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Abstract: We present an interface-splitting algorithm (ITS) for solving diagonally dominant tridiag-
onal systems in parallel. The construction of the ITS algorithm profits from bidirectional links in
modern networks, and it only needs one synchronization step to solve the system. The algorithm
trades some necessary accuracy for better parallel performance. The accuracy and the performance
of the ITS algorithm are evaluated on four different parallel machines of up to 2048 processors.
The proposed algorithm scales very well, and it is significantly faster than the algorithm used in
ScaLAPACK. The applicability of the algorithm is demonstrated in the three-dimensional simulations
of turbulent channel flow at Reynolds number 41,430.
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1. Introduction

The numerical solution process for tridiagonal systems is a crucial task in scientific
computing, such as in, for example, wavelets [1–3], spline interpolations [2], and nu-
merical simulations of partial differential equations, such as heat transfer problems [4],
convection–diffusion phenomena [5,6], and computational fluid dynamics [7,8], among
others. Traditionally, the approximation schemes used in the finite difference method
(FDM) and the finite volume method (FVM) are explicit schemes that are very easy to
parallelize by using ghost cells that are padded to the actual computing domain. These
ghost cells act as a surrogate for the true data, which are actually being solved on other pro-
cessors. However, explicit schemes often exhibit relatively poor resolving power compared
to implicit schemes. Lele [5] proposed to use compact schemes to approximate the first and
second derivatives. He shows that, in a broad spectrum problem where the fundamental
physics contains a vastly different range of length scale, a compact scheme is superior to
the explicit scheme of the same order of accuracy. For example, instead of computing the
second derivative through an explicit scheme, he suggests using compact higher-order
schemes such as

liT′′i−1 + diT′′i + riT′′i+1 = κiφi+1 + ςiφi−1, (1)

which is considerably more efficient than the explicit scheme of the same convergence
rate. The parameters li, di, ri, κi, and ςi are the approximation coefficients. These compact
schemes have far-reaching implications, serving as a foundation for diverse algorithms
in various fields. This includes applications in Navier–Stokes equations [9–11], magne-
tohydrodynamics [12], acoustics [13,14], chemical reacting flow [15], as well as emerging
discretization approaches like finite surface discretization [8,16,17] and the multi-moment
method [6].

When numerical grids sufficiently capture the underlying phenomenon, employing
high-order numerical methods can yield remarkable efficiency. Hokpunna et al. [7] demon-
strate that a compact fourth-order scheme outperforms the classical second-order finite
volume method (FVM) by a factor of 10. The efficiency improvement continues with the
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sixth-order compact finite surface method [8], which is 2.7 times more effective than the
compact fourth-order FVM. Thus, the integration of a compact scheme in physical sim-
ulations significantly accelerates scientific research. However, the equation mentioned
above needs an efficient solution method for solving diagonally dominant tridiagonal
systems in parallel. The implicit nature that enhances the approximation’s resolving power
introduces a directional dependency (in this case, i). The simplest problem configuration
is illustrated in Figure 1. Efficient parallelization of the solution process in this context is
not straightforward.

Applications in the previously mentioned areas often necessitate transient solutions
with an extensive number of grid points. This scale is still challenging today even for
massively parallel computer systems. For instance, isotropic turbulence simulations con-
ducted on the Earth Simulator to explore turbulent flow physics involved up to 68 billion
grid points [18–20]. Applying a compact scheme to this case involves solving tridiag-
onal systems with a system size of 4096 and a substantial number of right-hand sides
(rhs), amounting to 40962. Similarly, in wall-bounded flows, Lee and Moser [21] utilized
121 billion grid points for solving one problem. The computational power required for
these problems far surpasses the capabilities of shared memory computers and requires
distributed memory computers for the simulation. Despite the remarkable scale of these
simulations, the Reynolds numbers in these cases are still far smaller than those seen in
industrial applications. Therefore, efficient parallel algorithms for solving such systems are
in demand.
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Figure 1. Decomposition of a domain Ω = Ω1 ∪ Ω2 on a 3D Cartesian grid system (left). Each
subdomain is assigned to the corresponding processor, P1 and P2. The tridiagonal system Ax = b of
the compact approximation in z-direction (right) is split.

Let us consider a cooling down process of a metal slab that was initially heated with
the temperature distribution T(x, y, z, 0) = Θ(x, y, z) i.e., ∀(x, y, z) ∈ Ω, with the following
governing equation:

∂T
∂t
− Γ∆T = 0, (2)

where Γ is the Péclet number, and the boundary condition is homogeneous. We can evolve
the temperature in time by solving

Tn+1 = Tn + Γ
∫ tn+1

tn

(
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2

)
dt. (3)

The spatial approximation from the compact scheme (Equation (1)) can be used to
obtain the three second derivatives in this equation. The implicitness of the compact scheme
is only carried in one direction. Thus, for the above setting, we have three independent
linear systems. If an explicit time integration is used for Equation (3), each second derivative
of the Laplacian must be evaluated and then summed up to compute the time integral. The
linear system of equation (LSE) at each time step is

AX = B, (4)
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where X =
[
x1 | . . . | xNx×Ny

]
and B =

[
b1 | . . . | bNx×Ny

]
, the augmentation of the

unknown and the right-hand vectors, respectively. Each unknown vector xi is the second
derivative containing Nz members.

Let us consider a simple setting depicted in Figure 1. Here, the domain is divided and
distributed to two processors, P1 and P2. The two domains are separated at the midplane in
the k direction. It is not straightforward to find the solution to the LSE of ∂2T/∂z2 because
the right-hand sides are located on different processors. In this setting, the linear system
for ∂2T/∂x2 and ∂2T/∂y2 can be solved without any problem because the needed data are
located within the processor. It should be clear that, in a large scaled simulation, there will
be multiple cuts in all three directions. The missing dependency across the interfaces has to
be fulfilled by some means.

It is clear that the approximation in each tuple (i, j) normal to the xy-plane is inde-
pendent of one another, and one can transfer half of the missing data to one processor,
solve the systems, and then transfer the solution back to it. This approach is called the
transpose algorithm [22]. This algorithm achieves the minimum number of floating point
operations, but it has to relocate a lot of data. The minimum data transfer of this algorithm
is NxNyNz. This approach is therefore not suitable for massively parallel computers in
which the floating point operations are much faster than the intercommunication. Another
approach that achieves the minimum number of floating point operations and also the
minimum amount of data transfer is the pipelined algorithm [23]. In this approach, the tuples
are solved successively after the dependency is satisfied. For example, the processor p1 can
start the forward elimination first on the (1, 1) tuple until the mth row and then send the
result to p2. Once p2 obtains the data, it can start the forward elimination on that tuple, and
p1 can work on the forward elimination of the next tuple. The simplest pipelined algorithm
will send a real number 2NxNy times per interface. The performance of this algorithm
depends heavily on the latency and availability of the communication system.

