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Abstract: This paper focuses on the production systems that may produce a proportion of recyclable
defective products. The developed model is called an Economic Recycle Quantity (ERQ) model with
the assumption of a full recovery of defective items. The defective parts are collected during the
production-off time and can be used during the next production cycle of the same category. The
demand rate of the non-defective items is a two-level piecewise factor—one during the production-
run time and another during the production-off time. The developed model aims to optimize the total
inventory cost, the order quantity, and the amount of recyclable defective items that represent the
ERQ. The mathematical formulations of the model are deduced theoretically. The model was solved
analytically, and the optimal results are illustrated. Sensitivity analysis is carried out to investigate
the effect of varying system parameters and validate the proposed model. Results of the sensitivity
analysis show that the consideration of defective part recycling reduces the total inventory cost
where the raw material is reduced. The cost reduction is about 1%; of course, the environmental
impact is more appreciated. Furthermore, the managerial implications are described, and the future
perspectives are discussed.

Keywords: Economic Recycle Quantity (ERQ); inventory; shortages; production-run time; production-
off time

1. Introduction

For reasons of the turbulent working environment due to rapid market changes, in-
stability of demand, and changes of customer needs, organizations should have inventory
management policies. These policies aim to identify precisely which items are to be pur-
chased, with which quantities, and at which times. Adopting robust inventory management
policies can reduce the risk of material shortages and the associated consequences. In-
ventory management has a set of main functions that include forecasting, ordering policy,
material handling, material storing, monitoring, and continuous recording of different
transactions (adding or withdrawing). The efficient implementation of methods and algo-
rithms to achieve these functions leads to satisfying customer needs and producer demands
on time at minimum cost. In inventory management, these methods and algorithms are
known as models. There are many inventory models including planning and classification
models. Planning models identify the right number of materials/items/products to be
ordered/stocked and how often to reorder. The main objectives of planning models are to
minimize the cost of keeping supplies in inventory, avoid the cost of item shortages, and
achieve satisfactory service levels. Inventory managers determine the ideal inventory order
quantity using the well-known Economic Order Quantity (EOQ) or Economic Production
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Quantity (EPQ) according to the application. In the beginning, Taft [1] extended the EOQ
model introduced by Harris [2] by assuming ideal product quality and faultless manufac-
turing procedures. Richter [3,4] discussed the EOQ model with variable setup numbers for
repair and waste disposal.

In industry, defective items can be produced as production wastages. If a manufacturer
produces defective items, the manufacturer may prefer to send them out for rework, rather
than simply salvage them at a lower price. Reworked items are generally considered
new and sold at full retail price. Items of suboptimal quality can be dealt with either
by reformulating them and making them suitable for the primary or secondary market
or by disposing of them. Rework and recovery options also play a vital role in dealing
with imperfect quality articles. In some cases, the imperfect items can be completely
recycled. Both EOQ and EPQ models that consider defective/imperfect products have
been found in the literature for years. For example, an EPQ model was created by Salameh
and Jaber [5] based on the assumption that defective units can be sold as a single batch
following the 100% inspection process. Later, an EPQ model was designed by Hayek
and Salameh [6] that considers the repair of a proportion of defective products in a fixed
repair time. Defective products can be considered repairable or non-repairable products
according to Chiu [7]. Furthermore, Eroglu and Ozdemir [8] along with Wang et al. [9]
investigated inventory models with faulty items. Krishnamoorthi [10] adapted Panayappan
and Krishnamoorthi’s [11] inventory model with product life cycles by including defective
products to accommodate shortages.

In many practical situations, the deterministic demand rates for non-defective items
may fluctuate from one stage of the manufacturing cycle to the next. Because of their
freshness or other considerations, some products may be in higher demand during the
production-run time than during the production-off time. Some products may be in higher
demand following a manufacturing halt caused by a stock-out panic. Due to different
uncertainties, supply shortages are unavoidable in many practical scenarios. Production
inventory models for two-level continuous demand patterns have not been created. On
the other hand, most models of defective production systems consider reworks, repair,
and remanufacture, as well as different production and supply policies. However, the
consideration of recycling is missing; only a few attempts were performed.

As a result, there is a research gap in production inventory models relating to raw
material recovery by recycling systems with two-level constant demand rates. The model
in this paper is inspired by Oh and Hwang’s [12] and Bai and Varanasi’s [13] inventory
models, and it introduces a recycling process of defective items with 100% recovery under
two-level piecewise constant demand rates during the production-run time and production-
off time under shortages. To the best of our knowledge, this consideration is not covered
in the literature yet. This study may help inventory managers handle such inventory
problems by considering the recycling process of defective items. The recycling concept
can be considered an extension of the EPQ model. This extension could be named the
“Economic Recycle Quantity (ERQ) model”. In ERQ, the goal is to determine the optimal
acceptable amount of damaged products that can be recycled while maintaining a low total
inventory cost. The proposed ERQ model considers the different types of inventory costs,
including setup, raw material, production, shortage, holding, and recycling costs.

This paper is organized as follows: The next section introduces a literature review,
followed by a problem statement section. Section 4 introduces the mathematical model of
the problem considered. Section 5 presents the solution procedures of the model. After
that, a numerical analysis is presented in Section 6, followed by a sensitivity analysis and
discussion in Section 7. Finally, the conclusions and perspectives are discussed.

