t)− τΦ(t) =
∆3

12
∂3

t u(µl),

thus,∥∥∥∥vI
ϱ(t)

0,tm
[u(t)]−

(
vI

ϱ(t)
0,tm

[u(t)]
)

approx

∥∥∥∥
∞

=

∥∥∥∥vI
ϱ(t)

0,tm
[u(t)]− vI

ϱ(t)
0,tm

[τΦ(t)]
∥∥∥∥

∞

=
∫ tm

0

∥∥∥∥ (tm − ς)ϱ(t)−1

Γ(ϱ(t))
EΦ(ς)

∥∥∥∥
∞

dς

=
m−1

∑
l=0

∫ tl+1

tl

(tm − ς)ϱ(t)−1

Γ(ϱ(t))

∥∥∥∥∆3

12
∂3

t u(µl)

∥∥∥∥
∞

dς

≤ tϱ(tm)
m χ

Γ(ϱ(tm) + 1)
∆3 =

χmϱ(tm)

Γ(ϱ(tm) + 1)
∆ϱ(tm)+3.
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Proposition 6. Let u(t) ∈ C4(Φ1) be a function defined on the interval Φ1 = [t2, tM−2] ⊆ Φ.
Here, Re(ϱ(t)) > 0 and ∥∂4

t u(t)∥∞ ≤ χ1, where χ1 > 0. Under these conditions, the truncated
error of the presented algorithm is bounded and can be expressed as follows:∥∥∥∥vI

ϱ(t)
0,tm

[u(t)]−
(

vI
ϱ(t)

0,tm
[u(t)]

)
approx

∥∥∥∥
∞
≤ mϱ(tm)χ1

Γ(ϱ(tm) + 1)
∆ϱ(tm)+4, (22)

where m = 2, 3, . . . , M − 3.

Proof. Consider τΦ1(t) as an IntQuaSpline-QI function utilized to approximate u(t) within
the subinterval [tl , tl+1] ⊆ Φ, where l = 2, 3, . . . , m. Hence, for any arbitrary value ψl ∈
(tl , tl+1), the following relation holds:

EΦ1(t) = u(t)− τΦ1(t) =
(t − tl)

2(t − tl+1)
2

30
∂4

t u(ψl),

hence,∥∥∥∥vI
ϱ(t)

0,tm
[u(t)]−

(
vI

ϱ(t)
0,tm

[u(t)]
)

approx

∥∥∥∥
∞

=

∥∥∥∥vI
ϱ(t)

0,tm
[u(t)]− vI

ϱ(t)
0,tm

[τΦ1(t)]
∥∥∥∥

∞

=

∥∥∥∥ ∫ tm

0

(tm − ς)ϱ(t)−1

Γ(ϱ(t))
EΦ1(ς)

∥∥∥∥
∞

dς

=
m−1

∑
l=0

∫ tl+1

tl

(tm − ς)ϱ(t)−1

Γ(ϱ(t))

∥∥∥∥ (ς − tl)
2(ς − tl+1)

2

30
∂4

t u(ψl)

∥∥∥∥
∞

dς

≤ tϱ(tm)
m Ξ1

Γ(ϱ(tm) + 1)
∆4 =

mq−ϱ(tm)χ1

Γ(ϱ(tm) + 1)
∆ϱ(tm)+4.

3. Numerical Demonstrations

Now, the accuracy and computational efficiency of the developed approach are studied.
For this purpose, the mean absolute error (MAE) (EM) and the convergence order (ECO) are
considered

EM =
M

∑
m=1

AEm

M
, (23)

and
ECO = log∆(EM). (24)

The MAE is used to measure the average absolute error difference between the ap-
proximated and exact solutions, and the ECO is used to measure the order of convergence
of the method. These metrics are computed using the error formula in (19) and (21), where
AEM denotes the absolute error and M represents the number of interior mesh points.

All the computational results are implemented with Matlab v2019 running in an Intel
(R) Core (TM) i7-8850 H CPU @ 2.60 GHz machine. Furthermore, a comparison with the
other algorithms is conducted.

