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Abstract: Our research focused on an optimization algorithm. Our work makes three contributions.
First, a new optimization algorithm, the Maritime Search and Rescue Algorithm (MSRA), is creatively
proposed. The algorithm not only has better optimization performance, but also has the ability to
plan the path to the best site. For other existing intelligent optimization algorithms, it has never been
found that they have both of these performances. Second, the mathematical model of the MSRA was
established, and the computer program pseudo-code was created. Third, the MSRA was verified by
experiments.

Keywords: maritime search and rescue; mutual inductance; optimization algorithm; test function

1. Introduction

Among the actual social production projects, some have a common trait: they not only
need to solve the location of the optimal point, but also need to plan the optimal route,
make the optimal decision, and so on. Examples of these projects include searching for the
location of the maximum magnetic mutual inductance in a three-dimensional magnetic
field [1] (Project 1), searching for the location of radioactive sources in three-dimensional
space [2], searching for the location of the leakage of hazardous chemicals and toxic volatile
substances [3], sea surface search and rescue [4], etc. The equipment in the optimization
project is what is explained here, such as the search and rescue helicopter [4] in the sea
search and rescue project and the handle-held detector [2] in searching for the location of
radioactive sources. To increase labor productivity, this kind of optimization project needs
the right optimization method. Numerous optimization techniques are currently in use,
including the SMA [5], the sparrow search algorithm [6], and others.

As seen in Figure 1, this was a simulation experiment in which we applied the SMA to
Project 1 on a computer. The chaotic curves in the picture are the moving paths taken by
the receiving coil. The number of individuals in the population was defined as 20 and the
number of cycles as 100. The calculation process created a total of 2020 population members,
meaning that there were a total of 2020 iterations. The error value of the computation result
was 8.33 × 10−175. The graphic shows that the route design was disorganized. There were
a total of 2020 probe position points. Every two adjacent points in time formed a section
of the route, and the total route formed many circuitous paths. The majority of intelligent
algorithms, like the SMA, are to blame for this. A population made up of dozens of
people is defined at the beginning of each algorithm, such as the Mayfly Algorithm [7], the
Butterfly Optimization Algorithm [8], the Monarch Butterfly Optimization Algorithm [9],
the sparrow search algorithm [6], the Black Widow Optimization Algorithm [10], and so on.
Each person in the population represents a random search location point. A batch of the
population is created during each iteration. The requirements can be met even though these
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intelligent algorithms frequently need to define thousands of iterations. The definition of the
population individual is a random number generated in the calculation range because these
algorithms do not take path planning into account and only take optimization calculations
into account. Therefore, projects that need to find the best points and perform route
planning cannot use the current intelligent optimization algorithms.

Figure 1. SMA trajectory route of optimization operation.

Shown in Figure 2 is the robot route map based on the path planning of the Gray
Wolf Optimization Algorithm (GWA) [11]. Each wolf is a potential solution to the problem,
according to the GWA’s guiding principle. Each wolf in the path optimization of the mobile
robot represents a different path that the robot will take as it moves, and the GWA will use
optimization calculations to select the best path from a variety of paths. The path-planning
algorithm, obviously, plans the best route between two points while also avoiding obstacles
for a given starting point and end point. The existing path-planning methods, such as the
GWA, the particle swarm optimization algorithm (PSO) [12,13], etc., are not relevant if they
do not know the end point and need to discover the optimal location point as the end point
and, also, plan the way to the best point.

Figure 2. The path planning based on the GWA.

Aiming at the problem of not only searching for the best point, but also route planning
and route movement, we propose a new algorithm: the Maritime Search and Rescue
Algorithm (MSRA).
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2. Studied System

The MSRA was inspired by marine search and rescue missions. For example, in the
event of a maritime accident, the search rescue organization is given the task, sends search
and rescue ships to the designated sea areas [LB, UB], and then, sends shipborne helicopter1,
helicopter2, and so forth, to search, as shown in Figure 3. The algorithm’s fundamental
idea is then thoroughly explained using the behavior of a single helicopter as an example.
As shown in Figure 4, the search starting point for a single helicopter’s search and rescue
operations is chosen at random within the delimited area [LB, UB]. The helicopter’s arbi-
trary starting point is indicated by the red triangle in the illustration. Formula (1) can be
used to describe this behavior:

X⃗0 = rand(UB − LB) + LB (1)

where X⃗0 is the starting position vector, UB is the upper boundary, LB is the lower bound-
ary, and “rand” is the random number between (0, 1). [LB, UB] is the definition area.
For Project 1, [UB, LB] is the value range of the XYZ coordinates in the magnetic field space
to be searched. For the Ackley test function (see Figure 5), the value range of XY is [−5, +5].