2. Literature Review

The literature provides many EPQ models for dealing with imperfect production.
For example, Schrady [14] was the first to consider the reuse of repairable items. Chiu
S. and Chiu Y. [15] considered the rework of repairable defective items in their devel-
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oped EPQ. King et al. [16] discussed waste reduction through repairing, reconditioning,
re-manufacturing, or recycling. An optimal EPQ policy for defective operations and flawed
repair was developed by Liao et al. [17]. Hsu et al. [18] compared a set of four strate-
gic actions for the waste reduction of end-of-life waste, namely repair, reconditioning,
re-manufacturing, or recycling. These strategies are adopted from the global concern of en-
vironmental protection by reusing metals, paper, glass, etc. Liao and Sheu [19] constructed
an EPQ model for the production process with stochastic failure considering minimum
repairing and defective maintenance. An optimal replenishment policy for deteriorating
items was developed by Dye and Hsieh [20] where they emphasized effective investment
in preservation technology. Taleizadeh et al. [21] discussed repair failure and limited capac-
ity. Al-Salamah [22,23] determined the decision variables of their EPQ using bee colony
heuristics considering imperfect quality and random equipment failure and repair.

In addition, the inventory models can be distinguished by the nature of the demand.
The demand could be constant, stock-dependent, time-dependent, or price-dependent
demand patterns. Gupta and Vrat [24] first introduced the stock-dependent demand model.
Baker and Urban [25] later included stock-dependent demand patterns in a power form,
while Pal et al. [26] modified their model to include part deterioration. Datta and Pal [27]
presented a deterministic model without shortages that considers decaying objects. Giri and
Chaudhuri [28] established probabilistic models of perishable products with rates matched
to stock-dependent demand and nonlinear inventory holding costs. Many more studies,
such as Sarker et al. [29], examined inventory models of stock-dependent demand. Manna
et al. [30] discussed an EPQ model with a production rate-dependent defective rate and
advertisement-dependent demand and then developed an algorithm to find the optimal
profit of the imperfect production inventory model. Mashud et al. [31] proposed a non-
instantaneous inventory model with stock- and price-dependent demand in the presence
of partially backlogged shortages. Shaikh et al. [32] established a stock-dependent demand
with a price discount facility under partial backlogging. Panda et al. [33] used accumulated
credit plans in a two-warehouse inventory model for the deterioration of commodities with
price-dependent and stock-dependent demand based on a partial backlog. Of course, the
demand is not regular over the planning horizon. Consequently, the real demand model
should gather more than one pattern. A piecewise function can be used to join the different
natures of the demand along the planning horizon. Datta and Pal [27] considered the
demand rate as a piecewise function of the inventory level. Later on, piecewise constant
demand was also proposed by Bai and Varanasi [13]. Bhunia and Shaikh [34] studied
inventory level-dependent demand rates. Koh et al. [35] proposed a combined EOQ and
EPQ model in which demand is projected to come from two sources: recycled and freshly
purchased commodities. Oh and Hwang [12] proposed a deterministic inventory model in
which a portion of demand is returned and reused for the creation of new products after
recycling, with the holding costs of raw materials and usable items determined unequally.
Leal Filho W. et al. [36] investigated current textile recycling trends and the associated
socioeconomic benefits.

The development of EPQ models considering different aspects of the problem is
still an active topic in the literature. Gharaei et al. [37] developed a bi-objective mixed-
integer linear programming model to optimize the cost and the profit simultaneously using
an EPQ inventory model. Their model aims to determine the optimal number of supply
shipments and the quantity of each product shipment. The developed EPQ model considers
the idea of defective production. They classified the defective items into two categories:
imperfect items that will be sold at a low price and scrapped items that will be salvaged.
Ruidas et al. [38] developed an EPQ model considering the concept of repair of imperfect
production. The defective items can be repaired if defects are discovered before being
sent to the customer, but they will be refunded if they are returned by the customer. The
production rate is dependent on the demand rate. However, the demand rate is dependent
on the stock level and the selling price. The developed model considers the interval nature
of the estimated factors, not the deterministic numbers. The model was then solved by
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particle swarm optimization (PSO). Another work of Zidan et al. [39] developed an EPQ
model in which production batches are classified as complete or incomplete, relying on
100% inspection. The incomplete batches are divided into defective and non-defective. All
complete, non-defective lots are stored, resulting in a holding cost, and all defective lots
are rejected, resulting in a disposal cost. Backorder costs occur when a customer agrees to
pick up the order in the next period and lost sales costs occur when a customer does not
accept the order in the next period. Besides these considerations, their developed model
considered the setup and backorders. Additionally, Biswas and Schultz [40] considered
an EPQ model with two-stage manufacturing processes. The first stage deals with a
normal production run that may have imperfect items. The second manufacturing process
focuses on the repair processes. Scrapped items can be discovered during the production,
inspection, or repair processes. Ganesan and Uthayakumar [41] developed two inventory
models dealing with a fixed-length and a variable-length warm-up production period.
The considered production cycle is divided into four segments: warm-up, maintenance,
standard production, and repair. The defective rate of the warm-up production period
is different from that of the production period. Furthermore, they assumed that all the
defective items could be 100% repaired. Mokhtari et al. [42] developed an EPQ model
considering the imperfect production of items. They assumed that imperfect production
could be recovered completely with the repair processes. Their model considers some
production constraints e.g., machine capacity constraints, inventory space constraints,
budget constraints, and the number of setup constraints.