Example 1 ([34]). Let
vD

ϱ(t)
0,t

(
t · sin(t)

)
=

t
5
2 −ϱ(t)

2 F3

(
[1, 3

2 ],[
1
2 ,2− ϱ(t)

2 , 3
2 −

ϱ(t)
2 ;− t2

4

)
+(ϱ(t)−2)

(
tϱ(t)S 1

2 −ϱ(t), 3
2
(t)−S 3

2 −ϱ(t), 1
2
(t)
)

√
tΓ(3−ϱ(t))

, 0 < ϱ(t) ≤ 1

(ϱ(t)−2)(ϱ(t)−3)(ϱ(t)−4)
(
(t2−ϱ(t))S 3

2 −ϱ(t), 1
2
(t)+tϱ2(t)S 1

2 −ϱ(t), 3
2
(t)−t

5
2 −ϱ(t)

)
√

tΓ(5−ϱ(t))
, 1 < ϱ(t) ≤ 2

, (25)
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where sFv(b1, . . . , bs; a1, . . . , av; t) and Sµ,ν(t) are defined as the hypergeometric and Lommel
functions [35], respectively.

Additionally, for Re(ϱ(t)) > 0, we have

vI
ϱ(t)

0,t
(
t · sin(t)

)
= −

(ϱ(t) + 2)
(
(t2 + ϱ(t))S 3

2 +ϱ(t), 1
2
(t) + tϱ2(t)S 1

2 +ϱ(t), 3
2
(t)− t

5
2 +ϱ(t))

√
tΓ(3 + ϱ(t))

, (26)

The efficiency of the developed algorithm is described by vD
ϱ(t)
0,t

(
t · sin(t)

)
and vI

ϱ(t)
0,t(

t · sin(t)
)

in Example 1. Tables 1 and 2 display the values of EM, ECO and computational
times (based on sec.) of (25) and (26) with ∆ = { 1

16 , 1
32 , 1

64 , 1
128} in t ∈ [0, 2] for

ϱ1(t) = 0.4 − 0.01 5
√

t
ϱ2(t) = 0.8 + 0.03

∣∣cos
( t

3π

)∣∣
ϱ3(t) = 1.4 − 0.01 5

√
t

ϱ4(t) = 1.8 + 0.03
∣∣cos

( t
3π

)∣∣ .

According to Tables 1 and 2, all results are improved compared to the IQS [36] and
B-spline [25] -algorithms, respectively. Table 1 provides a comprehensive comparison
between the developed algorithm and the IQS algorithm across varying values of ϱ(t) and
∆ within the interval t ∈ [0, 2]. In assessing key performance indicators, the error (EM)
of the developed algorithm consistently decreases significantly with finer discretization
(∆), showcasing improved accuracy. The IQS algorithm also demonstrates a reduction
in error with decreasing ∆, though the magnitude of improvement is generally smaller.
Regarding convergence order (ECO), both algorithms exhibit stability across different ∆
values, with the developed algorithm consistently maintaining competitive or superior
convergence order compared to the IQS algorithm. Notably, the developed algorithm
outperforms in terms of accuracy and convergence order, albeit with a slightly higher com-
putational time, suggesting enhanced performance at the cost of increased computational
complexity. This emphasizes the potential of the developed algorithm for applications
prioritizing accuracy where ample computational resources are available.

Table 1. Comparison of EM, ECO, and computational time (based on sec.) of (25) using the IQS
algorithm [36] and developed algorithm, with various values of ϱ(t) and ∆ in t ∈ [0, 2].

IQS Algorithm Developed Algorithm

ϱ(t) ∆ E M ECO CPu Time E M ECO CPu Time

ϱ1(t)

1
16 3.65 × 10−3 2.02 0.719 6.59 × 10−4 2.64 5.310
1

32 1.23 × 10−3 1.93 2.672 1.55 × 10−4 2.53 8.216
1

64 4.13 × 10−4 1.87 9.563 3.74 × 10−5 2.45 14.203
1

128 1.38 × 10−4 1.83 36.954 9.12 × 10−6 2.39 28.765

ϱ2(t)

1
16 3.78 × 10−2 1.18 0.640 9.07 × 10−4 2.53 5.281
1

32 1.68 × 10−2 1.18 2.344 2.12 × 10−4 2.44 8.187
1

64 7.49 × 10−3 1.18 8.313 4.98 × 10−5 2.38 14.109
1

128 3.33 × 10−3 1.18 31.344 1.17 × 10−5 2.34 28.562

ϱ3(t)

1
16 8.75 × 10−3 1.71 0.703 9.24 × 10−5 3.35 6.297
1

32 2.97 × 10−3 1.68 2.688 1.49 × 10−5 3.21 8.297
1

64 1.00 × 10−3 1.66 10.047 2.42 × 10−6 3.11 14.375
1

128 3.37 × 10−4 1.64 39.328 3.95 × 10−7 3.04 29.578

ϱ4(t)