When designing an algorithm, the designer should be aware of the disproportion
between the data transfer and computing power. Take the AMD 7763 processor as an
example: it has a memory bandwidth (BWmem) of 205 GBytes/s, while its theoretical
peak performance reaches 3580 giga floating point operations per second (GFLOPS). This
performance is based on the fused–multiplied–add operation that needs four data for
each calculation. For the processor to work at the peak rate, it would need to obtain the
data at 114,560 GB/s (for the double precision data). Let us call this the transfer rate
BWpeak. The ratio BWpeak/BWmem is about 560. This disparity requires algorithms to excel
in terms of communication efficiency. In parallel computing, things become even more
difficult regarding the interconnection between computing nodes. A dual-socket computing
node with this setting linked to other nodes by a network bandwidth BWnet = 80 GB/s
would have the ratio BWpeak/BWmem = 2200. For a GPU cluster with a recent NVIDIA
H100, the ratio of the BWpeak/BWnet is even higher at 16,320. And this unbalance keeps
growing. This disparity between the computational power and the ability to communicate
between computing units renders fine-grain parallel algorithms unsuitable for the current
massively parallel computer systems. Coarse-grained parallelism such as that in [24–29]
is thus preferable. These coarse-grained algorithms send data less frequently but in a
larger package. Lawrie and Sameh [30], Bondeli [26], and Sun [27] developed algorithms
specialized for tridiagonal systems with the diagonal dominant property. The reduced
parallel diagonal dominant algorithm (RPDD) in [27] can use p processors to solve a tridiagonal
system of n equations with γ right-hand sides using a complexity of (5n/p + 4J + 1)γ
operations (with some small number J described later). This algorithm is very efficient for
this problem.

In this paper, we present a new interface-splitting algorithm (ITS) for solving diag-
onally dominant tridiagonal linear systems with the system size of n and γ right-hand
sides on p processor. The algorithm has a complexity of (5n/p + 4J − 4)γ. The idea is to
reduce the communications, truncate the data dependency, and fully take advantage of
bi-directional communication. The proposed method makes use of exponential decay in
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the inverse of diagonally dominant matrices explained in [31]. The proposed scheme is
competitive and applicable for non-Toeplitz as well as periodic systems and non-uniform
meshes. It has less complexity than the algorithm presented in [27], requires one synchro-
nization step fewer, and the cost of the data transfer is potentially halved. Therefore, the
proposed algorithm is less sensitive to load balancing and network congestion problems.

The presentation of this paper is organized as follows. First, we present the interface-
splitting algorithm and then discuss its complexity and accuracy. The accuracy and the
performance of the algorithm are evaluated on four specialized systems, starting with
a single-node Intel Xeon 8168, and then SGI ALTIX 4700, IBM BladeCenter HS21XM,
and NEC HPC 144Rb-1. The performance of the proposed algorithm is compared with
the ScaLAPACK and the RPDD algorithms. After that, the application to Navier–Stokes
equations is presented, followed by the conclusion and remarks.

2. Interface-Splitting Algorithm
2.1. Concept

The decomposition of the domain on different processors led to the problem mentioned
earlier in Figure 1. The second processor cannot start the forward elimination because the
interface value (xm) is not known. However, if they have already computed the central row
of C = A−1, then they can both compute

xm =
2m

∑
j=1

cmjbj =
m

∑
j=1

cmjbj

from processor 1

+
2m

∑
j=m+1

cmjbj

from processor 2

after exchanging a single real number. In this way, both processors can continue to solve
their systems without further communication. It is well known that the inverse of the
diagonally dominant tridiagonal matrix decays away from the diagonal, both row and
column. The minimum decay rate of non-symmetric matrices has been developed in [32]
and [31]. Thus, the interface value can be computed from the row inverse of a smaller
matrix, e.g.,

A =




dm−1 rm−1

lm dm rm

ine lm+1 dm+1 rm+1

lm+2 dm+2


, (5)

by computing

xm ≈
m+2

∑
j=m−1

(A−1)mjbj =
m

∑
j=m−1

(A−1)mjbj

from processor 1

+
m+2

∑
j=m+1

(A−1)mjbj

from processor 2

.

This truncation introduces an error into the solution. However, in the system that
originated from a simulation-based problem, there is a certain level of accuracy in how
that particular system represents the true value. For example, the compact scheme in
Equation (1) differs from the true second derivative by the size of the local truncation error
(LTE). Any errors that are much smaller than LTE will not be observable. For example,
in most approximations of the compact scheme above, the LTE should be larger than
1 × 10−10. When such system is solved by a direct method under double precision, the
error due to the solution process should be on the order of 1 × 10−14. Using quadruple
precision can reduce the solution error to about 1× 10−32, and the error of the differentiation
would still be 1 × 10−10.

In the next step, we explain the algorithm in detail, including the strategy for reducing
the number of operations and controlling the truncation errors.



Computation 2023, 11, 187 5 of 24

2.2. The Parallel Interface-Splitting Algorithm

For simplicity of notation, let us consider a tridiagonal system of size n with a single
right-hand side,

Ax = b, (6)

where A is a strictly diagonal dominant matrix, A = [li, di, ri], |di| > |li|+ |ri|, and l1 = rn = 0.
In order to solve this system in parallel, one can decompose the matrix using A = TQ and
solve the original system in two steps:

Tv = b, (7)

Qx = v. (8)

The first equation computes the solution at the interface using the coefficients stored
locally. This factorization can be considered as a preprocessing scheme where the right-
hand side is modified such that the solution of the simpler block matrices delivers the
desired result. The partitioning algorithm [24] and the parallel line solver [33] belong to
this type.

Suppose that A is a tridiagonal matrix of size n = pm, where p is the number of
processors and m is the size of our subsystems. The kth processor is holding the right-hand
side bk = bj, (k− 1)m + 1 ≤ j ≤ km. Here, it is sufficient to consider one right-hand side.
The application to multiple right-hand sides is straightforward.

Let Dk be the kth block subdiagonal matrix of A, that is, Dk = { aij | (k − 1)m +

1 ≤ i, j ≤ km} and Nk is the matrix Dk, except the last row is replaced by that of the
identity matrix:

Nk =




dν+1 rν+1

lν+2 dν+2 rν+2
. . . . . . . . .

lν+m−1 dν+m−1 rν+m−1

ine 1




(9)

Instead of using the block diagonal matrix of Dk as an independent subsystem as in
the alternative algorithms, the interface-splitting algorithm builds the matrix Q up form
the special block matrix Nk:

Q =




N1

N2

. . .
Np




(10)

The neighboring subsystems (kth and (k + 1)th) are separated by the kth interface,
which is the last row of the kth subsystem. Note that if we use Dk as an independent
subsystem, the algorithm will be the transposed version of the PDD algorithm.

The algorithm corresponding to the selected decomposition is given by

ATzk = ĝkm, (11)

fk =
(

zk · b
)

ĝkm + lk
1

(
zk−1 · b

)
ĝ(k−1)m+1, (12)

vk = bk − fk, (13)

Nkxk = vk, (14)
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where ĝkm is the vector whose kmth component is one and zero otherwise. The vector zk is
given by zk

j = ckm,j, 1 ≤ j ≤ n, with C = A−1, which is the result of the decomposition. For
the system in Figure 1, we solve Equation (7) by setting

v = T−1b =




1 0 0
. . . . . . . . .

0 1 0
cm,1 · · · cm,m−1 cm,m cm,m+1 · · · cm,2m

0 1 0
. . . . . . . . .