Recently, Sharma et al. [43] developed an EPQ model considering imperfect production
and a deteriorating item that deteriorates with the Weibull distribution of time. The demand
is a function of the selling price and the stock level; they also considered the inflation rate.
Nobil et al. [44] considered an EPQ model with scrapping and reworking items while
modeling a machine warm-up time that is related to its downtime. They extended the
model developed by Nobil et al. [45]. The rate of defective parts is associated with the
period type of warm-up or normal working. The defective rate of the warm-up period is
greater than of the normal working period. A shortage is not allowed in their model. Priyan
et al. [46] proposed to consider carbon emissions from logistics, manufacturing processes,
and storage activities. For imperfect production, they considered rework processes that
could be synchronous or asynchronous with flawless operations. Different costs were also
considered, e.g., setup costs, inspection, shortage, and inventory costs. They assumed
that the manufacturer had a plan of investment to switch to green energy with a budget
constraint. Narang et al. [47] considered the problem of defective items in a multi-stage
supply chain with suppliers and manufacturers. The developed model considers carbon
emissions. The production process produces defective and perfect items. These defective
items can be reworked or scrapped. The product demand is advertising dependent. This
advertising is paid for by the manufacturer. No shortage is allowed where the production
rate is greater than the customer demand. In addition, Kausar et al. [48] developed an
inventory model that considers a defective production system in which the defective items
are sold. In their model, they considered the cost of energy usage. Moreover, the demand is
not constant, it depends on the level of advertisement and selling price. Gautam et al. [49]
presented a two-decade literature review over the period from 2000 up to 2020; the scientific
contributions considered an imperfect-quality item for EOQ or EPQ models. In addition,
Karim and Nakade [50] reviewed the literature by focusing on the integration of EPQ,
carbon emissions, and recycling. They highlighted the research gap in these directions.
They also showed a lack of consideration for product recycling, carbon emissions, and
stochastic models. In addition, Table 1 shows the lack of consideration of the product-
recycling concept, besides the piecewise function of the demand. Responding to such need,
the current paper proposes to integrate an EPQ model with the product-recycling concept
and piecewise function demand.
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Table 1. Comparative study based on the state-of-the-art review.

Reference

EO
Q

EP
Q

ER
Q

Se
tu

p

B
ac

ko
rd

er
s

Im
pe

rf
ec

t

In
sp

ec
ti

on

Defective Parts

Production
Rate

Demand

Other Considerations

So
ld

R
ec

yc
le Repairable Items

C
on

st
an

t

Pi
ec

ew
is

e

Scrap Reworked

1 Salameh and Jaber [5] × × × 100% × × Yearly demand

2 Hayek and Salameh [6] × × × × × Constant × Reworked during off time

4 Chiu S. and Chiu Y. [15] × × × × Constant ×

5 Chan et al. [51] × × × 100% × × × Sold non-repairable at a
lower price

6 Eroglu and Ozdemir [8] × × × P × × Sold non-repairable at a
lower price

7 Wang et al. [9] × × × P × × Sold non-repairable at a
lower price

10 Krishnamoorthi [10] × × × × × ×

11 Dye and Hsieh [20] × ×

12 Singh et al. [52] × × P × × × Constant ×

13 Tai [53] × × × × × × × Constant ×

14 Pal et al. [54] × × × × Constant ×

15 Sarkar et al. [55] × × × × 100% × Constant × Neglected the inspection
cost

17 Chiu et al. [56] × × × 100% × × Multi-product and
multi-deliveries

20 Priyan and Uthayakumar
[57] × × × 100% × × Constant Dependent demand,

multiple shipments

22 Viji and Karthikeyan [58] × × ×

23 Ritha and Priya [59] × × × P × Multi-level × Cost: energy,
transportation, emission

24 Khanna et al. [60] × × × × × × Constant Inspection error, returns,
trade credits

25 Manna et al. [30] × × P × Constant Demand (advertisement,
deprecation)

26 Al-Salamah [23] × × × × 100% × Constant ×
Rework rate, repair
synchronous asynchronous
with production

27 Ruidas et al. [38] × × × × × Dependent Demand (stock level,
selling price)

28 Ganesan and Uthayakumar
[41] × × × × Constant ×

29 Gharaei et al. [37] × × 100% × Constant ×

30 AlArjani et al. [61] × × × × × 100% × Constant × × Three-level constant
demand

31 Mokhtari et al. [42] × × × Constant × Muti-products

32 Biswas and Schultz [40] × × × × × Constant ×

33 Zidan et al. [39] × × × × 100% × Constant ×

34 Priyan et al. [46] × × × × × Constant × Synchronous or
asynchronous rework

35 Sharma et al. [43] × × P × Constant Demand (stock level,
selling price)

36 Kausar et al. [48] × × × × Constant Demand (selling price,
advertisement)

38 Nobil et al. [44] × × × × Multi-level ×

39 Narang et al. [47] × × × × × Constant × Supply chain considering
carbon emissions

40 The current manuscript × × × × × 100% × Constant × × Two-level constant demand

P: Proportion.

3. Problem Statement

In almost all industrial manufacturing, defective products can be found beside perfect
production. These defective products can be repaired, reconditioned, or even recycled. A
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recycling concept to recover defective items in inventory planning is considered in this
article, wherein the production systems may produce a proportion of recyclable defective
products. These defective parts can be screened and separated along the production
processes. Accordingly, the defective parts are collected during the production-off time
and can be used during the next production cycle of the same category. Manufacturing
systems of bricks can fit this nature of production lines with continuous screening during
the different manufacturing operations. The identification of defective materials takes
place during stages such as setting, drying, and firing in the brick industry. Before the
firing process, the faulty components are recovered. During periods when production is on
temporary hiatus, these flawed bricks are recycled and combined with raw materials.

Regarding the demand, products like bricks, mustard oil, paper, plastics, jute, and
clothing may have varying constant rates during both production periods and periods of
inactivity. In various practical scenarios, the demand patterns for non-defective items may
exhibit fluctuations across different stages of the manufacturing cycle. Certain products
may experience higher demand during periods of activity than inactivity, probably due
to factors like freshness or other considerations. In the aftermath of a stock-out panic that
disrupts manufacturing operations, there may be a surge in demand for certain products.
In many practical situations, supply shortages are inevitable due to various uncertainties,
leading to heightened demand for specific items. The primary objective of this research is to
facilitate the recovery of raw materials in production inventory systems through recycling
systems that feature two-level constant demand rates. Accordingly, the Economic Recycling
Quantity (ERQ) model is mathematically formulated. The ERQ model is formulated relying
on the concept of recycling defective parts. These defective parts are taken and completely
recycled to be considered as a part of the raw material for the next production period. The
resultant inventory model is represented in the next section. The different costs are taken
into consideration and include the setup cost, raw material cost, production cost, item
shortage cost, holding cost, and recycling cost. To delineate this inventory problem, the
following steps were implemented:

- Formulate the mathematical model of the EPQ model.
- Expand the EPQ model to formulate the mathematical model of the ERQ model.
- Solve both models optimally.
- Perform sensitivity analysis of the developed inventory models.