1
16 9.18 × 10−2 0.86 0.688 4.93 × 10−4 2.75 6.297
1

32 4.11 × 10−2 0.92 2.516 1.09 × 10−4 2.63 8.172
1

64 1.83 × 10−2 0.96 8.172 2.42 × 10−5 2.56 14.250
1

128 8.17 × 10−3 0.99 30.203 5.37 × 10−6 2.50 28.921
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In addition, the outcomes are examined in Figures 1a and 2a for ∆ = 1
32 and various

values of ϱ(t) = r + 0.03
∣∣cos

( t
3π

)∣∣ and r = {0.25, 0.5, 0.75, 0.95, 1.25, 1.5, 1.75, 1.95}. Conse-
quences in Figures 1b and 2b are shown in which the logarithm of absolute error, log(AE),
of the proposed scheme is in the whole interval t ∈ [0, 2].

Table 2. Comparison of EM, ECO, and computational time (based on sec.) of (26) using the B-spline
algorithm [25] and developed algorithm, with various values of ϱ(t) and ∆ in t ∈ [0, 2].

B-Spline Algorithm Developed Algorithm

ϱ(t) ∆ E M ECO CPu Time E M ECO CPu Time

ϱ1(t)

1
16 2.85 × 10−4 2.94 0.328 1.01 × 10−5 4.15 5.719
1
32 7.28 × 10−5 2.74 0.672 1.73 × 10−6 3.83 8.625
1
64 1.86 × 10−5 2.61 2.594 3.21 × 10−7 3.59 15.328
1

128 8.73 × 10−6 2.40 8.610 6.09 × 10−8 3.42 29.391

ϱ2(t)

1
16 2.84 × 10−4 2.94 0.297 2.87 × 10−6 4.60 5.921
1
32 7.05 × 10−5 2.75 0.657 2.88 × 10−7 4.35 8.734
1
64 1.76 × 10−5 2.63 2.047 3.46 × 10−8 4.13 14.687
1

128 4.40 × 10−6 2.54 7.938 4.54 × 10−9 3.96 29.359

ϱ3(t)

1
16 3.22 × 10−4 2.90 0.313 1.45 × 10−6 4.85 5.906
1
32 7.99 × 10−5 2.72 0.672 8.80 × 10−8 4.69 9.266
1
64 1.99 × 10−5 2.39 10.047 5.75 × 10−9 4.56 14.828
1

128 7.96 × 10−6 2.42 9.594 4.00 × 10−10 4.46 29.390

ϱ4(t)

1
16 3.07 × 10−4 2.91 0.312 1.25 × 10−6 4.90 5.731
1
32 7.57 × 10−5 2.73 0.641 6.74 × 10−8 4.76 8.781
1
64 1.88 × 10−5 2.61 2.532 3.98 × 10−9 4.65 14.859
1

128 4.68 × 10−6 2.53 7.390 2.43 × 10−10 4.56 29.406

0 0.5 1 1.5 2

-3

-2

-1

0

1

2

0.25 0.5 0.75 0.95 1.25 1.5 1.75 1.95

(a)
Figure 1. Cont.
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(b)
Figure 1. Collation of the analytical and numerical results for (25) applying the developed algorithm
with a step size of ∆ = 1

32 for ϱ(t) = r + 0.03
∣∣cos

( t
3π

)∣∣, r = {0.25, 0.5, 0.75, 0.95, 1.25, 1.5, 1.75, 1.95}
and t ∈ [0, 2]. (a) The logarithm of the absolute error resulting from the numerical computation (25)
is depicted using the implemented algorithm. (b) The logarithm of the absolute error resulting from
the numerical computation (25) is depicted using the implemented algorithm.

Example 2. Let

vD
ϱ(t)
0,t

(
J0
( t

4
))

= − 1
32

t2−ϱ(t)

Γ(3 − ϱ(t))


2F3

(
[1, 3

2 ], [2, 2 − ϱ(t)
2 , 3

2 − ϱ(t)
2 ];− t2

64

)
, if 0 < ϱ(t) ≤ 1(

2 1F2

(
1
2 ; 2 − ϱ(t)

2 , 3
2 − ϱ(t)

2 ;− t2

64

)
+2F3

(
1
2 , 1; 2, 2 − ϱ(t)

2 , 3
2 − ϱ(t)

2 ;− t2

64

))
, if 1 < ϱ(t) ≤ 2.