Figure 3. Scenario diagram of maritime search rescue [14].

Figure 4. MSRA trajectory to find the optimal value (Sphere function).
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Figure 5. The figures of four test functions.

Linearly scan the sea surface in the specified X direction (or Y direction) starting from
the starting point. Formula (2) can be used to describe this behavior:

X⃗t+1 = X⃗t + Y⃗sep + direction ∗ Xstep (2)

where X⃗t is the position of the helicopter at time “t” from X⃗0; X⃗t+1 is the position update;
Y⃗sep is the line spacing between each line of scanning; “direction” is the search direction;
“Xstep” is the search step; these parameters above can be expressed by Formulas (3)–(5):

direction = (−1)i (3)

Xstep =
UB − LB

step
(4)

Y⃗sep =
UB − LB

rows
(5)

where “i” is the scanning order (0, 1, 2, 3 . . . ). It scans in the positive direction at the
start of i = 0. Return to scanning with i = 1 once you have reached the upper boundary.
When scanning in the positive direction, “i” is even, and when scanning in the negative
direction, it is odd; this cycle is followed. “Step” refers to the quantity of visits made while
scanning in a positive (or negative) direction and can be interpreted as an integer of the
form of 50, 100, 1000, etc. The term “rows” refers to the total number of scanning lines
that are anticipated during the entire defined interval and can be represented as an integer
such as 5, 6, 7, etc. The distance between planned scanning lines in maritime search and
rescue should be as short as possible when encountering complex water conditions and
low visibility, which increases the number of scanning lines. The two parameters “step”
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and “rows” control the sensitivity and error of the MSRA. The sensitivity increases with
the value, and this has an impact on the MSRA’s computation time as well.

After finishing the x-direction scanning, the aircraft repeatedly scans the suspected
area in the y direction. Formula (6) can be used to describe this behavior.

Y⃗t+1 = Y⃗t + X⃗best f itness + direction ∗ Ystep (6)

where “direction” and “Ystep” have the same significance as their equivalent counterparts
in the x-direction scanning. This is not stated again here. X⃗best f itness represents the position
corresponding to the optimal fitness determined in the previous X-direction scanning.
For the minimum problem, the position vector corresponding to the minimum value was
obtained. For the maximum problem, the position vector corresponding to the maximum
value was discovered.

After completing the previously mentioned all-around rough scanning, the search
region was shrunk to concentrate on the ideal suspicious place. With the exception of the
smaller search region, the scanning process was the same as the rough scanning method
described above. The mathematical Equations (7)–(9) can be used to describe this behavior.

Onew = Y⃗best f itness (7)

UBnew = Onew +
UB − LB

2max[5, 8 ∗ (t − 2)]
(8)

LBnew = Onew − UB − LB
2max[5, 8 ∗ (t − 2)]

(9)

where [UBnew, LBnew] is a newly defined narrowing boundary that is allocated to [UB, LB],
after which the x-direction and y-direction scanning described above is repeated. “t”
is the sequence number of this repetition. It is clear from the formula that the convergence
speed of the MSRA is governed by max(5, 8 * (t − 2)) and that this speed has an impact on
the calculation inaccuracy of the MSRA. To decrease the convergence speed and increase
the calculation accuracy for complicated calculation targets, the convergence parameters
can be appropriately changed.

In order to facilitate computer programming, we wrote the pseudo-code of the MSRA.
In Algorithm 1, line 2 defines several necessary parameters. These parameters were

explained in detail in the previous mathematical derivation.