4. Mathematical Formulation
4.1. Model Assumptions

The following points summarize the model assumptions:

1. The production rate is known, constrained, constant, and is greater than the sum of
demand and defective rates.

2. A fixed portion of defective items is randomly produced.
3. The demand rate of the good product is a piecewise constant function:{

d; during production-run time
cd; during production-off time

4. Production lead time is zero.
5. This is a single-product manufacturing system.
6. Defective products are completely recyclable. In addition, the recycled material can be

used in the manufacturing process of the same products during the next production
cycle time.

7. The item holding cost for a defective or good product is the same.
8. Different cost parameters are known and fixed.

4.2. Formulation of Total Inventory Cost

On-hand inventory situations are depicted in Figures 1 and 2 below.
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The replenishment rate of non-defective items is ‘p − d − f’ during the production-run
time and the stock starts to be positive through the line OA during time t1 and replenish-
ment ends at point A with maximum q1 units of non-defective items. If f = 0 and d = 0, the
inventory would be replenished through the line OH.

Therefore,
t1 =

q1

p − d − f
(1)

During t2, inventory decreases at the demand rate ‘cd’ through the line AC and at the
end of t2, the stock level reaches level C with zero on-hand storage. If the demand rate is d
during t2, then the inventory line would be decreased through line AB. Therefore,

t2 =
q1

cd
(2)

Hence t1 + t2 =
{p − (1 − c)d − f}q1

cd(p − d − f)
(3)

The stock starts to be negative with the demand rate ‘cd’ during time t3 and shortage
reaches qs at the point E. Thus

t3 =
qs
cd

(4)

Production starts with the beginning of time t4 and the shortfall quantity qs is fulfilled
with the rate of ‘p − d − f’ in addition to the period demand that is satisfied with rate ‘d’
and stock becomes zero again at the point F at the end of t4. Therefore,

t4 =
qs

p − d − f
(5)
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And t3 + t4 =
{p − (1 − c)d − f}qs

cd(p − d − f)
(6)

Also t1 + t4 =
w
f
=

q
p

(7)

Adding (1) and (5) and using (7), we obtain

q1 + qs = (p − d − f)
w
f

(8)

From similar triangle property,

t3

qs
=

t2

q1
=

t3 + t2

qs + q1

t2

cdt2
=

t3 + t2

(p − d − f)w
f

t2 + t3 = (p − d − f)
w

cfd
(9)

Therefore, t = t1 + t2 + t3 + t4 =
{p − (1 − c)d − f}w

cfd
(10)

Then,
t3 + t4

t
=

f.qs
w(p − d − f)

(11)

t1 + t2

t
=

f.q1
(p − d − f)w

(12)

If we decide to recycle defective items, then the inventory model is an ERQ model;
otherwise, it is a standard EPQ model. Therefore, two cases arise: Case 1 represents an
EPQ model with defective items for a two-level piecewise constant demand that allows
shortage. Case 2 represents a new proposed model named the ERQ model with defective
items for a two-level piecewise constant demand that allows shortage.

4.2.1. Inventory Cost for Case 1

The holding cost of defective items is ignored in this case. Thus,

Total inventory =
1
2

q1 × t1 +
1
2

q1 × t2=
1
2

q1(t1 + t2)

And the average inventory =
1
2

q1

(
t1 + t2

t

)
=

fq1
2

2(p − d − f)w
=

{
(p − d − f)W − f.qs

}2

2f(p − d − f)w

The following equations can represent the different terms of the inventory cost function
per unit time:

(1) Average setup cost = 1
t O = cfdO

{p−(1−c)d−f}w

(2) Average production cost = 1
t qK =

cpdK
{p−(1−c)d−f}

(3) Average shortage cost = qs
2

t3+t4
t S = S.f.qs

2

2w(p−d−f)

(4) Raw material cost = 1
t qR =

cpdR
{p−(1−c)d−f}

(5) Holding cost = {(p−d−f)w−f.qs}
2

2f(p−d−f)w H

Therefore,

TC1 =
cfdO

{p − (1 − c)d − f}w
+

cpdR
{p − (1 − c)d − f} +

cpdK
{p − (1 − c)d − f} +

fqs
2S

2w(p − d − f)
+

{
(p − d − f)w − fqs

}2H
2f(p − d − f)w

(13)
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Without considering the recycling concept, Equation (13) represents the total inventory cost
based on EPQ. TC1 is a function of ‘w’ and qs. The main objective is to minimize both the
number of defective units and the shortage that leads to minimum inventory cost.

4.2.2. Inventory cost for Case 2

During the production run, a defined proportion of the defective items that can
be recycled are received. During the production-off period, the recycling procedure is
carried out. As a result, the recycled raw materials are returned to the production cycle’s
manufacturing process. The additional supplies needed are obtained from suppliers. The
process is depicted in Figure 3.

Computation 2024, 12, x FOR PEER REVIEW 10 of 22 
 

 

Without considering the recycling concept, Equation (13) represents the total inven-
tory cost based on EPQ. TC1 is a function of ‘w’ and qs. The main objective is to minimize 
both the number of defective units and the shortage that leads to minimum inventory cost. 

4.2.2. Inventory cost for Case 2 
During the production run, a defined proportion of the defective items that can be 

recycled are received. During the production-off period, the recycling procedure is carried 
out. As a result, the recycled raw materials are returned to the production cycle’s manu-
facturing process. The additional supplies needed are obtained from suppliers. The pro-
cess is depicted in Figure 3. 

