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Abstract: This work aims to estimate temperature-dependent thermal conductivity and heat capacity
given measurements of temperature and heat flux at the boundaries. This estimation problem has
many engineering and industrial applications, such as those for the building sector and chemical
reactors. Two approaches are proposed to address this problem. The first method uses an integral
approach and a polynomial approximation of the temperature profile. The second method uses a
numerical solver for the nonlinear heat equation and an optimization algorithm. The performance of
the two methods is compared using synthetic data generated with different boundary conditions
and configurations. The results demonstrate that the integral approach works in limited scenarios,
whereas the numerical approach is effective in estimating temperature-dependent thermal properties.
The second method is also extended to account for noisy measurements and a comprehensive
uncertainty quantification framework is developed.

Keywords: inverse heat conduction problem; parameter estimation; temperature-dependent thermal
properties; uncertainty quantification

1. Introduction

The inverse heat conduction problem has become increasingly significant due to its
connection to a variety of practical engineering and industrial applications [1–3]. It is
used to identify thermal properties, as well as initial and boundary conditions. One of
the industrial areas where this problem is studied is the building sector, which focuses
on the thermal properties of the building envelopes and the boundaries of the building
system. This is of great importance because it helps engineers control the thermal state of
the building and reduce exterior natural effects such as temperature and solar radiation
that act on the building [4–6]. Another important industrial application is the design
and optimization of chemical reactors, where estimating temperature-dependent thermal
properties is essential to improve the performance and efficiency of chemical reactors,
reduce energy consumption, and enhance overall system performance [1,3].

There are many approaches to estimating thermal conductivity and volumetric
heat capacity. For example, in [7–9], a simple integral approach was considered to
estimate temperature-dependent parameters in a one-dimensional heat equation heated
from one end and insulated from the other end. It is assumed that thermal properties
are linear functions of temperature, and measurements are available at the bound-
aries only. The temperature is approximated by a third-degree polynomial, where
the polynomial coefficients are determined given temperature measurements at the
boundaries. This approach is useful for making good initial guesses for the inverse heat
conduction problem.

An alternate strategy is to compare experimental data and numerical solutions of the
heat equation and then reduce the discrepancy between the two outcomes. This strategy
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involves using an optimization algorithm to minimize the discrepancy and estimate the
thermal parameters. In [6], the Levenberg–Marquardt algorithm was used to estimate
the thermal conductivity and heat capacity of masonry walls given temperature and heat
flux measurements on both sides of the wall. In [10], an experiment was conducted on a
brass rod, and the temperature was measured at different places to estimate the thermal
conductivity and heat capacity. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm
was used to solve the inverse problem with the given temperature data. This method has
shown fast convergence with few iterations compared to other methods.

The ill-posed nonlinear inverse problem of estimating time-dependent thermal co-
efficients was studied in [11]. The existence and uniqueness of the solution were proved
under certain Cauchy boundary data. The issue of being ill-posed is resolved using the
regularized nonlinear least-squares objective function. The stability of the regularization
technique was numerically investigated for a variety of test cases in terms of noise level
and selection of regularization parameters.

Another method of simultaneously estimating the temperature-dependent thermal
conductivity and heat capacity is to equip the hybrid numerical algorithm of the Laplace
transform and the control-volume method [12]. The whole domain of the one-dimensional
model is divided into small sublayers where the thermal properties are assumed to be linear
functions of temperature in each sublayer. The simulated exact and inexact temperature
measurements from the medium are used to show the accuracy and efficiency of this
approach. The results proved that well-estimated thermal conductivity and volumetric
heat capacity can be obtained from knowledge of transient temperature recordings only at
two selected locations.

The conjugate gradient method of minimization and the adjoint equation are also
used to simultaneously estimate the temperature-dependent thermal conductivity and heat
capacity per unit volume [13]. The analysis of the inverse problem is performed without
having a given functional form of the thermal coefficients. The reliability of the inverse
analysis is evaluated by using simulated exact and noisy measurements obtained from
within the medium. The method yields accurate estimations provided a good initial guess
of one of the thermal parameters.