0 1







b1
...

bm−1

bm
...
...

b2m




. (15)

This means the vector vk can be obtained by manipulating b only at the top and the
bottom elements (bk

1 and bk
m).

If we think of the vector (zk)T as the spikes similar to that in the SPIKE algorithm, our
spike can be thought of as two spikes pointing away from (km, km) horizontally, unlike the
spikes of the RPDD and SPIKE algorithms, which are column spikes (vertical).

2.3. Cost Savings

The key to the efficiency of the proposed algorithm is based on the decay of the matrix
C. By exploiting this decay, we truncate scalar product zk · b to 2J terms. This truncation
introduces an approximation to x̃k

m, which is then transferred to fk and propagates to the
solutions in the inner domain. Letting ek = fk − f̃k, the kth subsystem of A then takes the
following form:

Nkxk = bk − f̃k − ek. (16)

The components of the vector fk are zero except for the first and the last components,
which are given by f k

1 = lk−1
m x̃k−1

m and f k
m = −x̃k

m + bk
m. The vector ek represents the errors

in the solution due to the approximation at the top. It should be kept in mind that the
elements of ek are non-zero only in the first and the last components. The interface-splitting
algorithm neglects the error term ek and solves the following system:

Nk x̃k = ṽk = bk − f̃k. (17)

As mentioned earlier, it is not necessary to find the actual inverse of the matrix. It
is sufficient to compute zk from ATzk = ĝk

km. This way, the inversion of the matrix A is
avoided. A further savings can be achieved by reducing the matrix A to a submatrix A,
enclosing the interface.

To summarize, the ITS algorithm consists of seven steps described in the following
algorithm.

The Algorithm

Letting J and L be some small positive integers, then the interface splitting algorithm
is defined as follows (Algorithm 1):



Computation 2023, 11, 187 7 of 24

Algorithm 1 The interface splitting algorithm.

1: On pk (1 ≤ k ≤ p), allocate Nk, bk, xk and lk
1.

2: On pk (k ≤ (p− 1)),
1. allocate submatrix A = aij, (km− J − 2L + 1) ≤ i, j ≤ (km + J + 2L),

where aij = A;
2. allocate ĝ′ = ĝkm,i, (km− J − 2L + 1) ≤ i ≤ (km + J + 2L),

where ĝkm,i is the ith element of ĝkm;
3. solveAz′k = ĝ′ (Equation (11));
4. allocate sk = z′kj , (km− J + 1) ≤ j ≤ km;

5. allocate u = z′kj , (km + 1) ≤ j ≤ (km + J) and send it to pk+1.

3: On pk (2 ≤ k),
1. receive u from pk−1 and store it in tk.

4: Compute parts of the solution at the interface.
1. On pk (k ≤ (p− 1)), ak

b = sk · bk
b;

2. On pk (2 ≤ k), ak
t = tk · bk

t ,

where bk
t and bk

b are the first and the last J elements of bk, respectively.
5: Communicate the results.

1. On pk (k ≤ (p− 1)), send ak
b to pk+1 and receive ak+1

t from it.
2. On pk (2 ≤ k), send ak

t to pk−1 and receive ak−1
b from it.

6: Modify the rhs.

1. On pk (k ≤ (p− 1)), ṽk
m = ak

b + ak+1
t ;

2. On pk (2 ≤ k), ṽk
1 = bk

1 − (ak
t + ak−1

b )lk
1.

Note: ṽm is stored in place of bk.
7: On pk 1 ≤ k ≤ p, solve Nkxk = ṽk (Equation (14)).

In this algorithm, J is the number of terms that we chose to truncate the scalar product.
The interface-splitting algorithm is equivalent to the direct method up to the machine’s accuracy (ε)
if zk decays below ε within this truncation length, i.e., zk

i < ε for |i− km| > J.
Supposing the J was chosen and the omitted terms in the scalar product are not larger

than εc, then we do not need to compute zk to full precision. In order to maintain the
accuracy of the smallest terms retained for the scalar product, we need to solve a larger
system containing the (km)th row. In the second step, we chose A, whose dimension
is 2(J + L), with L < J. The choice of L and its effects on the accuracy of z′k will be
explained later.

One of the most important features of the ITS algorithm (Algorithm 1) lies in step 4.
Instead of using one-way communication in two sequential steps as in the RPDD algorithm,
the ITS algorithm communicates in only one step. The communications with the two
nearest neighbors are allowed to overlap. Therefore, the cost of the communication can be
reduced by up to 50% with the ITS algorithm, depending on the actual capability of the
interconnection link and the network topology.

The error of the interface-splitting algorithm consists of the approximation error of
xk

m and the propagation of this error into the solutions in the inner domain. The factors
determining the accuracy of this approximation are: (i) the row diagonal dominance factor
σi = |di|/(|li|+ |ri|) and (ii) the matrix bandwidth 2J used to compute x̃k

m. The complexity
and the effect of σ on L and J are described in the next section.

2.4. Comparison to Other Approaches

Our approach exploits the decay of the LU decomposition of the system. This prop-
erty has been exploited many times already in the literature. The low complexity of the
RPDD algorithm is achieved by the same means, apart from RPDD [27] and the truncated
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SPIKE [32], in which the amount of data transfer is optimal. McNally, Garey, and Shaw [34]
developed a communication-less algorithm. In this approach, each processor pk holding
the subsystem xk solves a larger system enveloping this subsystem. This new system has
to be large enough such that the errors propagated into the desired solution xk due to the
truncation of the system can be neglected. It can be shown that, for the same level of accu-
racy, this approach requires J times more data transfer than the proposed algorithm. This
high communication overhead and the increase in the subsystem size make this algorithm
non-competitive for multiple-rhs problems. A similar concept has been applied to compact
finite differences by Sengupta, Dipankar, and Rao in [35]. However, their algorithm requires
a symmetrization that doubles the number of floating point operations. It should be noted
that the current truncated SPIKE implementation utilizes bidirectional communication as
well. However, this improvement is not made public. It will be shown later that such a
simple interchange to the communication pattern can greatly improve the performance
of parallel algorithms. There are a number of algorithms using biased stencils that mimic
the spectral transfer of the inner domain [36–38]. In this approach, the user has no control
over the error of the parallel algorithm. Even though the local truncation error of the
approximation at the boundary is matched with that of the inner scheme, the discrepancies
in spectral transfer can lead to a notable error at the interface in under-resolved simulations.