 
Figure 3. Production system with recycling. 

In this case, the cycle starts with the shortage amount 𝑞  in the inventory which is 
served at the rate ′p − d − f′ over the time 𝑡 , alongside the current demand, which is also 
fulfilled at the rate ′d′. In the production-run time 𝑡 + 𝑡 , w units of defective items are 
produced and they are stored properly to be recycled during the production-off time t2 + 
t3. 

The holding cost for defective items is included during 𝑡 + 𝑡  time before sending 
them for the recycling process as perfect items. Therefore, 

Total Inventory = q × t + q × t + f(t + t ) × (t + t ) = 12 q (t + t ) + 12 f(t + t )  

Average Inventory= q + f ( )   
                                                    = q ( ) + { ( ) } = ( ) + { ( ) } 

                           = f (p − d − f) wd − q2(p − d − f)w + cdw2{p − (1 − c)d − f} 

A total of w units are recycled during the production-off time. In each cycle, the in-
ventory managers procure the required raw materials for q − w units after the first cycle, 
then the process repeats. The following formula represent the different components of the 
inventory total cost per unit time: 

(1) Average setup cost = O = { ( ) }  

(2) Average production cost = qK = { ( ) } 
(3) Average shortage cost = S = ( ) S 

(4) Raw material cost = (q − w)R = ( ){ ( ) } 
(5) Holding Cost = 

( )( ) + { ( ) } H 

(6) Average recycling cost = wr = ( )  

Figure 3. Production system with recycling.

In this case, the cycle starts with the shortage amount qs in the inventory which is
served at the rate ‘p − d − f′ over the time t4, alongside the current demand, which is also
fulfilled at the rate ‘d′. In the production-run time t1 + t4, w units of defective items are
produced and they are stored properly to be recycled during the production-off time t2 + t3.

The holding cost for defective items is included during t1 + t4 time before sending
them for the recycling process as perfect items. Therefore,

Total Inventory = 1
2 q1 × t1 +

1
2 q1 × t2 +

1
2 f(t1 + t4)× (t1 + t4)

= 1
2 q1(t1 + t2) +

1
2 f(t1 + t4)

2

Average Inventory = 1
2 q1

(
t1+t2

t

)
+ 1

2 f (t1+t4)
2

t

= 1
2 q1

fQd
(p−d−f)w + cdw

2{p−(1−c)d−f}=
fq1

2

2(p−d−f)w + cdw
2{p−(1−c)d−f}

=
f{(p−d−f)w

d −qs}
2

2(p−d−f)w + cdw
2{p−(1−c)d−f}

A total of w units are recycled during the production-off time. In each cycle, the
inventory managers procure the required raw materials for q − w units after the first cycle,
then the process repeats. The following formula represent the different components of the
inventory total cost per unit time:

(1) Average setup cost = 1
t O = cfdO

{p−(1−c)d−f}w

(2) Average production cost = 1
t qK =

cpdK
{p−(1−c)d−f}

(3) Average shortage cost = qs
2

t3+t4
t S = fqs

2

2w(P−D−d)S

(4) Raw material cost = 1
t (q − w)R =

c(p−f)dR
{p−(1−c)d−f}

(5) Holding Cost =
[

f{(p−d−f)w
d −qs}

2

2(p−d−f)w + cdw
2{p−(1−c)d−f}

]
H

(6) Average recycling cost = 1
t wr = cfdr

p−(1−c)d−f

Then, TC2 =
cfdO

{p − (1 − c)d − f}w
+

cpdK
{p − (1 − c)d − f} +

[ {
(p − d − f)w − dqs

}2

2f(p − d − f)w
+

cdw
2{p − (1 − c)d − f}

]
H+

fqs
2S

2w(p − d − f)
+

c(p − f)dR
{p − (1 − c)d − f} +

cfdr
p − (1 − c)d − f

(14)

Considering the recycling of the defective production, Equation (14) represents the
total inventory cost based on ERQ. TC2 is a function of ‘w’ and qs to minimize the total
cost of the inventory. The optimal quantity of the defective units (ERQ) and the optimum
shortage level can be identified along with the corresponding optimal production lot size.
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5. Optimal Solution

The total cost functions TC1 and TC2 are both functions of ‘w’ and ‘qs’, the convexity
of them will be justified by a Hessian matrix, and a unique optimal solution is obtained.
Special cases of the optimal values of both models are also discussed.

5.1. Optimal Solution of Case 1

Theorem 1 proves the convexity of TC1 and the uniqueness of the optimal solution.

Theorem 1. TC1 is a strictly convex function of w and qs simultaneously, as shown by Equation
(13) and there is only one optimal solution of w* and qs

∗.

Proof. The first order partial derivatives of TC1 are as follows:

∂(TC1)

∂w
=− cfdO

{p − (1 − c)d − f}w2 −
fqs

2

2(p − d − f)w2 (S + H) +
(p − d − f)H

2f
(15)

∂(TC1)

∂qs
=

fqs
w(p − d − f)

S − H +
fqs

(p − d − f)w
H (16)

Moreover, the second order partial derivatives of TC1 are as follows:

∂2(TC1)

∂w2 =
2cfdO

{p − (1 − c)d − f}w3 +
fqs

2

(p − d − f)w3 (S + H) (17)

∂2(TC1)

∂qs
2 =

f
w(p − d − f)

(S + H) (18)

∂2(TC1)

∂w∂qs
= −

fqs
(p − d − f)w3 (S + H) (19)

∂2(TC1)

∂qs∂w
= −

fqs
(p − d − f)w3 (S + H) (20)

The Hessian matrix of TC1 is

Hij =

 ∂2(TC1)
∂w2

∂2(TC1)
∂w∂qs

∂2(TC1)
∂qs∂w

∂2(TC1)
∂qs

2


Thus, the first principal minor is

|H11| =
∂2(TC1)