Bayesian statistical methods have been used to solve the inverse heat transfer problem
and find the probability distribution of the unknown thermal properties. In [14], the
effect of the a priori model on the posterior probability distribution was discussed for
single- and multi-parameter estimation problems. It was found that estimates for thermal
conductivity and convection coefficient were insensitive to the a priori model in single-
parameter estimation but sensitive in two-parameter estimation at high noise levels. Another
work [15] investigated the possibility of using the Bayesian approach to estimate multiple
parameters from basic experiments on natural convection heat transfer from a fin. Steady-
state experiments were conducted to measure the temperature distribution for different
levels of heating, and the temperatures on the fin were recorded. The data from these
experiments were used to individually and then simultaneously obtain the average heat
transfer coefficient and the thermal conductivity of the extended surface, without the need
for complex equipment.

An overview of the Bayesian approach to inverse heat transfer problems, the associ-
ated modeling issues, and the methods used to perform inference was reviewed in [16].
This review focused on the modeling aspects of inverse problems in general and the
techniques used to answer questions. It also outlined how to manage and model the
unavoidable uncertainties that come with real physical measurements. A Bayesian set-
ting was developed in [17] to infer unknown parameters that appear in linear parabolic
partial differential equations. The boundary conditions were assumed to be random
and a joint likelihood function of the unknown parameters and boundary conditions
was derived. Assuming Gaussian priors for the time-dependent Dirichlet boundary
conditions, the joint likelihood function was analytically marginalized using the linearity
of the equation. The marginalization technique was adapted to an experimental study
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carried out in an environmental chamber, where measurements were recorded every
minute from temperature probes and heat flux sensors placed on both sides of a solid
brick wall [18]. The results showed that the bias error of the estimated parameters was
reduced compared to other approaches.

More information on the inverse heat transfer problem can be found in [1,19,20].
These books offer more theoretical information and analytical insight. Ref. [21] contains a
compilation of methods and applications for various inverse problems, including problems
related to inverse heat transfer. Ref. [22] provides statistical and computational techniques
that are essential when dealing with real data.

Most of the papers concerned with the estimation of thermal parameters assume
a certain knowledge of the initial and boundary conditions in the heat transfer model.
However, when dealing with real problems and experiments, the initial and boundary
conditions are not exactly known and need to be approximated. In our work, we realis-
tically assume that there is no prior knowledge of the initial and boundary conditions.
Instead, these conditions are estimated from the available discrete measurements. This
assumption is crucial because the quality of the measurements can influence the estima-
tion of the boundary conditions, which in turn can have an effect on the estimation of
the thermal properties. This setting is only considered in [18] when estimating constant
thermal properties.

This paper is concerned with the problem of estimating temperature-dependent ther-
mal properties in the one-dimensional heat equation given boundary data. The settings
of our problem are similar to the one considered in [18]. However, here we assume that
the thermal conductivity and heat capacity parameters are functions of the temperature,
which result in a nonlinear heat equation. In particular, we focus on the case where both
parameters are linear functions of the temperature, but this assumption could be relaxed
for some of the developed methods.

In this work, we propose two methods to estimate the temperature-dependent thermal
properties of a material, namely the heat capacity C(T) and the thermal conductivity K(T),
which are assumed to be linear functions of the temperature. Our methods are based on
solving the inverse heat conduction problem using the measurements of temperature and
heat flux at the boundaries. In the first method, we derive an integral approach following [9]
assuming general boundary conditions. The method uses a third-degree polynomial to
approximate the temperature distribution within the spatial domain and applies integration
techniques to obtain an objective function that is minimized to estimate the unknown
parameters. The second method uses a Matlab function “PDEPE” to numerically solve
the nonlinear heat equation, and then constructs another objective function that is also
minimized to estimate the parameters. We compare the performance and accuracy of the
two methods using synthetic data and discuss their advantages and limitations. For the
latter method, a recursive optimization strategy is proposed to reduce the computational
cost needed for parameter estimation and future predictions. Furthermore, we develop an
uncertainty quantification framework to utilize the second approach with realistic noisy
data. In this case, an assessment of the reliability of the estimated parameters is provided
via sampling techniques.