(27)

Additionally, for Re(ϱ(t)) > 0, we have

vI
ϱ(t)

0,t
(

J0
( t

4
))

=
tϱ(t)

1F2([
1
2 ], [1 +

ϱ(t)
2 , 1

2 + ϱ(t)
2 ];− t2

64 )

Γ(ϱ(t) + 1)
. (28)

Similarly, the performance of developed algorithm is presented by vD
ϱ(t)
0,t

(
J0
( t

4
))

and
vI

ϱ(t)
0,t

(
J0
( t

4
))

in Example 2. Tables 3 and 4 display the values of EM, ECO and computational
times (based on sec.) of (27) and (28) with ∆ = { 1

16 , 1
32 , 1

64 , 1
128} in t ∈ [0, 3] for

ϱ∗1(t) = 0.1 + 0.1t
ϱ∗2(t) = 0.6 − 0.25

√
t

ϱ∗3(t) = 0.9 − 0.01
∣∣cos

( t
3π

)∣∣
ϱ∗4(t) = 0.9 + 0.01

∣∣cos
( t

3π

)∣∣ .

Based on Tables 3 and 4, all results are improved compared to the finite difference [34] and
IQS [37] algorithms, respectively. Furthermore, the results are also studied in Figures 3a and 4a
for ∆ = 1

32 and various values of ϱ∗(t) = r + 0.01
∣∣cos

( t
3π

)∣∣ and r = {0.25, 0.5, 0.75, 0.95, 1.25,
1.5, 1.75, 1.95}. Consequences in Figure 3b and 4b are shown in which the logarithm of
absolute error, log(AE), of the proposed scheme is in the whole interval t ∈ [0, 3].
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Figure 2. Collation of the analytical and numerical results for (26) applying the developed algorithm
with a step size of ∆ = 1

32 for ϱ(t) = r + 0.03
∣∣cos

( t
3π

)∣∣, r = {0.25, 0.5, 0.75, 0.95, 1.25, 1.5, 1.75, 1.95}
and t ∈ [0, 2]. (a) The computed results for equation (26) obtained through the developed algorithm.
(b) The logarithm of the absolute error resulting from the numerical computation (26) is depicted
using the implemented algorithm.
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Table 3. Comparison of EM, ECO, and computational time (based on sec.) of (27) using the Finite
difference [34] and developed algorithm, with various values of ϱ(t) and ∆ in t ∈ [0, 3].

Finite Difference Algorithm Developed Algorithm

ϱ(t) ∆ E M ECO CPu Time E M ECO CPu Time

ϱ∗1(t)

1
16 1.31 × 10−3 2.39 0.297 8.34 × 10−6 4.22 7.047
1
32 6.42 × 10−4 2.12 0.829 2.05 × 10−6 3.78 11.796
1
64 3.18 × 10−4 1.93 3.141 5.04 × 10−7 3.49 23.265
1

128 1.58 × 10−4 1.80 12.485 1.25 × 10−7 3.28 40.703

ϱ∗2(t)

1
16 1.45 × 10−3 2.36 0.172 8.43 × 10−6 4.21 6.984
1
32 7.13 × 10−4 2.09 0.797 2.15 × 10−6 3.77 11.906
1
64 3.53 × 10−4 1.92 3.125 5.44 × 10−7 3.47 23.156
1

128 1.75 × 10−4 1.79 12.656 1.37 × 10−7 3.26 40.609

ϱ∗3(t)

1
16 1.57 × 10−3 2.33 0.313 7.13 × 10−6 4.27 6.953
1
32 7.61 × 10−4 2.07 0.844 1.73 × 10−6 3.83 11.781
1
64 3.70 × 10−4 1.90 2.203 4.19 × 10−7 3.53 23.312
1

128 1.81 × 10−4 1.77 12.375 1.02 × 10−7 3.32 40.671

ϱ∗4(t)

1
16 1.60 × 10−3 2.32 0.281 7.23 × 10−6 4.27 7.062
1
32 7.81 × 10−4 2.06 0.797 1.76 × 10−6 3.82 11.765
1
64 3.81 × 10−4 1.89 3.156 4.28 × 10−7 3.53 23.406
1

128 1.86 × 10−4 1.77 12.266 1.04 × 10−7 3.31 40.781

Table 4. Comparison of EM, ECO, and computational time (based on sec.) of (28) using the IQS
algorithm [37] and the developed algorithm, with various values of ϱ(t) and ∆ in t ∈ [0, 3].