∂w2 =
2cfdO

{p − (1 − c)d − f}w3 +
fqs

2

(p − d − f)w3 (S + H)

It is assumed that p − d − f > 0 and so p − (1 − c)d − f > 0. Therefore, |H11| > 0.
In addition, the second principal minor is

|H22| = ∂2(TC1)
∂w2

∂2(TC1)
∂qs

2 − ∂2(TC1)
∂qs∂w

∂2(TC1)
∂w∂qs

= f
(p−d−f)

2cfdO
{p−(1−c)d−f}w4 (S + H) > 0

The first and second principal minors of the Hessian matrix for TC1 are positive and
the Hessian matrix is positive definite. Hence, TC1 is a non-negative, differentiable, and
strictly convex function with respect to w and qs concurrently. Therefore, the objective
function TC1 has the global minimum value w∗, qs

∗. □
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Solving ∂(TC1)
∂qs

= 0 and ∂(TC1)
∂w = 0, the following results are obtained,

qs
w

=
(p − d − f)

f

(
H

S + H

)
(21)

And

cfd
{p − (1 − c)d − f}w2 O +

f
2(p − d − f)

(S + H)
(qs

w

)2
=

(p − d − f)
2f

H (22)

The optimal solution of TC1 is obtained as

w∗ = f
√

2dO
√

c
(p − d − f){p − (1 − c)d − f}

√
S + H

SH
(23)

qs
∗ =(p − d − f)

√
2cdO

(p − d − f){p − (1 − c)d − f}

√
H

(S + H)S
(24)

q∗ = p
√

2dO
√

c
(p − d − f){p − (1 − c)d − f}

√
S + H

SH
(25)

q1
∗ = (p − d − f)

√
2dO·

√
c

(p − d − f){p − (1 − c)d − f}

√
S

(S + H)H
(26)

t∗ =

√
2O
d

√
{p − (1 − c)d − f}

c(p − d − f)

√
S + H

SH
(27)

Special Cases

(i) If f = 0, then w* = 0.
(ii) If c = 1 and f = 0, then

q∗ =

√
2pdO

(p − d)H
·
√

(S + H)

S

and t∗=

√
2O
dH

·
√

(S + H)

S

These are the optimal results of the standard EPQ model and hence the model complies
with the standard EPQ model.

(iii) If c = 1,

w∗ = f
√

2dO

√
1

(p − d − f)(p − f)
·
√

S + H
SH

q∗ = p
√

2dO

√
1

(p − d − f)(p − f)
·
√

S + H
SH

t∗ = (p − f)

√
2O
d

√
1

(p − d − f)(p − f)S

√
S + H

H

These numbers indicate the EPQ model’s optimal outcomes for constant demand with
two levels of demand and shortages.

5.2. Optimal Solution of Case 2

Theorem 2 proves the convexity of TC2 and hence the uniqueness of the optimal solution.

Theorem 2. TC2 is strictly convex with respect to w and Qs and there exists only one optimal
solution of w* and qs

∗.
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Proof. The relation between TC2 and TC1 is given by

TC2= TC1 −
cd

{p − (1 − c)d − f}

[
f(R − r)− w

2
H
]

(28)

Therefore, the following equality holds

∂2(TC2)

∂w2 =
∂2(TC1)

∂w2

∂2(TC2)

∂qs
2 =

∂2(TC1)

∂qs
2

∂2(TC2)

∂w∂qs
=

∂2(TC1)

∂w∂qs

∂2(TC2)

∂qs∂w
=

∂2(TC1)

∂qs∂w

The Hessian matrix of TC2:

Hij =

 ∂2(TC2)
∂w2

∂2(TC2)
∂w∂qs

∂2(TC2)
∂qs∂w

∂2(TC2)
∂qs

2

 =

 ∂2(TC1)
∂w2

∂2(TC1)
∂w∂qs

∂2(TC1)
∂qs∂w

∂2(TC1)
∂qs

2


The first principal minor: |H11| = ∂2(TC2)

∂w2 = ∂2(TC1)
∂w2 > 0.

The second principal minor:

|H22|=
∂2(TC2)

∂w2
∂2(TC2)

∂qs
2 − ∂2(TC2)

∂qs∂w
∂2(TC2)

∂w∂qs
=

∂2(TC1)

∂w2
∂2(TC1)

∂qs
2 − ∂2(TC1)

∂qs∂w
∂2(TC1)

∂w∂qs
> 0

Hence, the Hessian matrix is positive definite and TC2 is non-negative, differentiable,
and strictly convex with respect to w and qs simultaneously and there exists a unique
optimal solution w∗ and qs

∗. □

The necessary conditions of the minimization of TC2 are ∂(TC2)
∂qs

= 0 and ∂(TC2)
∂W = 0

and we obtain
qs
w

=
(p − d − f)

f

(
H

S + H

)
(29)

And

cfdO
{p − (1 − c)d − f}w2 +

f(S + H)

2(p − d − f)

(qs
w

)2
=

cdH
2{p − (1 − c)d − f} +

(p − d − f)H
2f

(30)

And the unique optimal solution of TC2 is obtained as:

w∗ = f

√
2cdO

(p − d − f){p − (1 − c)d − f}S + cfd(S + H)

√
S + H

H
(31)

qs
∗ = (p − d − f)

√
2cdO

(p − d − f){p − (1 − c)d − f}S + cfd(S + H)

√
H

S + H
(32)

q∗ = p

√
2cdO

(p − d − f){p − (1 − c)d − f}S + cfd(S + H)

√
S + H

H
(33)

q1
∗ = (p − d − f)

√
2cdO

(p − d − f){p − (1 − c)d − f}S + cfd(S + H)

S√
(S + H)H

(34)
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t∗ =

√
2O
cd

{p − (1 − c)d − f}√
(p − d − f){p − (1 − c)d − f}S + cfd(S + H)

√
S + H

H
(35)

Special Cases
If f = 0, then w* = 0.
That is, if the deficient item production rate is zero, then there is no Economic Recycle

Quantity to be recycled.