The remainder of the paper is organized as follows. In Section 2, we introduce
the mathematical model and the conditions and assumptions of the problem. Then,
two methods are developed to estimate the unknown parameters given temperature
and heat flux measurements at the boundaries. Section 3 is divided into three parts
where we consider different cases for the boundary conditions and thermal properties
to generate synthetic datasets and test our methods. Section 4 generalizes Approach 2
to account for the noise in the measurements and introduces a suitable framework to
quantify the uncertainties of the parameters of interest. Finally, we summarize our
findings in Section 5.
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2. Methodology

We consider the one-dimensional nonlinear heat equation given as follows:
C(T) ∂T

∂t = ∂
∂x (K(T)

∂T
∂x ), 0 < x < R, t > 0

T(0, t) = TL(t), T(R, t) = TR(t), t > 0

K(T) ∂T
∂x

∣∣∣
x=0

= −QL(t), K(T) ∂T
∂x

∣∣∣
x=R

= QR(t), t > 0

T(x, 0) = T0(x), 0 < x < R

(1)

where C(T) and K(T) are the heat capacity and the thermal conductivity, respectively.
The overspecified boundary conditions are needed to solve the inverse problem [9].

We assume that the thermal coefficients, C(T) and K(T), are linear functions of T that is,
C(T) = ac + bcT and K(T) = ak + bkT where ac, bc, ak and bk are unknown parameters.
Temperature and heat flux measurements at the boundaries are given at discrete times
τ0 = 0, τ1, . . . , τM. The boundary functions TL, TR, QL, QR are not known exactly but
are assumed to be well approximated by a piecewise linear interpolation of their given
measurements. The initial condition T0 is also assumed unknown.

Our inverse problem can be summarized as follows. Given the boundary measurements

TL = [TL(τ0), TL(τ1), . . . , TL(τM)]

TR = [TR(τ0), TR(τ1), . . . , TR(τM)]

QL = [QL(τ0), QL(τ1), . . . , QL(τM)]

QR = [QR(τ0), QR(τ1), . . . , QR(tM)]

our goal is to estimate the parameters ac, bc, ak, bk. Implicitly, the solution of the forward
problem T(x, t) and the initial condition T0(x) need to be estimated as well.

To solve the inverse problem, we develop two approaches. The first approach is a
generalization of the integral approach introduced in [9] to have free boundary conditions
at both sides of the domain. The second approach involves using a numerical scheme to
solve the forward problem and iteratively estimate the unknown parameters.

2.1. Approach 1: Integral Approach

From the assumption that the thermal conductivity and heat capacity are linear func-
tion of T, we can deduce the following relations:

C
∂T
∂t

=
1
2

∂

∂t
[(C + ac)T]

K
∂T
∂x

=
1
2

∂

∂x
[(K + ak)T]

These relations can be checked easily by expanding the partial derivatives.
By integrating the heat equation with respect to the time and position coordinates, we

obtain the following two equations:∫ t

0

∫ R

0
C

∂T
∂t

dx dt =
∫ t

0

∫ R

0

∂

∂x
· (K ∂T

∂x
) dx dt (2)∫ t

0

∫ R

0

∫ x

0
C

∂T
∂t

dx
′
dx dt =

∫ t

0

∫ R

0

∫ x

0

∂

∂x
· (K ∂T

∂x
) dx

′
dx dt (3)
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We will compute each side of (2) alone, so

LHS2 =
∫ t

0

∫ R

0
C

∂T
∂t

dx dt =
∫ R

0

1
2

∂

∂t
[(C + ac)T]t0 dx

=
∫ R

0
ac(T − T0) +

1
2

bc(T2 − T2
0 ) dx

= ac(I(T)− I(T0)) +
1
2

bc(I(T2)− I(T2
0 ))

where I(·) =
∫ R

0
(·)dx, and

RHS2 =
∫ t

0

∫ R

0

∂

∂x
· (K ∂T

∂x
) dx dt =

∫ t

0
K

∂T
∂x

∣∣∣R
0

dt

=
∫ t

0
QR(t) + QL(t) dt

We perform the same procedure with Equation (3):