IQS Algorithm Developed Algorithm

ϱ(t) ∆ E M ECO CPu Time E M ECO CPu Time

ϱ∗1(t)

1
16 1.33 × 10−2 1.55 1.687 6.29 × 10−6 4.32 1.968
1
32 6.26 × 10−3 1.46 5.765 1.19 × 10−6 3.94 1.765
1
64 2.93 × 10−3 1.40 21.641 2.26 × 10−7 3.68 2.062
1

128 1.37 × 10−3 1.35 86.219 4.28 × 10−8 3.50 3.281

ϱ∗2(t)

1
16 2.26 × 10−3 2.19 1.234 1.53 × 10−5 4.00 1.828
1
32 8.09 × 10−4 2.05 6.328 3.40 × 10−6 3.63 1.796
1
64 2.97 × 10−4 1.95 22.703 7.57 × 10−7 3.39 2.125
1

128 1.12 × 10−4 1.87 90.031 1.68 × 10−7 3.21 3.437

ϱ∗3(t)

1
16 1.17 × 10−4 3.26 1.625 9.20 × 10−7 5.01 1.656
1
32 3.36 × 10−5 2.97 5.844 1.24 × 10−7 4.59 1.828
1
64 9.60 × 10−6 2.77 21.125 1.67 × 10−8 4.31 2.156
1

128 2.72 × 10−6 2.64 84.600 2.27 × 10−9 4.10 3.515

ϱ∗4(t)

1
16 9.03 × 10−5 3.35 1.703 8.53 × 10−7 5.04 1.687
1
32 2.57 × 10−5 3.05 5.750 1.13 × 10−7 4.61 1.760
1
64 7.28 × 10−6 2.84 21.125 1.51 × 10−8 4.33 2.156
1

128 2.05 × 10−6 2.70 85.344 2.03 × 10−9 4.13 3.453
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Figure 3. Collation of the analytical and numerical results for (27) applying the developed algorithm
with a step size of ∆ = 1

32 for ϱ∗(t) = r + 0.01
∣∣cos

( t
3π

)∣∣, r = {0.25, 0.5, 0.75, 0.95, 1.25, 1.5, 1.75, 1.95}
and t ∈ [0, 3]. (a) The computed results for equation (27) obtained through the developed algorithm.
(b) The logarithm of the absolute error resulting from the numerical computation (27) is depicted
using the implemented algorithm.
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Figure 4. Collation of the analytical and numerical results for (28) applying the developed algorithm
with a step size of ∆ = 1

32 for ϱ∗(t) = r + 0.01
∣∣cos

( t
3π

)∣∣, r = {0.25, 0.5, 0.75, 0.95, 1.25, 1.5, 1.75, 1.95}
and t ∈ [0, 3]. (a) The computed results for equation (28) obtained through the developed algorithm.
(b) The logarithm of the absolute error resulting from the numerical computation (28) is depicted
using the implemented algorithm.

4. Conclusions

The application of integro quadratic spline quasi-interpolants to address nonlocal
variable-order derivatives and integrals offers a promising solution with versatile appli-
cations across scientific domains. Through a comprehensive comparison with alternative
algorithms using illustrative examples, we have substantiated the efficacy of our approach
across diverse variable-order functions and step sizes. The figures and tables illustrating
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the results provide compelling evidence of our proposed method’s superior performance in
terms of accuracy and convergence order. It is imperative to recognize that the convergence
order of Integro spline quasi-interpolation has inherent limitations. While we emphasize
the merits of our approach, we acknowledge the need to explore its constraints. In contrast,
traditional finite difference methods, despite their simplicity, do not necessarily enhance
convergence order with increased mesh points; their primary impact lies in reducing ap-
proximation error. Our method addresses this limitation by employing integro spline
quasi-interpolation, preserving the simplicity characteristic of finite difference methods.
Additionally, we conducted a detailed analysis of the implications of varying variable-order
function values.

Moreover, our proposed algorithm, based on integro spline quasi-interpolation, show-
cases potential applications as numerical solvers for variable-order dynamical systems.
Furthermore, the adaptability of our method opens avenues for integration with opti-
mization techniques. By employing our algorithm as part of optimization processes, one
can explore enhanced solutions for problems involving nonlocal variable-order operators.
This intersection of numerical solvers and optimization techniques represents a promising
direction for future research, offering the prospect of addressing complex problems in a
more efficient and effective manner.
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