5.3. Comparative Study with the Existing Methods and the Proposed Methods

(i) Convergence of Classical EPQ Model:

If c = 1 and f = 0, then

q∗ =

√
2pdO

(p − d)H
·
√

(S + H)

S

t∗=

√
2O
dH

·
√

(S + H)

S

These are optimal results in the standard EPQ model with constant demand and shortages.
Therefore, the proposed model can be converged to the classical EPQ model by

considering particular cases.

(ii) Convergence of ERQ model for constant demand:

If c = 1, then

w∗ = f
√

2dO

√
1

(p − d − f)(p − f)S + fd(S + H)
·
√

S + H
H

q∗ = p
√

2dO

√
1

(p − d − f)(p − f)S + fd(S + H)
·
√

S + H
H

t∗ = (p − f)

√
2O
d

√
1

(p − d − f)(p − f)S + fd(S + H)

√
S + H

H

These formulas represent the optimal results of the ERQ model with defective units
and shortages for constant demand.

6. Numerical Analysis and Convexity Graphs

Some items, such as bricks, mustard oil, paper, jute, and clothing, have differing
constant rate demands throughout production-run periods and production-off periods. In
such circumstances, the model is examined using a two-level piecewise constant demand
rate that varies from production-run time to production-off time. In the brick industry,
the screening of defective materials occurs during the setting, drying, and fire processes.
Furthermore, the defective components are recovered before the firing stage. During
the production-off periods, the inadequate bricks are recycled and aggregated with raw
material. Furthermore, market demand for bricks is independent of production period
features, i.e., it may increase or decrease over the production-run or production-off periods.
Numerical examples are discussed below considering the following data set.

Data set #1: p = 5000 units, d = 4500 units, f = 100 units, O = $1000, K = $50, H = $10,
R = $50, r = $5, S = $3, c = 0.8.
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6.1. Case 1: Without Recycling
After solving the model using the above data set, one can obtain the following results.
w* = 139 units, q* = 6982 units, qs

∗ = 429 units, q1
∗ = 128 units and t∗ = 1.55158 time units.

t1
∗ =0.3222, t2

∗ =0.0358, t3
∗ =0.11935, t4

∗ =1.07417 time units.
Average setup cost = $644, average production cost = $225,000,
average shortage cost = $495, average raw material cost = $225,000,
average holding cost = $148 and TC1 = $451,289.

Cycle Time Verification:

t1
∗+t2

∗+t3
∗+t4

∗ =0.3222 + 0.0358 + 0.11935 + 1.07417 = 1.55152 = t∗

Convexity Graphs
In the range 125 < w < 150 and 400 < qs < 450, Figure 4 depicts the convexity of TC1

with respect to w and qs simultaneously.
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Fixing qs = 414 and taking 125 < w < 150, Figure 5 depicts the convexity of TC1 with
respect to ‘w’.
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Fixing w = 136 and taking 415 < qs < 445, the following Figure 6 indicates the convex
nature of TC1 with respect to qs and the minimum total cost will be at qs = 430.
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6.2. Case 2: Considering Recycling
After solving the model using the above data set, one can obtain the following results.
w* = 99.37 units, q* = 4968.25 units, qs* = 305.7 units, q1* = 91.72 units
and t* = 1.10406 time units.
t1

∗ = 0.2293, t2
∗ = 0.02547, t3

∗ = 0.08492, and t4
∗ = 0.7643 time units.

Average setup cost = $905.75, average production cost = $225,000,
average shortage cost = $352.77, recycle cost = $450,
average raw material cost = $220,500, holding cost = $552.97, and TC2 = $447,762

Cycle Time Verification:

t1
∗+t2

∗+t3
∗+t4

∗ =0.2293 + 0.02547 + 0.08492 + 0.7643 =1.104 ≈ t∗

Convexity Graphs
Over the interval 125 < w < 1550 and 400 < qs < 550, Figure 7 indicates the convex

nature of TC2 with respect to w and qs simultaneously.
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Figure 8 depicts the convexity of TC2 with respect to ‘w’ while qs = 305 and 85 < w < 115.
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7.1. Sensitivity Analysis 

Various system parameters have sensitivity to total inventory cost. While the sensi-
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Figure 9 depicts the convexity of TC2 with respect to qs while 400 < qs < 550 and w = 99.
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7. Analysis and Discussion
7.1. Sensitivity Analysis

Various system parameters have sensitivity to total inventory cost. While the sensitiv-
ity of some parameters is observed, values of other parameters are considered static, i.e.,
the same values as represented in data set #1. As listed in Table 2, the optimal solution was
obtained at the different levels of “c” with the associated observation.

Table 2. Sensitivity of ‘c’ (using data set #1 with different values of c).

c: 0.5 0.8 1 1.50 2 Observations

w* 97.88 99.36 99.87 100.56 100.91 Increase

q* 4894 4968 4993 5028 5045 Increase

qs* 301 305 307 309 310 Increase

q1* 90.35 91.72 92.18 92.82 93.14 Increase

t1
∗ 0.22589 0.2293 0.23047 0.23206 0.2328 Increase

t2
∗ 0.04106 0.02547 0.02048 0.01375 0.01035 Decrease

t3
∗ 0.13387 0.084992 0.06828 0.04583 0.0345 Decrease

t4
∗ 0.75299 0.7643 0.7682 0.7735 0.7762 Increase

t∗ 1.15292 1.10406 1.0875 1.06519 1.05395 Decrease

Setup Cost 867 905 919 938 949 Increase
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Table 2. Cont.