LHS3 =
∫ t

0

∫ R

0

∫ x

0
C

∂T
∂t

dx
′
dx dt

=
∫ R

0

∫ t

0
(R− x)C

∂T
∂t

dt dx

=
∫ R

0
(R− x)ac(T − T0) +

R− x
2

bc(T2 − T2
0 ) dx

= ac[R(I(T)− I(T0)) + I(xT0)− I(xT)]

+
1
2

bc

[
R(I(T2)− I(T2

0 )) + I(xT2
0 )− I(xT2)

]
and

RHS3 =
∫ t

0

∫ R

0

∫ x

0

∂

∂x′
· (K ∂T

∂x′
) dx

′
dx dt

=
∫ t

0

∫ R

0
(

1
2

∂

∂x
[(K + ak)T] + QL(t)) dx dt

=
∫ t

0
R ·QL + ak(TR − TL) +

bk
2
(T2

R − T2
L) dt

It can be noticed that if the temperature T is known, then LHS2, RHS2, LHS3 and RHS3
become functions of the unknown parameters (ac, bc, ak, bk). This conclusion, together with
the boundary data, makes it convenient to approximate the temperature profile by a
polynomial of degree 3, where the polynomial coefficients are time dependent:

T(x, t) ≈ α0(t) + α1(t)(
x
R
) + α2(t)(

x
R
)2 + α3(t)(

x
R
)3 (4)

Since we have four boundary conditions, namely TR, TL, QL and QR, the coefficients
of the above polynomial can be explicitly determined.

Using the boundary conditions at x = 0, we have:

T(0, t) = TL(t) = α0 =⇒ α0(t) = TL(t).

K
∂T
∂x

∣∣∣
x=0

= −QL(t) = KL(
α1

R
+ 2α2

x
R2 + 3α3

x2

R3 )
∣∣∣
x=0

=⇒ α1(t) =
−RQL

KL
(t)
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where KL = ak + bkTL(t). For the remaining coefficients, we need to solve the following
system which is obtained by applying the boundary condition at x = R:{

α2 + α3 = TR − TL +
RQL
KL

2α2 + 3α3 = RQR
KR

+ RQL
KL

By solving the system, the coefficients α2 and α3 are given by

α2(t) = 2T∗L − T∗R + 3(TR − TL)

α3(t) = T∗R + 2(TL − TR)− T∗L

where
T∗L =

RQL
KL

, T∗R =
RQR
KR

and KR = ak + bkTR(t).
The initial condition T0(x) can then be estimated from the previous polynomial evalu-

ated at t = 0. Furthermore, given the temperature approximation (4), the integrals in the
LHS(s) for both Equations (2) and (3) can be calculated as follows:

I(T) = R
(
−1
12

[T∗R + T∗L ] +
1
2
[TL + TR]

)
.

I(xT) = R2
(

1
20

[3TL + 7TR]−
1
20

T∗R −
1
30

T∗L

)
.

I(T2) =
R

210

(
78(T2

L + T2
R)− 22[TLT∗L + TRT∗R] + 54TLTR

−13[TLT∗R + TRT∗L ] + 2[(T∗L )
2 + (T∗R)

2] + 3T∗L T∗R
)

.

I(xT2) =
R2

840

(
3(T∗L )

2 + 5(T∗R)
2 + 72T2

L − 28T∗L [TL + TR]

+108TLTR + 6T∗R[T
∗
L − 4TL − 10TR] + 240T2

R

)
.

Similarly, the integrals of the initial temperature T0 are given by the previous formulas
but evaluated at t = 0. The RHS(s) terms have integrals over time that can be evaluated via
the trapezoidal integration method given the discrete measurements of TL, TR, QL and QR.

Now, we can construct an objective function by taking the differences between LHS(s)
and RHS(s). The objective function is then given by

f1(θ) =
1
2

M

∑
i=1

(LHS2(θ, τi)− RHS2(θ, τi))
2 + (LHS3(θ, τi)− RHS3(θ, τi))

2 (5)

where θ is a vector of the parameters given by (ac, bc, ak, bk).