Line 3 writes Formula (1) as a computer program;
Line 4 sets a loop body. The number of loops is determined by MSRALoop.
Line 5 writes Formula (2) as a computer program.
In line 6, the coordinate points scanned in the X direction are substituted into the test
function to calculate and take the optimal value. For Project 1, this step is to collect the
mutual inductance data scanned in the X direction and obtain the optimal value.
In line 7, the Y coordinate corresponding to the best fitness is assigned to Yt as the initial
value of the Y-direction scan.
Line 8 writes Formula (6) as a computer program.
In line 9, the coordinate points scanned in the Y direction are substituted into the test
function to calculate and take the optimal value. For Project 1, this step collects the mutual
inductance data scanned in the Y direction and obtains the optimal value.
Line 10 writes Formulas (7)–(9) as a computer program.
In line 11, judge whether the loop calculation is completed or not.
In line 12, take the optimal value and the corresponding XY coordinates.
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Algorithm 1 The pseudo-code of the MSRA.

1 Begin
2 Define the parameters: UB, LB, step, rows, Ysep, Ystep, Mter
3 Initialize the random position of search and rescue aircraft: X0.
4 While t in [1, MSRALoop] {
5 For i in range (0, step):{X⃗t+1 = X⃗t + Y⃗sep + direction ∗ Xstep } End for
6 Calculate the fitness of all X⃗t, and then, obtain the best fitness of X⃗
7 Assign the Y coordinate corresponding to the best fitness to Yt
8 For i in range (0, step):{ Y⃗t+1 = Y⃗t + X⃗bestFitness + direction ∗ Ystep } End for
9 Calculate the fitness of all Y⃗t, and then, obtain the best fitness of Y⃗
10 Calculate the new UB, LB, and then, update UB, LB
11 t = t + 1} End While
12 Return bestFitness and the corresponding XY coordinates
13 End

3. Performance of the Optimization Algorithm

To verify the effectiveness of the MSRA, this study introduced several promising opti-
mization algorithm test functions. Ackley, Sphere, Schaffer, Schwefe [15], etc., were some
of the test functions used for verification. The following is an introduction to the functions.

3.1. Ackley Function

The Ackley function comes first. Its two-dimensional shape is characterized by an
almost flat outer region, as shown in Figure 5a. The variables’ range of limitations is [−5, 5].
Many valleys or peaks modulated by cosine waves are superimposed in this nearly flat area,
creating an uneven surface and a sizable hole in the center. For optimization algorithms,
especially hill-climbing algorithms, this function poses the risk of becoming stuck in one of
its numerous local minima. Formula (10) provides the formulation for this function [15].

f1(x) = −20exp(−0.2

√√√√ 1
D

D

∑
i=1

(x2
i ))− exp(

1
D

D

∑
i=1

(cos(2πxi))) + 20 + exp(1) (10)

3.2. Sphere Function

The second is the Sphere function. It is a unimodal function with minimization as
its goal and is used to check the algorithms. As shown in Figure 5b, this function’s two-
dimensional variable value range is [−10, 10], its global minimum value is 0, located
at (0, 0), and its formulation is Formula (11) [15].

f2(x) =
n

∑
i=1

x2
i (11)

3.3. Schwefe Function

The Schwefe function has many local small peaks and valleys, and the image of its two-
dimensional variable is like a large series of rolling mountains, as shown in Figure 5c. This
function’s variable value range is [−500, 500]. The global minimum value of the function is
0, located at coordinates (420.9687, 420.9687), and the global maximum value is 1675.9316,
which can be found at (−420.9687, −420.9687). Its formulation is Formula (12) [15].

f3(x) = 418.9829d −
d

∑
i=1

xi sin(
√
|xi|) (12)

3.4. Schaffer Function

The Schaffer function is often used to test the performance of optimization algorithms.
The function exhibits strong fluctuations and numerous extreme points. The global maxi-
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mum value is 1, located at (0, 0), and there are local extreme values surrounded by infinite
circles at the periphery of the global optimum. The two-dimensional variable value range
of this function is [−7.5, 7.5], and the image is shown in Figure 5d. Its formulation is
Formula (13) [15]:

f4(x) = 0.5 −

[
sin

(√
x2

1 + x2
2

)]2
− 0.5[

1 + 0.001 × (x2
1 + x2

2)
]2 (13)

In addition, there are many optimization algorithm test functions, such as the Griewank
function [16], the Rastrigin function, the Levy function, the Langermann function, and so
on, that are common functions and datasets used for testing optimization algorithms [17],
which were not described in detail here because of space constraints.