3. Complexity, Speedup, and Scalability

The complexity of the interface-splitting algorithm depends on two parameters, the
one-digit decay length L and the half-matrix bandwidth J. These numbers are deter-
mined by the cut-off threshold εc and the degree of diagonal dominance of the system
(σ = min{σi}). For Toeplitz systems T = [1, λ, 1], the entries of the matrices in the LU-
decomposition of this system converge to certain values, and the half-matrix bandwidth J
can be estimated from them. Bondeli [39] deduces this convergence and estimates J with
respect to the cut-off threshold εc by

J = − ln εc

ln
(

1
2

(
|λ|+

√
(λ2 − 4)

)) . (18)

For example, J equals 7 and 27 for εc = 10−4 and 10−15 when λ = 4 (σ = 2), which cor-
responds to the fourth-order compact differentiation [5] and the cubic spline interpolation.
These two numbers are much smaller than the usual size of the subsystem used in scientific
computing. Effects of diagonal dominance on J are shown in Figure 2. The proposed algo-
rithm is thus not recommended for a very small σ. This includes the inversion of the Laplace
operator. For solving such systems, we refer the reader to the work of Bondeli [26,39], in
which he adapts his DAC algorithm for the Poisson equation. In the fourth-order compact
schemes, the diagonal dominance of the first derivative and the second derivative are 2
and 5, respectively. In sixth-order compact schemes, the values are 1.5 and 2.75, respectively.
Therefore, the proposed scheme is well-suited for these approximations. On the contrary,
if the system is not diagonally dominant, J will decay linearly to zero at half the size of the
global system e.g., pm/2. In such a system, the proposed algorithm will perform poorly. It
will be beneficial to combine the ITS and RPDD algorithms in this situation. Using ITS as
the pre-processor will reduce the amount of back-correction in the RPDD. This approach
will have better cache coherence, in contrast to computing the full correction in any single
method by going from one end of the system to the other.
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Figure 2. Effects of diagonal dominance on J from Equation (18). The algorithm has a relatively
small J for σ > 1.2 before the effects of the singularity come in.

3.1. Complexity

The interface-splitting algorithm is an approximate method, but it can be made equiv-
alent to other direct methods by setting εc to machine accuracy. The minimum decay rate
of non-symmetric matrices has been developed in [31,32] and can be used to approximate
J. However, the matrix bandwidth obtained in this way is usually too pessimistic for the
computation to be efficient because the minimum decay rate depends on σ, which may
not be in the vicinity of the interfaces. In multiple-rhs problems, it is worth solving the
subdiagonal matrix consisting of the two subsystems enclosing the kth interface and then
choosing J according to the desired cut-off threshold. In single-rhs problems, backward
elimination of Dk−1 and forward elimination of Dk could be an effective way to determine
the appropriate J.

In the second step of the algorithm, we have to solve a linear system for the kmth
row of the matrix C. This system has to be larger than 2J such that the truncated zk is
sufficiently accurate. In this work, we solve a system of size 2J + 2L, which ensures that the
smallest element of the truncated zk is at least correct in the first digit. Since it is unlikely
that one would be satisfied with errors larger than 10−4, we assume that L = J/4 and
use this relation to report the operation count of the ITS algorithm in Table 1. A cut-off
threshold lower than this leads to lower complexity. Thus, we assume L = J/4 reflects the
practical complexity in general applications. In this table, we also list the communication
time, which can be expressed by a simple model: τcom = α + β∆, where α is the fixed
latency, β is the transmission time per datum, and ∆ is the number of data. Note that, for
multiple-rhs problems, we neglect the cost of the first to the third step of the algorithm
because the number of rhs is considered to be much larger than m.

In Table 1, the complexity of the proposed algorithm is presented, assuming that
each processor only has knowledge of its subsystem and that they do not know the global
system. The coefficients thus have to be sent among the neighbors, leading to a higher data
transfer in single-rhs problems. Otherwise, the communication is reduced to that of the
multiple-rhs problem.
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Table 1. Computation and communication costs of the interface-splitting algorithm. The coefficients
of the system are assumed to be known only to the owner processor. For multiple-rhs problems,
the cost in the first to the third step is neglected. The symbol γ stands for the number of rhs, α is the
latency (seconds per communication) of the bandwidth, and β is the data bandwidth (operands per
second).

System Matrix Sequential
Interface-Splitting Algorithm

Computation Communication

Single-rhs
Non-periodic 8n− 7 8 n

p + 24J − 11 2α + 19βJ/4

Periodic 14n− 16 8 n
p + 24J − 11 2α + 19βJ/4

Multiple-rhs
Non-periodic (5n− 3)γ

(
5 n

p + 4J − 4
)

γ α + βγ

Periodic (7n− 1)γ
(

5 n
p + 4J − 4

)
γ α + βγ

3.2. Speedup and Scalability of the Algorithm

Using Table 1, we can estimate the absolute speedup of the ITS algorithm. The absolute
speedup here means the solution time on a single processor from the fastest sequential
algorithm divided by the time used by the ITS algorithm on p processors. In theoretical
complexity analysis, one usually assumes a constant value of communication bandwidth.
In practice, the interconnection network is not completely connected, and the computing
nodes are usually linked by less expensive topologies such as tree, fat tree, hypercube,
array, etc. The data bandwidth is thus a function of the number of processors as well as the
amount of the data being transferred. Let the communication cost be a function of p and
γ, that is β = χ(p, γ), and assume that n and γ are sufficiently large such that the latency
and 1/n can be neglected. Then, the absolute speedup of the ITS algorithm in multiple-rhs
problems is given by Equation (19) below:

Sγ(p) =
p

1 + 0.8 J
m + 0.2 ρχ(p, γ)

m

, (19)

where ρ is the peak performance of the machine. The key numbers determining the
performance of the interface-splitting algorithm are thus the ratios J/m and ρχ(p, γ)/m.
The first one is the computation overhead, and the latter is the communication overhead. If
the ratio J/m is small and χ is negligible, an excellent speedup can be expected, otherwise
the algorithm suffers a penalty. For example, the absolute efficiency will drop from 92% to
56% when J is increased from 0.1m to m on multiple right-hand side systems.

In general, one must size the subsystem appropriately such that the speedup from
load distribution justifies the increased complexity, overhead, and communication costs.
In the previous speedup equation (Equation (19)), the function χ(p, γ) is the inverse of the
data transfer rate, and the product ρχ(p, γ) is simply the ratio of the peak performance
(operation/s) to the data transfer rate (operand/s), similar to the one mentioned in the
introduction. Therefore, as long as J is smaller than 4ρχ(p, γ), the overhead of the ITS
algorithm will be less than the cost of the communication. For example, let us consider
a cluster consisting of older-generation hardware such as dual AMD EPYC 7302 nodes
connected by a 100 G network. The value of ρχ(p, γ) is 983. During the latency time alone,
which is (1 µs), the processor could have solved a compact differentiation on a 673 Cartesian
grid. We already discussed this number in modern computers, and it is much higher than
this value. Thus, the 4J overhead of the ITS algorithm is very small.

According to Equation (19), our algorithm is perfectly scalable because the speedup
does not explicitly contain the number of processors, except for the one hidden in χ.
The cost of communication per datum χ(p, γ) is determined by the latency, the data
bandwidth, and the topology of the interconnection networks among the computing nodes
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and the pattern of communication. When p and γ are large, χ can be the major cost of
the computation. Even if the exact formula for χ is not known, we can predict when the
algorithm will be scalable for the scaled problem size (fixed γ and m). Using the costs
from Table 1 and substituting χ(p, γ) for β, it is easy to see that the proposed algorithm
is scalable, i.e., (Sγ(p + 1) > Sγ(p)) when ∂χ/∂p > 0. This means that, as long as the
interconnection network is scalable, the ITS algorithm is scalable.

Note that the algorithm assumes J ≤ m; if this is not true, the program adopting this
algorithm should issue a warning or an error to the user. The user then can decide whether to
adjust the size of the subsystem or extend the scalar product by including more processors.