2.2. Approach 2: Numerical Approach

A third-degree polynomial is not always a good approximation of the temperature pro-
file over the domain, especially with free boundary conditions. A more generic approach
would be to use a numerical solver for the heat equation to approximate the temperature
profile. We use the built-in PDEs solver (PDEPE) in Matlab, which is able to handle one-
dimensional parabolic and elliptic partial differential equations. It requires the coefficients
of the partial differential equation, as well as the values of the initial and boundary con-
ditions. The PDEPE function discretizes the equation in space, which yields a system of
ordinary differential equations, and then these ODEs are integrated to obtain approximate
solutions at the specified time points [23].

In order to use this function, the boundary conditions need to be provided as time-
dependent functions. From discrete measurements of the temperature at the boundaries, a
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continuous curve should be reconstructed. One way to fit a curve through a set of discrete
points is to use smoothing splines. Smoothing splines are function estimates that balance
goodness of fit with the smoothness of the function, based on a smoothing parameter that
controls the trade-off [24]. We use the cubic smoothing spline, which minimizes the sum of
squared errors and the integral of squared second derivatives.

In our problem (1), this can be performed for the boundary temperature or the heat
flux. We choose to have Dirichlet boundary conditions in the numerical solver and we
estimate the functions TL(t) and TR(t) using smoothing splines. The initial condition
should be provided to the solver as well. In this case, we can still use the aforementioned
polynomial approximation (4) at t = 0 to specify the initial condition.

After fixing the initial and boundary conditions, the numerical solution of the heat
equation depends only on the unknown parameters (ac, bc, ak, bk) and a discretization
parameter N that is the number of spatial points in the interval (0, R). The number of time
points in the solver is chosen adaptively based on N. The heat flux is then computed from
the numerical solution and we define a new objective function as following:

f N
2 (θ) =

M

∑
i=1

(
QL(τi)−QN

L (τi)
)2

+
(

QR(τi)−QN
R (τi)

)2
(6)

where θ = (ac, bc, ak, bk), QN
L and QN

R are heat fluxes computed from the numerical solution
of the heat equation and N is the number of spatial points in the discretized system.

Remark 1. It is possible to use Neumann boundary conditions in the numerical solver and then con-
struct the objective function using the temperature measurements instead of heat-flux measurements.

2.3. Optimization Strategy

In the optimization problem, we use the Matlab optimization algorithm based
on the BFGS quasi-Newton method with a cubic line search procedure. This quasi-
Newton method uses the BFGS formula to update the approximation of the Hessian
matrix [25–28]. One downside of this algorithm is that it may converge to a local mini-
mum depending on the initial guess. Therefore, it does not ensure convergence to the
global optimal. The algorithm is controlled by a user-defined number of iterations and
accuracy, which means that the optimization will stop after a number of iterations or
when the change in the objective function is less than a given tolerance. All parameters
are assumed to be positive.

For Approach 1, the objective function (5) has a constant computational cost. Thus, we
run the optimization algorithm for different initial guesses to find the global minimum. For
Approach 2, it is clear that the computational cost to evaluate the objective function (6) and
its accuracy depend on N, and therefore, we propose an adaptive optimization strategy
to find N and θ efficiently. First, N is initialized at a small number and θ is initialized at
θ0 obtained from Approach 1. We run the optimization algorithm and use N to define a
function tolerance to stop the optimization. Meaning that the optimization stops when the
change in the objective function is less than 1

N2 . The estimated θ is stored to be used in the
next iteration. Next, we increase N and repeat the previous step. The strategy ends when
the estimated θ converges. As a result, we find a good estimation of our parameters θ using
the smallest possible choice for N. It is important to note that although setting N to a large
number may produce a better estimation of θ, such an estimation will only be useful when
used with the forward solver using the same N. Thus, it is preferred to have a small value
for N to make predictions and simulations more cost effective. Our optimization strategy
is illustrated in Algorithm 1.
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Algorithm 1 Recursive optimization strategy (ROS)

1: choose the required tolerance, tol, and the maximum number for N, Nmax
2: initialize N and θ0
3: find θ∗ that minimizes f N

2 (θ) with initial guess θ0.
4: set ε = ||θ∗ − θ0||∞
5: while ε > tol and N < Nmax do
6: set θ0 = θ∗ and increase N
7: repeat steps 2 & 3
8: end while

3. Numerical Study

In this section, we generate multiple datasets with different choices for the initial
and boundary conditions and different configurations of the parameters ac, bc, ak, and bk.
Thus, we show the advantages and limitations of both approaches. In all cases, datasets
are generated using the Matlab numerical solver used in Section 2.2 with N = 100.
However, this information is not used when solving the inverse problem to create a
realistic scenario.