c: 0.5 0.8 1 1.50 2 Observations

Raw
Material

Cost
208,019 220,500 225,000 231,294 234,574 Increase

Production
Cost 212,264 225,000 229,592 236,014 239,362 Increase

Holding
Cost 519 552 565 581 590 Increase

Shortage
Cost 347 352 355 357 358 Increase

Recycle Cost 424 450 459 472 478 Increase

TC2 422,442 447,762 456,890 469,657 476,313 Increase

Cost–Benefit Analysis
In the following Tables 3–7, the cost saving of Case 2 is observed compared with that

of Case 1 considering different effects. The average cost saving and its percentage are
computed by:

Average Cost Saving = TC1−TC2=
cd

{p − (1 − c)d − f}

[
f(CR − Cr)−

w
2

Ch

]
(36)

Percentage of Cost Saving =

(
Average Cost saving

TC1
× 100

)
% (37)

Table 3. Effect of defective rate on cost saving (using data set #1, c = 1.5 while changing f).

f: 100 150 200 250 300

Percentage of Cost Saving 0.8% 1.2% 1.6% 2% 2.5%

Observation % Cost saving increases if ‘f’ increases.

Table 4. Effect of recycle cost on cost saving (using data set #1, c = 1.5 while changing r).

r: 5 10 15 20 25

Percentage of Cost Saving 0.8% 0.7% 0.6% 0.5% 0.4%

Observation % Cost saving decreases while recycle cost increases.

Table 5. Effect of holding cost on cost saving (using data set #1, c = 1.5 while changing H).

H: 10 20 30 40 50

Percentage of Cost Saving 0.79% 0.73% 0.69% 0.65% 0.61%

Observation % Cost saving decreases while holding cost increases.

Table 6. Cost saving with respect to ‘c’ (using data set #1, varying c).

c: 0.5 1 1.5 2 2.5

Percentage of Cost Saving 0.79962% 0.79773% 0.79707% 0.79673% 0.79653%

Observation % Cost saving has no effect while ‘c’ increases.
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Table 7. Effect of raw material cost on cost saving (using data set #1, c = 1.5 while changing R).

R: 50 55 60 65 70

Percentage of Cost Saving 0.797% 0.854% 0.906% 0.954% 0.997%

Observation % Cost saving increases while raw material cost increases.

7.2. Managerial Insights

• The proposed model aims to identify the ERQ, optimal lot size, cycle duration, total
inventory cost, maximum on-hand stock, and maximum backorders for inventory
management across diverse commodities.

• Inventory managers can gain valuable managerial insights through sensitivity analysis
and cost–benefit analysis. Specifically, it is crucial for inventory managers to carefully
evaluate the ERQ when considering the recycling of defective products. Striking the
right balance in recycling the appropriate number of defective items is vital to effectively
minimize overall costs. Recycling a greater or lesser number of defective units rather
than ERQ raises inventory costs. As a result, before recycling, managers should compute
the ERQ of defective products and the related EPQ. In the event of a significant increase
in raw material costs, recycling becomes advantageous for the company.

• Total inventory cost is more sensitive to increased demand during shortages than to
increased demand during production-run time.

• The cost–benefit ratio diminishes at a faster rate with rising recycling costs compared
to the impact of increased holding costs.

• During the off-season, when demand experiences an upsurge, all costs tend to rise,
while the net cost–benefit remains the same.

• If demand increases during the production-off period, stock will be depleted quickly,
and both the cycle time and the production-off time will be lowered.

8. Conclusions

In this work, inventory models for imperfect manufacturing systems with and without
recycling are compared. The inventory model for recycling is examined, with the cost of
recycling taken into account. The cases’ total inventory cost functions are strictly convex,
and the optimal solution is distinct. The proposed model corresponds to the standard
EPQ model. The proposed model’s findings will assist manufacturers in determining
the EPQ size and ERQ of a defective quantity, which will aid in recycling decisions. The
maximum amount of on-hand stock and shortages will assist them in managing storage
facilities and developing marketing policy. Recycling raises inventory holding costs while
also introducing recycling costs. However, in the event of ambiguity or obligation, it
can be a trustworthy and alternate source of raw material. Recycling damaged things
minimizes waste and is environmentally friendly. The proposed inventory model makes
basic inventory theories more accessible to young pupils. The ERQ model can be used in the
textile, glass, paper, jute, and brick industries. The developed ERQ model can be considered
an expansion of the EPQ model. The model was solved optimally, and a sensitivity analysis
was performed. The results show the impact of considering recycling of defective products
on the reduction of the inventory total cost. Accordingly, the managerial implications were
discussed. The study is limited to the deterministic model. As perspectives of this model,
different considerations can be considered, e.g., the stochastic nature of the different factors.
Many parameters are stochastic in nature; the proportion of defective items is a stochastic
parameter, and the demand parameter is stochastic also. Moreover, a fuzzy economic
production quantity can be developed based on the fuzzy concept.
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Abbreviations

p Production rate per unit time.
d Demand rate of the non-defective items during a specified period.
f Deficient item production rate.
t1 Production-run time when the inventory has positive stock.
t2 Production-off time when the inventory has positive stock.
t3 Production-off time when the inventory has negative stock.
t4 Production-run time when the inventory has negative stock.
O Setup cost per cycle.
H Item inventory holding cost.
R Item raw material cost.
r Item recycling cost.
S Item shortage cost.
K Item production cost.
TC1 Total inventory cost (Case 1).
TC2 Total inventory cost (Case 2).
c Ratio of demand rates of production-off time and production-run time.
Case 1 EPQ model with defective items for two-level piecewise constant demand that allows shortage.
Case 2 ERQ model with defective items for two-level piecewise constant demand that allows shortage.
Decision Variables:
w Number of deficient items per cycle.
q Lot size.
qs Maximum shortage.
t Production cycle time when t = t1 + t2 + t3 + t4.
q1 Maximum on-hand stock of non-defective items.
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