4. Accuracy Analysis

In the previous section, we discussed the complexity and established the half-matrix
bandwidth J for the selected cut-off threshold εc. In this section, we analyze how the cut-off
threshold propagates into the solution in the inner variables.

Solving Equation (16) for xk is equivalent to solving the (m + 1)× (m + 1) linear system

Fkuk = ωk (20)

for uk = [xk−1
m (xk)T ]T with

Fk =

(
1 0T

inewk Nk

)
, ωk = [xk−1

m bk
1 bk

2 · · · bk
m−1 xk

m]
T , and wk = [lk

1 0 · · · 0]T .

Due to the structure of Nk, it follows that

Fk =




1 0T 0
ineψk Πk ξ

ine0 0T 1


,

where ψk = [wk
1 0 · · · 0 ]T and ξk = [0 · · · 0 rk

m−1]
T . The vector 0 is a column vector of

zero. Its size should be clear from the context. The interface-splitting algorithm injects an
approximation in place of xk−1

m and xk
m, changes the rhs to ω̃k = [x̃k−1

m bk
1 · · · bk

m−1 x̃k
m]

T ,
and solves

Fkũk = ω̃k, (21)

instead of the original system. This process introduces the following error into the solution:

hk = ũk − uk.

It follows that the error in the solution vector satisfies

Fkhk = [x̃k−1
m (x̃k)T ]T − [xk−1

m (xk)T ]T , (22)

Fkhk =

(
ek−1

m
0

)
+

(
0

ek
m

)
. (23)

Equation (23) indicates that the error at the inner indices (hk
i , 1 < i < m + 1) is a sum

of the error propagated from both interfaces. In order to establish the error bound of the
ITS algorithm, we first identify the position of the maximum error.

Proposition 1. Errors of the interface-splitting algorithm for diagonally dominant tridiagonal
matrices are maximal at the interfaces.
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Proof. Since the errors of the interface-splitting algorithm hk
i in the inner domain satisfy

Equation (23), that is,
dihk

i = −lihk
i−1 − ri+1hk

i+1,

the error of the inner indices, i.e., hk
i−1, 1 < i < m, is not larger than the maximum error

introduced at the interface because
∣∣∣dihk

i

∣∣∣ ≤
∣∣∣lihk

i−1

∣∣∣+
∣∣∣rihk

i+1

∣∣∣
∣∣∣hk

i

∣∣∣ ≤ (|li|+ |ri|)
|di|

max(
∣∣∣hk

i−1

∣∣∣,
∣∣∣hk

i+1

∣∣∣)
∣∣∣hk

i

∣∣∣ ≤ |σi|max(
∣∣∣hk

i−1

∣∣∣,
∣∣∣hk

i+1

∣∣∣) < max(
∣∣∣ek−1

m

∣∣∣,
∣∣∣ek

m

∣∣∣).

In the next step, we assume that a small number εc is set as the error threshold and
was used to truncate the vector zk. A small number J is the minimum j > 0 satisfying
zk

km±j > εc. The maximum error of the proposed algorithm thus consists of two parts:
(i) the truncated terms and (ii) the round-off error in the calculation of the dot product in
Step 3. The following theorem states that the sum of these errors is bounded by a small
factor of the cut-off threshold.

Theorem 1. The maximum error of the interface-splitting algorithm emax = xm
k − x̃k

m is bounded by

emax ≤
[
(2 + L)ε + Lεc)

]
|b|∞, (24)

with the cut-off threshold εc of the coefficient vector zk, the machine accuracy ε, and the length L, in
which the magnitude of the coefficients is reduced by at least one significant digit.

Proof. First, let us assume that the rhs stored by the machine is exact, and let µk be the
error in the coefficient vector zk when it is represented by machine numbers ẑk; that is,
µk = ẑk − zk. The hat symbol denotes that the number is a machine-accurate numer-
ical value of the respective real number. Let f l(x) be the floating point operation on
x. For instance, if φ and ϕ are real numbers, then f l(φ) = φ̂. The addition obeys the
following inequalities:

| f l(φ̂ + ϕ̂)| ≤ |φ̂ + ϕ̂|+ ε ≤ |φ̂|+ |ϕ̂|+ ε. (25)

The numerical value obtained for x̂k
m by computing

(
ẑk
)T

b is thus

x̂k
m = f l

(
n

∑
j=1

(
zk

j + µk
j

)
bk

j

)
(26)

x̂k
m = f l

(
km

∑
j=1

(
zk

j + µk
j

)
bk

j

)
+ f l

(
n

∑
j=km+1

(
zk

j + µk
j

)
bk

j

)
+ δ1. (27)

For general matrices whose inverse does not decay, the error δ1 is bounded by ε
∣∣b
∣∣
∞,

and the error in Equation (27) is given by
∣∣∣x̂k

m − xk
m

∣∣∣ ≤ nε
∣∣b
∣∣
∞. Thus, the result can be

inaccurate for a very large n. However, this is not the case for the matrices considered here.
On computers, a floating point number is stored in a limited mantissa and exponent.

Adding a small number b to a very large number a will not change a if their magnitude
differs from the range of the mantissa. In other words, f l(â + b̂) = f l(â) if |b̂/â| < ε. Since
zk decays exponentially, there is a smallest number L such that

∣∣∣zk
j−L

∣∣∣ <
∣∣∣ 1

10 zk
j

∣∣∣ for j ≤ km
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and
∣∣∣zk

j+L

∣∣∣ <
∣∣∣ 1

10 zk
j

∣∣∣ for j ≥ km. Thus, let us assume that the machine accuracy ε lies in

(10−η , 10−η+1); for some natural number η, we can rewrite (27) as

x̂k
m = f l

(
km

∑
j=km−ηL+1

(
zk

j + µk
j

)
bk

j

)
+ f l

(
km+ηL

∑
j=km+1

(
zk

j + µk
j

)
bk

j

)
+ δ2, (28)

with |δ2| < ε
∣∣b
∣∣
∞, provided that

∣∣b(km−L):(km+L+1)
∣∣
∞ =

∣∣b
∣∣
∞.

Next, we consider the effects of the exponential decay of zk on the behavior of the
round-off error. Let âk

b and âk+1
t be the first and the second sum in Equation (28). Due to

the decaying of zk, the round-off errors only affect the result coming from the first L largest
terms; thus, the first sum is reduced to:

âk
t = f l

(
km−L

∑
j=km−ηL+1

zk
j bk

j +
km

∑
j=km−L+1

µk
j bk

j

)
. (29)

Since the exponential decay is bounded by a linear decay, we can conservatively
approximate the numerical error due to the second sum in Equation (29), bounded by Lε/2.
Therefore, the error ĥk

m+1 of the solution xk
m computed by the scalar product with εc < ε is

given by

∣∣ĥk
m
∣∣
∞ =

∣∣x̂k
m −

(
âk

t + âk
b

)∣∣
∞ ≤ (L + 1)ε|b|∞. (30)

We now have the error bound when the full scalar product ẑk · b was used to approxi-
mate xk

m. It is thus straightforward to show that the error of the interface-splitting algorithm
with the cut-off threshold εc is

∣∣̂̃h
k

m
∣∣
∞ =

∣∣x̃k
m − xk

m
∣∣
∞ (31)

≤
∣∣∣∣∣ĥ

k
m − f l

(
km−J

∑
j=1

zk
j bk

j

)
− f l

(
n

∑
j=km+J+1

zk
j bk

j

)∣∣∣∣∣
∞

(32)

≤
[
(L + 2)ε + Lεc)

]
|b|∞. (33)

The application of the ITS algorithm to numerical simulations does not need to be
extremely accurate. The cut-off threshold εc can be set several digits lower than the
approximation errors. The numerical errors of the algorithm would then be dwarfed by the
approximation error. Any effort to reduce the numerical error beyond this point would not
improve the final solution. In most cases, the approximation errors are much greater than
the machine’s accuracy. In such situations, the maximum error of the algorithm is bounded
by εcL|b|∞.