3.1. Dataset 1

In Dataset 1, synthetic measurements are generated by solving the heat Equation (1)
with the following initial boundary conditions:

TL(t) = 14 + 2t
TR(t) = 14
T0(x) = 14

(7)

and assuming ac = 100, bc = 1, ak = 3, bk = 1, and R = 1. To be precise, we solve the
following initial-boundary value problem:

(100 + T(x, t)) ∂T
∂t = ∂

∂x ((3 + T(x, t)) ∂T
∂x ), 0 < x < 1, t > 0

T(0, t) = 14 + 2t, T(1, t) = 14, t > 0
T(x, 0) = 14, 0 < x < 1

using the Matlab numerical solver to obtain the approximated solution T̃(x, t). Then, the
heat flux values are calculated by

QL(t) = −(3 + TL(t))
∂T̃
∂x

(0, t) ,

QR(t) = (3 + TR(t))
∂T̃
∂x

(1, t) .

We assume that the boundary temperature and heat flux values are recorded every
minute for five days. Therefore, we construct the four time series TL, TR, QL, and QR by
evaluating their corresponding functions at 7200 equally spaced time points. These four
time series are grouped to be our Dataset 1 and they are presented in Figure 1.
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Figure 1. Plot of the temperature and heat flux at the boundary in Dataset 1.

Optimization Results for Dataset 1

Giving only Dataset 1, our goal now is to estimate the parameters ac, bc, ak, and bk.
For Approach 1, the implementation is straightforward, as the objective function f1 uses
all the boundary data at once for evaluation. On the other hand, Approach 2 requires first
estimating the boundary conditions to be used in solving the heat equation. As explained
above, we assume Dirichlet boundary conditions and estimate the temperature functions
by interpolating the discrete time series TL, TR. We also estimate the initial condition
by means of the polynomial approximation (4). The estimated initial and boundary
conditions match the actual conditions in (7). This is expected because the data are free
of noise. Finally, to evaluate the objective function f N

2 , we only need the heat flux time
series QL, QR and choose N.

Table 1 shows the optimization results of the two objective functions f1 and f N
2 using

Dataset 1. We refer to the minimum value of the objective function, depending on the
approach considered, by f ∗. We consider different choices for N in the second objective
function, f N

2 . The data were generated using N = 100 in the numerical solver, and
therefore, this choice for N provides the smallest value for the objective function. Using the
recursive optimization strategy, N is found to be 80, and we still obtain a good estimation
of all parameters. The parameters estimated through Approach 1 are not accurate but
still better than the parameters obtained from Approach 2 with N = 10. Furthermore,
the time required to minimize f1 is relatively short compared to minimizing f N

2 . The
estimated parameters obtained from Approach 1 are used as an initial guess in the recursive
optimization strategy to speed up the process. The behavior of the two objective functions
is illustrated in Figure 2. The surface plot of f N

2 is more concave, which helps to find the
global optimum.
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Table 1. The optimization results using Dataset 1, where f ∗ is the minimum value of f1 or f N
2

depending on the approach.

ac bc ak bk f∗

Approach 1 84.51 1.86 4.03 0.93 112.74

Approach 2 (N = 10) 129.65 0 7.82 0.76 251.3676

Approach 2 (N = 50) 108.44 0.59 3.50 0.98 35.20

Approach 2
(N = 100) 100 1 3 1 9.3× 10−10

Approach 2 with ROS
(N = 80) 101.37 0.93 3.08 1 5.80

True parameters 100 1 3 1 —-

(a)
(b)

(c)

5000 

4000 

3000 

2000 

1000 

0 

5 

4 150 

3 

2 

a
k 

1 50 

(d)

Figure 2. Cont.
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(e) (f)

Figure 2. Different plots of f1(θ) (left side) and f N
2 (θ) (right side) using Dataset 1. (a) Plot of f1

for ak = 3, bk = 1, and varying ac and bc . (b) Plot of f N
2 for ak = 3, bk = 1, and varying ac and bc .