3.5. Performance Comparison between MSRA and Two Other Algorithms

To verify the effectiveness of the MSRA, this study introduced several promising
optimization algorithm test functions above and compared the test results with the classical
Genetic Algorithm (GA) [18] and the SMA.

In the 1970s, the GA was first advocated by John Holland in the United States of
America [19]. The algorithm was created and put forth in accordance with the natural
rules of evolution that apply to creatures. It is a computer simulation of the biological
evolution process that replicates the genetic and natural selection mechanisms described in
Darwin’s theory of biological evolution [20]. This technique mimics the natural evolution
process in order to find the best answer. The method changes the process of problem-
solving into one that is analogous to the crossing and mutation of chromosomes and genes
in biological evolution through mathematics and computer simulation [19]. When com-
pared to other traditional optimization techniques, it typically produces better optimization
outcomes more quickly when handling complex combinatorial optimization issues. The
GA has been made extensive use of in combinatorial optimization, machine learning, signal
processing, adaptive control, and artificial life [21].

The SMA was proposed by Li et al. in 2020 [5]. It was inspired by the diffusion
and foraging behavior of slime molds. The SMA mainly simulates the behavior and
morphological changes of slime molds during the foraging process without modeling
the complete life cycle. The weight index was used to simulate the three correlations
between the morphological changes of the myxomycete venous duct and the contraction
mode. The algorithm is a meta-heuristic algorithm, which has the characteristics of fast
convergence and strong optimization ability.

To unify the assumptions, the number of iterations was defined as one operation
by substituting independent variables into the objective function each time, which was
counted as one iteration.

The following describes the performance comparison analysis of the MSRA, SMA,
and GA applied to the four aforementioned test functions.

For the three algorithms, the maximum number of iterations was set to 5000. For the
three functions, Ackley, Sphere, and Schwefe, the three algorithms all performed the
operation of finding the minimum value. For the Schaffer function, the three algorithms
all performed the operation of finding the maximum value. After calculation, the iterative
curves are shown in Figure 6, and the error values of the calculation results are shown in
Table 1. Among them, Figure 6d shows finding the maximum value and Figure 6a–c all
show finding the minimum value.
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Figure 6. The iteration curves of three algorithms applying the four test functions.

Table 1. The 5000 iterations’ error table—4 functions.

Test Function Ackley Sphere Schaffer Schwefe

Iteration 5000 5000 5000 5000

MSRA Error 3.55 × 10−15 2.59 × 10−31 6.49 × 10−15 2.55 × 10−5

SMA Error 2.31 × 10−86 2.39 × 10−176 4.19 × 10−2 118.44
GA Error 8.71 × 10−2 1.45 × 10−1 1.34 4.343

Analyzing the iteration curves and error table, it was found that the SMA had the
fastest convergence rate, followed by the GA and MSRA. For Ackley and Sphere, the two
test functions, the three algorithms all showed better optimization performance. The SMA
had the lowest error value and the highest accuracy, followed by the MSRA. Also, the
MSRA had an error value of 10 × 10−15, which is suitable for most applications. However,
the GA had the largest error value, reaching a level of 10 × 10−2, which makes it difficult
to meet most applications. For relatively complex function, such as Schaffer and Schwefe,
the MSRA still showed excellent optimization performance; the SMA and GA performed
much worse, and it was estimated that both algorithms fell into local extremes in such a
complex test function.

In the classic GA, the natural selection in the calculation process is the roulette method,
that is individuals with high fitness have a high probability of being selected, inheriting
their genes and phenotypes, and individuals with low fitness are easily eliminated. Due to
the random roulette method, the individuals with the best fitness may also be eliminated,
resulting in different results obtained from multiple runs of the classical GA, which are
only close to the optimal solution, which is a limitation of the classical GA.