It should be noted that, when one applies the ITS algorithm to approximation problems,
the physical requirement of the underlying principle should be respected. For example,
if the ITS algorithm is applied to an interpolation problem, the sum of the coefficients
should be one to maintain consistency. Likewise, the sum of the differentiation coefficients
should be zero. This correction is on the order of ε and can be applied to the two smallest
(farthest) coefficients.

5. Results

In this section, we present the results of the proposed algorithm. First, the accuracy
of the algorithm is investigated using a single-rhs problem. Then, the performance is
evaluated using multiple-rhs problems on four different parallel computers. The scalability
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of the interface-splitting algorithm is compared with the ScaLAPACK package and the
RPDD algorithm. Finally, the scalabilities of the algorithm are tested on massively parallel
machines of up to 2048 processors. The algorithm is implemented in FORTRAN, and the
processors communicate via the Message Passing Interface (MPI) library. In all of the tests,
we solve the tridiagonal system by using the vectorized kernel modified from LAPACK’s
DGTSV [40]. The LU-decomposition is computed once. Intel’s compiler and the MPI library
are used with the -O3-xCORE-AVX512 optimization option.

5.1. Accuracy
5.1.1. Effects of Cut-Off Threshold

Table 2 shows the errors of the interface-splitting algorithm applied to a matrix
[li, di, ri] = [1, 4, 1] encountered in some approximation problems, such as spline inter-
polation, compact differentiation [5], and compact deconvolution [41]. In this table, we
consider the case of differentiation of f = sin(20πx) on x = [0, 1]. The unknowns are
placed at xi = ih, 0 ≤ i ≤ 251. This problem is solved using three partitions. Table 2 shows
that the bound given in Equation (24) is close to the actual error. The smallest J in the table
already produces an error smaller than the local truncation error of the differentiation. Note
that, in this test, the number of grid points per wave is 12.5, which is a very fine resolution.
The smallest J here should be adequate for most simulation-based applications because, in
practice, it is difficult to reach this resolution for all relevant scales.

If higher accuracy is needed, the bandwidth J can be extended as required. Figure 3
illustrates that the error is not sensitive to the number of unknowns or to the order of
the matrix. The errors of the algorithm are well below the bound given in Equation (24).
According to the figure, we can choose J to match the approximation errors in each problem
we are solving. It should be noted that, if the J is set too small, the convergence will be
saturated at the level close to Equation (24), as shown in Table 2, where the algorithm
produces errors about twice that of the machine accuracy, with the two largest values of J.
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Number of unknowns
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Figure 3. Effect of the order of the system on the accuracy of the interface-splitting algorithm applied
to compact differentiation of sin(20πx). The plot shows that the error from the parallelization is
approximately constant when n is changed by three orders of magnitude. The approximation error
Ea is shown for comparison.

We would like to emphasize that the bandwidth here depends only on the diagonal
dominance of the matrix in the neighborhood of the interface and the chosen cut-off
threshold εc. The number of unknowns does not have a direct influence on this number
because the condition number of diagonally dominant matrices converges very fast when
the dimension of the matrix is increased.
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Table 2. Normalized error of the interface-splitting algorithm applied the fourth-order compact
differentiation problem. The error from a different cut-off threshold (εc) is compared with the local
truncation (Ea) of the differentiation at 12.5 grid points per wave.

J εc
1
|b|∞ | f̃

′
seq− f̃ ′par|∞ Ea =

∣∣ f ′exact− f̃ ′seq

f ′exact

∣∣
∞

7 9.92 × 10−5 7.13 × 10−6

2.77 × 10−515 2.64 × 10−9 7.26 × 10−11

27 3.61 × 10−16 3.85 × 10−17

5.1.2. Non-Constant Coefficient Problem

In this section, we investigate the accuracy of the ITS algorithm on a non-constant
coefficient problem. In order to create a reproducible test, we set up the matrix using
A = [ sin(i), 2(| sin(i)|+ | cos(i)|), cos(i)] and solve a single system of order 1000 with
bi = 1 on four processors. The off-diagonal coefficients of this matrix vary relatively fast.
The signs change roughly once every three rows. The errors of the ITS algorithm with
respect to to the sequential solution are displayed in Table 3, showing that the non-constant
coefficients of the matrix do not have negative effects on the accuracy of the algorithm.

Table 3. Normalized error of the interface-splitting algorithm applied to a system with non-constant
coefficients with different truncation bandwidth J.

J 7 15 18 20 27

1
|b|∞ |xseq − xpar|∞ 1.4 × 10−5 2.1 × 10−11 4.7 × 10−14 4.4 × 10−16 4.4 × 10−16

5.2. Performance

In this subsection, we investigate the performance of the proposed algorithm on three
different parallel machines. First, we investigate the scalability of a fixed-size problem
by comparing the parallel runtime to the sequential runtime on a single processor. In the sec-
ond test, we investigate the performance of a scaled problem size. In all tests, a tridiagonal
system is solved, with the interface bandwidth J set to 9.

In the first test, we measure a fixed-size speedup on an eight-socket CPU system with
Intel Xeon 8168 processors at the Thailand National e-Science Infrastructure Consortium.
Each CPU is equipped with three Intel Ultra Path Interconnect (UPI) processors, with a
transfer bandwidth of 20.8 GB/s per link per direction. It takes at most two hops for a
package to reach the farthest CPU. The problem size in this test is set to 19,200 with 643

right-hand sides. This fixed-size speedup measures how much faster a parallel algorithm
helps shorten the solution time compared to one CPU. The result is plotted in Figure 4a.
Surprisingly, we see a superlinear speedup for np ≤ 64. After np = 64, the speedup drops
below the linear line. This superlinear speedup does not mean the parallel algorithm is
better than the sequential one. In a periodic problem, the complexity of our algorithm is
indeed lower than the direct Gaussian elimination (see Table 1). However, in this case, our
complexity is slightly higher than the sequential code. The superlinear speedup we see
here comes from increased memory bandwidth aggregation and better caching. The Xeon
processor possesses six memory channels that can transfer the data from the main memory
independently in parallel. As the number of processors is increased, the data transfer
increases. Our system is an eight-socket with six channels each. Thus, a superlinear
speedup up to np = 64 is reasonable.
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Figure 4. (a) Fixed-size speedup (Sγ) of the multiple-rhs problem on an eight-socket Intel Xeon 8168.
(b) Scaled speedup on the same machine with a number of rhs (γ) equal to the square of the problem
size (m).