(c) Plot of f1 for bc = 1, bk = 1, and varying ac and ak . (d) Plot of f N
2 for bc = 1, bk = 1, and varying

ac and ak . (e) Plot of f1 for bc = 1, ak = 3, and varying ac and bk . (f) Plot of f N
2 for bc = 1, ak = 3,

and varying ac and bk .

3.2. Dataset 2

Dataset 2 is generated in the same procedure as Dataset 1 but with the following initial
boundary conditions: 

TL(t) = 14 + t + 0.5t2

TR(t) = 14 + 2t
T0(x) = 14

and assuming ac = 100, bc = 1, ak = 3, bk = 0, and R = 1. Temperature and heat flux
values are assumed to be recorded every 5 minutes for 10 days. The resulting temperature
and heat flux time series are presented in Figure 3. In this case, TL is less than TR at the
beginning, but then TR becomes greater than TL. The efficiency of Approach 1 is expected
to degrade in such situations.
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Figure 3. Plot of the temperature and heat flux at the boundary in Dataset 2.
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Optimization Results for Dataset 2

Table 2 shows the optimization results of the two objective functions using Dataset 2.
The value of the first objective function is high compared to the results obtained using
Dataset 1. The estimated parameters are generally acceptable, especially ac, which is
estimated to be 102.89. The objective function, f N

2 , is minimized with different choices for
N and the results started to converge when N > 50. We start the recursive optimization
strategy with N = 5 and increase it by 5 in each iteration. The algorithm ends when N = 55
because the change in θ is less than tol = 0.5.

Table 2. The optimization results using Dataset 2, where f ∗ is the minimum value of f1 or f N
2

depending on the approach.

ac bc ak bk f∗

Approach 1 102.42 0.47 3.46 0.004 1219.0

Approach 2 (N = 10) 124.52 0.79 3.74 0 283.89

Approach 2 (N = 50) 101.95 0.98 3.07 0 30.89

Approach 2
(N = 100) 100 1 3 0 4.98× 10−4

Approach 2 with ROS
(N = 55) 101.59 0.99 3.06 0 25.20

True parameters 100 1 3 0 —-

To visualize the objective functions, we fix bc at three values which produce the surface
graphs in Figures 4 and 5. It can be seen that for both functions as bc increases, the plotted
surfaces flatten in the direction of ac.

(a) (b) (c)

Figure 4. Different plots of f1 using Dataset 2 with bc = {0, 1, 2}. (a) bc = 0. (b) bc = 1. (c) bc = 2.

(a) (b) (c)

Figure 5. Different plots of f N
2 using Dataset 2 with bc = {0, 1, 2}. (a) bc = 0. (b) bc = 1. (c) bc = 2.
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In the next dataset, we consider oscillating boundary conditions to show the limitation
of Approach 1 in such scenarios. On the other hand, Aprroach 2 can handle any boundary
conditions, but the computational cost may increase to achieve a certain accuracy.

3.3. Dataset 3

In Datasets 1 and 2, the temperature boundary conditions used to generate data
are increasing functions with time. For Dataset 3, more realistic boundary conditions are
assumed to create synthetic measurements. The initial and boundary conditions are defined
as follows: 

TL(t) =
√

t sin t + 14
TR(t) = −t sin t + 14
T0(x) = 14

The thermal conductivity, K, and heat capacity C are assumed constants by letting
ac = 100, bc = 0, ak = 3, bk = 0. Temperature and heat flux time series are generated over
10 days and assuming that the measurements are recorded every 5 minutes. A visualization
of the Dataset 3 time series is provided in Figure 6.
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Figure 6. Plot of the temperature and heat flux at the boundary in Dataset 3.

Optimization Results for Dataset 3

Table 3 shows that the first objective function produces a small error but with false
parameter estimates. This is because Approach 1 is not suitable to use with oscillating
boundary conditions. Approach 2 gives a high value for the objective function when
N = 10, but this value decreases significantly with N. The recursive optimization strategy
finds a good estimate of the parameters when N = 75. The best results are achieved when
N = 100 as expected.