Try to increase the three algorithms’ iteration times to 20,000. The adjusting procedure
is as follows: for the MSRA, the number of scanning lines and visitation density were
increased for the functions with many local extrema, and the number of cyclic opera-
tions correspondingly decreased. For functions similar to the Sphere function, the MSRA
decreased the number of scanning lines while correspondingly increasing the visitation
density and cyclic operations. For the SMA and GA, for functions with many local extrema,
the number of populations can be raised and the number of cyclic operations can be corre-
spondingly lowered for functions with several local extrema. The number of populations
can be decreased and the number of cyclic operations can be correspondingly raised for
similar functions like the Sphere function. The three algorithms were also applied to the
four aforementioned test functions after the iteration times were determined. In Table 2,
the operational outcomes are displayed.
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Table 2. The 20,000 iterations’ error table—4 functions.

Test Function Ackley Sphere Schaffer Schwefe

Iteration 20,000 20,000 20,000 20,000

MSRA Error 3.55 × 10−15 4.40 × 10−39 0 3.32 × 10−5

SMA Error 0 0 9.73 × 10−3 4.12 × 10−5

GA Error 6.30 × 10−2 3.43 × 10−2 9.72 × 10−3 2.90 × 10−1

According to the analysis of the data in Table 2, for functions similar to spherical,
conical, or disk terrain, such as the Ackley and Sphere functions, on the premise that
the number of iterations was controlled at 20,000, it can be seen that the performance of
the SMA was slightly better than the MSRA, while the GA was the worst; for mountain-
shaped functions, such as the Schaffer and Schwefe functions, the MSRA had the best
performance, and the SMA’s estimation fell into local extreme points, while the GA had the
worst performance.

By comparing and analyzing the data in Tables 2 and 3, regardless of the number of
iterations, the performance of the GA was the worst among the three algorithms. For func-
tions with a simple shape, when the number of iterations was 5000, the performance of
the SMA was obviously better than the MSRA, but when the number of iterations was
increased to 20,000, the performance of the SMA and MSRA was very similar. For functions
with complex shapes, regardless of the number of iterations, the performance of the MSRA
was obviously better than the SMA.

Table 3. Error and optimization target point location—Schwefe function.

Running
Sequence 1st 2nd 3rd

Iteration 10,000 10,000 10,000

Error Location Error Location Error Location

MSRA 3.64 × 10−12 (−420.9688,
−420.9688) 5.06 × 10−8 (−420.9692,

−420.9692) 9.40 × 10−8 (−420.9680,
−420.9692)

SMA 368 (−453.7, 500) 392.6 (−432.5,
−241.1) 137.7 (−409.3, 306.9)

The following focuses on the performance of the MSRA and SMA on complex test func-
tions.

In order to more clearly see the performance of the MSRA and SMA applied to
complex test functions (such as the Schwefe function), through computer programming,
for the MSRA, it is marked on the contour map of the test function during the calculation
process, which included the aircraft’s exploration point, the search and rescue starting point
“>”, and the optimal fitness position point “X”. Simultaneously, according to the search
sequence, these points are connected with line segments that represent the flight route of
the search and rescue aircraft, as shown in Figure 7. For the SMA, the starting point “>”,
search location point, and optimal fitness position “X” of the slime mold in the operation
process are marked on the contour map of the test function and connected by line segments
according to the order of search. For the MSRA, the contour map of the test function can
actually be considered as the search and rescue sea surface in the specified area, and the
highest point or the lowest point is the target point of the search and rescue. For the SMA,
the contour map of the test function can be considered as the area where the slime mold
forages in the specified area, and the highest or lowest point is the location where the food
abundance is optimal. For the Schwefe function, in order to clearly see that the number of
iterations of the iterative optimization trajectory cannot be set too large, both the MSRA
and SMA only set the number of iterations to 10,000 times, all of which were operations
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to obtain the maximum value, which were run three times, respectively. The statistics of
the optimal position and error value are shown in Table 3; Figure 7 is the optimization
calculation trajectory of the two algorithms.

Figure 7. MSRA and SMA search track (Schwefe function).

Table 3’s data analysis reveals that the MSRA consistently calculated the optimal
position with a very low error value. In contrast, for the SMA, the optimal location points
obtained by each operation were very different and tended to randomly fall into the local
extreme points. As a result of the optimization operation, the fitness position “X” in the
trajectory diagram for the MSRA is right, and the SMA’s fitness position is wrong.