In reality, massively parallel systems are not constructed to solve a problem that can
be solved on a single CPU faster. Their actual purpose is to solve a very large system that is
impossible to solve on a workstation or on a small cluster. Therefore, the scaled speedup is
more relevant to high-performance computing. We conduct a test on the same machine
with different problem sizes

We set the number of rhs to γ = m2 and measure the scaled speedup, in which each
processor solves a system of size m for m2 right-hand sides. The result is plotted in Figure 4b.
We still see a superlinear speedup for the smallest problem size. For other sizes, the scaled
speedup is slightly lower than the linear speedup, and the efficiency at the largest number
of CPUs is 92% on average.

Comparison with ScaLAPACK

Next, we evaluate the performance of the algorithm on an ALTIX 4700 at the Leibniz-
Rechenzentrum LRZ. The scaled speedup of the algorithm is studied for the single- and
the multiple-rhs. In this test, the number of unknowns grows linearly with the number of
processors, i.e., ntotal = pNsub. The size of the subsystem (Nsub) is set to 106 in the single-rhs
problem. For the multiple-rhs problem, the problem size is 100, and the number of rhs
is 104. This corresponds to a data block of 1003 grid points. To highlight the effects of
the communications in the solution process, we only report the time used to solve the
subsystems (Steps 3 and 4). Likewise, the parallel runtime of ScaLAPACK reported here is
the time spent in the PDDTTRS subroutine. The results of the test are shown in Figure 5a.
The CPU time of ScaLAPACK is approximately doubled when the number of processors is
increased from one to two. This is in accordance with the increase in the complexity of the
algorithm [29] used in the ScaLAPACK. Even though the numbers of unknowns in these
two problems are equal (106), the parallel runtimes of both algorithms are significantly
different due to the communications. Interestingly enough, the differences in the CPU time
of the multiple rhs problems grow sharply with the number of processors. This behavior
indicates that ScaLAPACK is sensitive to the characteristics of the interconnection network
and is not as scalable as our algorithm.

The efficiencies of the ITS algorithm and ScaLAPACK are presented in Figure 5b. In the
single-rhs problem, the efficiency of the proposed algorithm falls to 50% at p = 64 because
of the increase in communication overhead, which is half of the parallel runtime there. In
the multiple-rhs problem, both algorithms exhibit better performances. At p = 64, the ITS
algorithm delivers 85% efficiency, compared to 30% of ScaLAPACK. In both problems,
the ITS algorithm is at least four times faster than ScaLAPACK.
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Figure 5. Parallel runtime (a) and the scaled efficiency for (b) of the ITS algorithm (solid line) on an
ALTIX 4700 compared to ScaLAPACK (dashed line). The problem size for a single-rhs problem (thin
line) is 106. Subsystem size in multiple-rhs problem is 100, with 104 right-hand sides, corresponding
to a numerical simulation with 103 grid points.

We implemented the RPDD described in [27] and compared the parallel runtime and
the scalability in a scaled problem size on the BW-Grid cluster (IBM BladeCenter HS21XM)
of the High-Performance Computing Center, Stuttgart (HLRS). In this version, we solve
the tridiagonal systems by the same subroutine used in our algorithm. Therefore, the
differences between RPDD and our algorithms lie only in the communication pattern.
Figure 6a displays the parallel runtimes and the overhead of both algorithms applied to the
compact interpolation problem on a 3D Cartesian grid where the size of the subsystem (m)
equals 128, with 1282 right-hand sides. It is not possible to separate the communication time
from other overhead in our algorithm because the calculations and the synchronizations
are allowed to overlap. Therefore, the overhead of the ITS algorithm here is taken as the
total time used in Steps 4–6 of the algorithm described in Section 2. Likewise, the overhead
of the RPDD algorithm is the total time used to synchronize and calculate the correction
term, including the correction of the computed solution. The parallel runtimes of both
algorithms rise sharply from one to eight processors. This increase in the parallel runtime is
due to the bandwidth saturation of the bus, which is a typical behavior of shared-memory
architecture. The behavior of the parallel runtimes here differs from what is seen in Figure 5
for two reasons: first, because of the density of the node, and second, because of the size
of the cache. The computing node on the ALTIX machine used earlier was based on two
dual-core processors, but the BW-Grid is composed of two quad-core processors. Both
are bus-based shared-memory computers. On the ALTIX 4700, the average cache size per
core is 4 MB, which is large enough to accommodate all the right-hand sides. The cache
size per core on the IBM machine is only 3 MB, and the right-hand sides do not fit into the
cache. The parallel runtimes are thus limited by the data transfer of the memory, which
is much slower than the processor speed. After eight processors, the overhead of the ITS
algorithms increases slightly, but the overhead of the RPDD algorithm continues to rise
very fast. This large overhead is coming from the additional synchronization step. Each
processor in the RPDD algorithm must wait for the neighboring processors before the
blocking synchronization can be initiated. Therefore, the idle time is potentially doubled,
and it eventually leads to a longer overall runtime.

Because the exhaustion of the memory transfer on the computing node can affect
the parallel runtime greatly, it is more realistic to measure the scalability relative to the
parallel runtime on one computing node rather than the runtime on a single processor.
Thus, we plot the relative efficiencies (E8) in Figure 6b, in which the runtime on the p
processor is divided by that of a single node (eight processors). The RPDD algorithm
shows good efficiency, but the proposed algorithm is significantly better. At p = 512,
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the RPDD algorithm delivers a relative efficiency of 63%, while the ITS delivers 92%, which
is approximately 50% higher performance.
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Figure 6. Parallel runtime (a) and the scaled efficiency relative to eight processors (b) of the RPDD and
the interface-splitting algorithm on BW-Grid. The sub-problem size is 128 with 1282 right-hand sides.

5.3. Advantage of Overlapping Bidirectional Communications

The main advantage we expect from our algorithm is a reduction in the communication
time during the synchronization phases. The performance is therefore strongly dependent
on the implementation of the MPI, which is usually optimized to the size of the data being
transferred. In Figure 7a, we present the overall performance of the ITS algorithm on an
NEC HPC 144Rb-1 at HLRS with a larger number of processors. The results are gathered
from five different runs in which the multiple-rhs system is solved repeatedly 100 times.
The same compiler optimization is kept unchanged, and the bandwidth J is set to 10. Each
processor holds a set of m3 data, and for the problem size of m, the number of the right-hand
side is m2.

A sharp rising of the CPU seconds due to memory access is observed in Figure 7a,b for
the two largest cases. The parallel runtimes increase by 60% when the number of processors
is increased from two to eight processors. Note that this is much better than what was seen
earlier in Figure 6a, where the parallel runtime was increased by a factor of six. For np > 8,
the parallel runtime of the ITS algorithm is relatively constant, except for the smallest
problem size. The relative efficiencies (E8) are 50%, 89%, 99%, and 97% from the smallest
to the largest problem size, respectively. The speedup in the smallest size suffers from the
overhead, which is increased from 40 µs to 400 µs for p = 8 to p = 2048. When taking into
account the minimum time used to solve the system, which is 300 µs, this low efficiency
is natural. On the other hand, the parallel runtimes of the RPDD algorithm continue to
increase after p = 8 as a linear function of p, as shown in Figure 7c,d.