The MSRA trajectory is evident from an analysis of the trajectory diagram, and as a
result, it is suitable for engineering projects like maritime search and rescue, locating the
maximum magnetic induction strength in a three-dimensional magnetic field, locating the
source of an electromagnetic wave in three dimensions, and other tasks that require actual
mobile optimization equipment. On the other hand, the SMA’s trajectory is chaotic, erratic,
and disorderly. The SMA is unsuitable for engineering tasks requiring genuine mobile
optimization equipment. It only functions when an objective function is being optimized
on a computer.

The Schaffer function’s maximum value is located on a small cusp in the middle.
Try increasing MSRA’s scanning line density and visiting point density, increasing SMA’s
population number and cycle operation times, and setting both algorithms’ iterations to
100,000. The two algorithms were applied to the Schaffer function, and each algorithm was
then run ten times. The trajectory diagram for one of the operations is shown in Figure 8.
For the SMA, only the iterative position points are shown on the diagram because the
trajectory diagram is a chaotic line segment and useless. It is obvious that, as a result of the
optimization operation, for the fitness position “X” in the trajectory diagram, the MSRA’s
fitness position is right, and the SMA’s fitness position is wrong. The error value and
optimization target point position for the operation outcome are shown in Table 4. The data
in the table were retained only three times.

Table 4. Error and optimization target point location—Schaffer function.

Running Sequence 1st 2nd 3rd

Iteration 100,000 100,000 100,000

Error Location Error Location Error Location

MSRA 0 (−1.2129 × 10−14,
1.2129 × 10−14) 0 (−1.21291 × 10−14,

1.21291 × 10−14) 0 (−1.1852 × 10−14,
1.2129 × 10−14)

SMA 9.717 × 10−3 (3.13559095
0.11067923) 9.716 × 10−3 (2.31053014,

−2.12505417) 9.721 × 10−3 (−2.20396153,
2.23757538)
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Figure 8. MSRA and SMA search track—Schaffer function.

The values in Table 4 show that the MSRA was applied to the Schaffer function to
find the maximum value, and the error value of the operation result was 0. Such excellent
results can be obtained after many operations. However, the SMA still randomly fell into
the local extreme points, as confirmed by its iterative trajectory and the calculated best
position coordinate value, and the calculation result error was relatively large.

For the complex function optimization problem, the SMA will arbitrarily land in the
local extreme value.s Investigate the cause. According to the SMA principle, the slime mold
population is globally distributed at random at the beginning of the first cycle. At this point,
it is inevitable that some areas would have much slime mold while other areas would be
empty. The portrayal of its repetitive journey lends credence to this. Beginning with the
second series of procedures, the search region is then swiftly constrained around the best
point identified during the previous search. Reaching local extreme points for functions as
complex as the Schwefe and Schaffer functions is made simple by this algorithmic concept.
Likewise, any algorithm that utilizes the idea of a random population distribution, such as
the sparrow search algorithm [6], has these shortcomings by default.

The MSRA principle is that the exploration points are uniformly distributed globally
during the first cycle operation; then, starting with the second cycle operation, the search
range is reduced at a certain convergence speed to improve the output accuracy; for
problem optimization calculations, unlike swarm intelligence optimization algorithms like
the SMA, which use the principle of a randomly distributed population, the MSRA does
not have this limitation. According to this principle, the MSRA can be used to solve the
majority of optimization calculation issues.

Another notable benefit of the MSRA is that it can use a straightforward search route
trajectory to find the ideal position point for functions like the Sphere function, which are
similar to spherical or conical surfaces, but lack local extrema. According to Figure 4, which
uses the Sphere function as an example, “>” represents the search’s randomly chosen
starting point; the black line denotes the search route’s trajectory, and “X” denotes the
best fitness position that was looked for. Three scanning lines, one column, one thousand
visits per line, five cyclic operations, and twenty thousand iterations make up the MSRA’s
parameter settings. The error value of the calculation result was 2.87 × 10−26. The figure
shows how the MSRA can accomplish such accuracy with such a straightforward and
unambiguous track route.