We have examined the ITS algorithm when the non-blocking communications are
replaced by the blocking communications (the results are not shown here). This version
behaves similarly to the original RPDD algorithm presented above, and the parallel runtime
is comparable. Likewise, we have implemented the improved RPDD, which achieves the
same performance as our algorithm. In the original algorithm, Sun [27] tried to save
computations by having one processor responsible for one interface. This led to the need
for two synchronization phases with two blocking communications. See Steps 4 and 5 of the
algorithm in Section 2.2 of [27]. However, it is more rewarding to double the computation
of that small matrix and have every processor solve both interfaces (top and bottom). There
is some redundant work in this approach, but the synchronization in Steps 4 and 5 can be
overlapped. This simple change renders the RPDD algorithm as efficient as ours. This gain
in the performance comes solely from the reduction in the synchronization step. This role
reversal confirms that our version of RPDD is a fair implementation.
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Figure 7. Overview of the parallel runtimes on the Nehalem cluster for different problem sizes of
the ITS (a) and RPDD (b) algorithms. Parallel runtimes on different processors at m = 32 (c) and
m = 256 (d).

5.4. Application to Navier–Stokes Equations

In this subsection, we present the application of the ITS algorithm to the solution
process of the Navier–Stokes equations:

∮

A
u · n dA = 0, (34)

∂

∂t

∫

Ω
u dΩ +

∮

A
(u · n)u dA = ν

∮

A
T dA− 1

ρ

∮

A
pI · n dA. (35)

In the following test, the finite volume discretization of the above equations is solved
by using compact fourth-order finite volumes described in [7,17,41,42]. First, the two-
dimensional inviscid flow is presented, followed a simulation of three-dimensional turbu-
lent channel flow.

5.4.1. Inviscid Doubly-Periodic Shear Layer

This simple 2D flow contains Kelvin–Helmholtz instabilities in which the horizontal
shear layer is perturbed by a vertical sinusoidal velocity, leading to a roll-up of the vortex
sheet into a cone-like shape. The domain Ω = [0, 1]2 is taken for this study, and the initial
velocities are given by

u =

{
tanh(σ(y− 0.25)) for y ≤ 0.5,
tanh(σ(0.75− y)) for y > 0.5.

(36)

v = εsin(2πx). (37)
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This flow is governed by two parameters: the shear layer width parameter σ and the
perturbation magnitude ε. The flow is set to be inviscid (ν = 0) to expose any instabilities
the ITS algorithm may cause. In this test, the shear layer parameter and the perturbation
magnitude are 30 and 0.05, respectively. To ensure that the approximation error of the ITS
algorithm is not affecting the flow, the approximation bandwidth J is set to 12. This will
not obtain direct solver-like accuracy, but the parallelization error should be well below the
truncation error.

Two grid resolutions are considered for this test case, 5122 and 10242, and the compu-
tational domain is equally divided into 4× 4 and 8× 8, respectively. Figure 8a shows the
roll-up of the shear layer, which further reduces the thickness of the layer. Even though the
number 512 is illusorily large, it cannot resolve this inviscid flow, and the solution suffers
from numerical wiggles. Once the grid resolution is sufficient, the numerical wiggles
disappear (Figure 8b). In this fine grid, there are 112 interfaces, and we do not observe
any artifacts from the ITS algorithm. Note that the subsystem size of these two simula-
tions is 1282. At each evaluation of the derivatives in the convection term, the compact
scheme costs 6.6 × 105 floating-point operations, while the ITS algorithm costs merely
5.9 × 103—two orders of magnitude smaller. It should be stressed that this case is an
inviscid flow, and any numerical artifacts will be amplified. Thus, the approximate nature
of the algorithm does not degrade the quality of the simulation nor introduce any numerical
artifacts into the solution.

Figure 8. Contoured surfaces of Z-vorticity Ωz on 5122 (top) and 10242 (bottom) grids at t = 1.2.
The domain is uniformly divided into 4× 4 domains on the coarse grid and 8× 8 domains on the
fine grid.
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5.4.2. Turbulent Channel Flow

In this section, we present the result from applying the proposed scheme to a turbulent
channel flow at the friction Reynolds number Reτ = 950. The flow is driven by a constant
pressure gradient, and the corresponding bulk flow Reynolds number is 41,430. The
computational domain is [Lx, Ly, Lz] = [2πH, πH, 2H], where the x-axis is the stream-wise
direction and z-axis is the wall-normal direction. The numbers of grid points in each
direction are [Nx, Ny, Nz] = [480, 400, 320]. This problem is solved on Npx × Npy × Npz× =
8× 8× 2 processors. In the z-direction, the grid is stretched towards the wall.

The mean stream-wise velocity profiles of the fourth-order scheme in Figure 9a collapse
on that of the spectral scheme [43]. The r.m.s. of the cell-averaged fluctuations in the
span-wise and wall-normal velocities is in excellent agreement (Figure 9b). The position of
the peak of u- r.m.s. is correctly predicted. Away from the wall, the prediction of r.m.s. of
the stream-wise velocity is slightly lower than what is predicted by the spectral scheme.
This difference is due to the averaging procedure, which averages the staggered variables
to the location of the pressure cells. This averaging filter removes some of the small scales
from the statistics. This shortcoming can be improved by deconvolving the field to the
pointwise value.
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Figure 9. Mean stream-wise velocity (a) and r.m.s. of velocity fluctuations (b) of the turbulent channel
flow (Reτ = 950) (every two grid cells are shown).

Finally, a snapshot of the vertical plan z+ = 5 is shown in Figure 10. The plot shows
fine detail structures of the wall flow. Small elongated stream-wise streaks are observed.
The figure does not show any sign of numerical artifacts. Therefore, the proposed algorithm
is accurate and can be used to study real physical phenomena.
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Figure 10. Snapshot of stream-wise velocity at z+ = 5. The contour presents a small streak structure
commonly found in wall flow. The black color represents zero velocity, and the white color represents
0.5Ub. No numerical artifacts are seen in this figure.

6. Conclusions

We have presented the interface-splitting algorithm tailored for diagonal dominant
tridiagonal systems. The accuracy and performance of the algorithm rest on the diagonal
dominance of the matrix. This algorithm is an approximate method, but it is iteration-less.
The user has full control over the accuracy, provided that the subsystem size is sufficiently
large. It can be used equivalently to a direct method if desired. Unlike other direct methods,
the complexity of this algorithm does not depend on the number of processors, and the
leading complexity of the best sequential algorithm is maintained. The algorithm is four
times faster than the direct algorithm used in ScaLAPACK. The proposed algorithm is
highly efficient and scalable for multiple right-hand side problems.

In massive-scaled computing, the amount of synchronization and overlapping com-
munication is very important. At the same amount of data transfer, the algorithm using
overlapping communication can be much faster than the equivalent algorithm using uni-
directional communication. The algorithm designer should always check if overlapping
communication and a reduction in the synchronization phase are possible. Even though
such changes can lead to higher computation costs, the gain from lower communication
time can be surprisingly rewarding.
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