In addition, we also tested and compared all the other test functions mentioned in
Reference [17], a total of 47, and came to the same conclusion as above, which were not
described in detail here because of space constraints.

The research mentioned above makes it clear that the MSRA performs optimization
operations well and that its optimization process is simple and structured. It is expected
that the MSRA will have a bright future in terms of applications.
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4. Experiment

The wireless power transfer automatic alignment device for electric vehicles (WPT-
AAD) experimental benchmark can be used to test the performance of the MSRA. The ex-
perimental benchmark in this study was the same as that used in Reference [1]. As shown
in Figure 9, the WPT-AAD’s automatic alignment control technology is based on finding
the position with the largest mutual inductance coefficient and simultaneously planning
the route to move the transmitting coil L1 to this optimal position (Project 1). Figure 9’s
notes are list in Table 5.

Figure 9. Photos of the WTP-ADD experimental platform [1].

Table 5. Figure 9’s notes.

1 Y-axis screw-rod-1 C1 Resonant capacitance at the
transmitter

2 X-axis screw-rod C2 Resonant capacitance at the receiver
3 15V DC regulated power supply DSP Digital signal processing
4 Gate-drive-circuit-1 L1 Transmitting coil
5 Gate-drive-circuit-2 L2 Receiving coil
6 Full-bridge inverter circuit module MCU Microcontroller unit

7 Full-bridge rectifier filter circuit in
output module RL Load resistance in the output

module

8 Output voltage current sampling
circuit X-SMD Stepper motor driver in X-axis

9 Y-axis screw-rod-2 Y-SM Stepper motor in Y-axis
10 Upper computer; Y-SMD Stepper motor driver in Y-axis

5. Result

Experiment 1: Input DC voltage Ui = 400 V to the MCR-WPT system, Distance D = 20 cm
between transmitting coil L1 and receiving coil L2, system load resistance RL = 70 Ω, entered
drive frequency f = 83.0–87.0 kHz. This experiment was completed in Reference [1]. It can
be seen that the resonant frequency of the MCR-WPT of this experimental platform was
85.3 kHz, and the corresponding maximum system efficiency was 80.41%.

Experiment 2: Carry out a mutual induction distribution experiment with a driving
frequency f = 85.3 kHz, an input voltage of 400 V, distance D = 20 cm between transmitting
coil L1 and receiving coil L2, and system load resistance RL = 70 Ω. The main purpose of
this experiment was to accurately measure the mutual inductance (M) when the relative
position of L1 and L2 changes. This experiment was also completed in Reference [1]. With
the help of the Python software, the experimental data were drawn into images, as shown
in Figure 10.

Looking up the experimental data, the maximum value of mutual induction M was
Mmax = 7.76 × 10−6 (H), and there were several positions corresponding to the maximum
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value: (−0.096, −0.0127), (−0.0960, 0.0127), (−0.041, 0.0127), (0.096, 0.0127); these positions
were all near the coordinate origin by observing Figure 10 [1].

Figure 10. (a) M distribution map and (b) contour map [1].

Experiment 3: A WPT-AAD experiment was performed with drive frequency
f = 85.3 kHz, input voltage Ui = 400 V, distance D = 20 cm between L1 and L2, and system
load resistance RL = 70 Ω. The MSRA described in this study was applied to the WPT-AAD
experiment to look for the location of the largest M. Only 600 iterations were set during the
experiment to decrease the amount of data; hence, only 600 sets of data were acquired. Due
to space constraints, only the first 8 rows of data and the last 8 rows of data are presented
in Table 6.

Table 6. Experiment 3: MSRA applied to WPT-AAD for finding the position of the maximum
mutual inductance.

X Coordinate,
m

Y Coordinate,
m

Input Voltage,
Ui, V

Input Current,
Ii, A

Output
Voltage, Uo, V

Output
Current, Io, A

WPT
Efficiency η, %

Mutual
Inductance, M,

H

−0.312 −0.139 400 7.94 405.97 5.8 74.13 6.48 × 10−6

−0.292 −0.139 400 7.94 408.53 5.84 75.07 6.65 × 10−6

−0.272 −0.139 400 7.94 410.51 5.86 75.8 6.78 × 10−6

−0.252 −0.139 400 7.95 412.22 5.89 76.37 6.89 × 10−6

−0.232 −0.139 400 7.95 413.49 5.91 76.82 6.97 × 10−6

−0.212 −0.139 400 7.93 414.05 5.91 77.18 7.04 × 10−6

−0.192 −0.139 400 7.94 414.9 5.93 77.39 7.09 × 10−6

−0.172 −0.139 400 7.94 415.11 5.93 77.51 7.11 × 10−6

There are 600 lines of data in total; the middle part has been omitted; the following is the last 10 lines of the data
−0.057 0.017 400 7.94 422.53 6.04 80.30 7.74 × 10−6

−0.057 0.018 400 7.94 422.69 6.04 80.36 7.75 × 10−6

−0.057 0.019 400 7.94 422.60 6.04 80.33 7.74 × 10−6

−0.057 0.020 400 7.94 422.54 6.04 80.31 7.74 × 10−6

−0.057 0.021 400 7.94 422.60 6.04 80.33 7.74 × 10−6

−0.057 0.022 400 7.94 422.67 6.04 80.36 7.74 × 10−6

−0.057 0.023 400 7.94 422.53 6.04 80.33 7.74 × 10−6

−0.057 0.002 400 7.94 422.81 6.04 80.41 7.76 × 10−6

Except for η and M, the data in Table 6 were obtained directly in the experiment.
The calculation method of η and M was the same as that of Reference [1].

Because Table 6 does not contain all of the data from the experiment, the XY coordinates
of all of the data were plotted on a two-dimensional curve using the Microsoft Excel
software, which can intuitively express the track route of the MSRA looking for the location
point of the maximum output power, that is the track route of the MSRA looking for the
location point of maximum mutual induction M, as shown in Figure 11.

The yellow “>” in Figure 11 represents the starting place of the MSRA search. The “X”
denotes the target location that the MSRA looks for and also serves as the search’s endpoint.
According to Table 6, the MSRA target point position is (−0.057, 0.002), the related η is
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80.41%, and the corresponding M is 7.76 × 10−6. This is the greatest value of η or M within
the prescribed interval in Experiment 2’s experimental data.

Figure 11. Track roadmap of MSRA being applied to WPT-AAD for finding the position of the
maximum M.

When Figure 11 is compared to Figure 10 from Experiment 2, it is discovered that
Figure 11 displays the location of the target point with the MSRA searching, which falls
exactly where Figure 10 has the deepest red color, indicating that M has the highest value.

The experimental results showed that the MSRA can be used to find the largest M
location and plan the route of the search process. Its route track is clean, neat, and orderly.
It can be estimated that the MSRA can be expanded and applied to engineering projects
that call for real-world mobile optimization equipment, such as maritime search and rescue,
searching for the location of radioactive sources in three-dimensional space, searching for
the location of the leakage of hazardous chemicals and toxic volatile substances, etc.

6. Conclusions

The MSRA has a significant optimization ability, based on the aforementioned study
of the three optimization algorithms and the experimental confirmation. Despite the
slower convergence speed, the MSRA can handle most optimization problems with a
modest total number of iterations, especially for complex functions like the Schwefe and
Schaffer functions. Second, the MSRA’s optimization trajectory is clear and clean, making
it suited to practical engineering optimization problems like locating the highest magnetic
induction intensity in the three-dimensional magnetic field space. Third, based on the
characteristics and complexity of the computational object, the convergence rate, visitation
density, and number of cycles of the MSRA can be simply tweaked to improve the accuracy
and application breadth. The MSRA is expected to have a wide range of applications.

Several problems remain unresolved: First, for the actual social production projects
mentioned in the previous part of the article, we applied the MSRA to Project 1 and
performed experiments to verify it. For the other three projects (searching for the location
of the leakage of hazardous chemicals and toxic volatile substances, sea surface search and
rescue), we had no conditions for the experimental verification. Second, it is necessary
to optimize the MSRA’s mathematical model and to study the mathematical models and
test analyses that the MSRA applies to higher-dimensional optimization issues. Third,
while planning the route, the MSRA does not have the function of avoiding obstacles. This
function needs to be further developed
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