Figure 7 illustrates the shape of the objective functions when bc = bk = 0. These figures
suggest that fixing bc and bk to zero can simplify the optimization problem. However, the
minimum value for f1 is still far from the true values. The minimum value of f N

2 is attained
at the true parameters.



Computation 2023, 11, 184 14 of 20

Table 3. The optimization results using Dataset 3, where f ∗ is the minimum value of f1 or f N
2

depending on the approach.

ac bc ak bk f∗

Approach 1 40.31 1.27 4.33 0.003 240.81

Approach 2 (N = 10) 105.18 0.49 3.47 0.06 949.75

Approach 2 (N = 50) 101.36 0.0001 3.04 0.0066 100.7897

Approach 2
(N = 100) 99.96 0.002 3.0 0 0.11

Approach 2 with ROS
(N = 75) 100.52 0.0001 3.0 0.0028 33.53

True parameters 100 0 3 0 —-

Figure 7. Plots of f1 and f N
2 using Dataset 3 with bc = bk = 0.

4. Uncertainty Quantification

Real measurements are usually corrupted with noise due to the precision of the measur-
ing devices or the experimental setups. In this section, we assume that our measurements
of temperature and heat flux at the boundaries are noisy and study how the presence of
the noise affects the estimation of the parameters. Noise is assumed to be additive and
follows a Gaussian distribution with a mean of zero and a variance of σ2. Therefore, the
given boundary measurements are defined by

TL = T∗L + ε1 (8)

TR = T∗R + ε2 (9)

QL = Q∗L + ε3 (10)

QR = Q∗R + ε4 (11)

where T∗L, T∗R, Q∗L and Q∗R represents the true unknown temperature and heat flux and
εi ∼ N(0, σiIM), i = 1, 2, 3, 4.

With these assumptions, we need to generalize the deterministic approaches developed
earlier to incorporate statistical modeling of the noisy data. In particular, we focus on
Approach 2 as it provides more accurate results in the absence of noise. Approach 1 can
still be used to obtain a good initial estimate in the optimization strategy.

Using noisy measurements as boundary conditions causes inconsistency in the so-
lution of the heat equation because of the roughness of the boundary data. Therefore,
we need to create a smooth representation of the data to be used to solve the forward
heat equation. However, this representation is not unique. Assuming we have Dirichlet



Computation 2023, 11, 184 15 of 20

boundary conditions, we should build multiple smooth temperature functions from the
noisy temperature data.

To acomplish that, we first fit an appropriate time series model to the temperature data
or use the moving average method to filter the noise from the data, and then we assume
TL ∼ N(µL, σ1IM) and TR ∼ N(µR, σ2IM) where µL and µR are the moving averages or
the fitted time series model. From these distributions, we sample Tj

L and Tj
R and estimate

continuous boundary conditions using smoothing splines. For each pair of estimated
smooth temperature functions, we solve the heat equation for a given θ where the initial
condition is approximated by the third-degree polynomial used before. Then, the heat
fluxes (QN

L )j, (QN
R )j are computed from the obtained solution.

To find θ in these settings, we define a likelihood function that is the probability
distribution of the heat flux measurements. From the noise assumptions, the likelihood
function is given by

L(θ
∣∣QL, QR, Tj

L, Tj
R) =

1
(2πσ3σ4)M e

{
− 1

2σ2
3
(QL−(QN

L )j)
T
(QL−(QN

L )j)− 1
2σ2

4
(QR−(QN

R )j)
T
(QR−(QN

R )j)
}

(12)

Maximizing the likelihood function (12) is equivalent to minimizing the objective function

f j,N(θ) =
M

∑
i=1

1
σ2

3

(
QL(τi)−Qj,N

L (τi)
)2

+
1
σ2

4

(
QR(τi)−Qj,N

R (τi)
)2

(13)

where Qj,N
L (τi) and Qj,N

R (τi) are heat fluxes computed at time τi using sample j for the
boundary conditions.

In this case, we find the maximum-likelihood estimate (MLE) of θ for each sample of

the boundary conditions Tj
L and Tj

R. Drawing a set of samples
{

Tj
L, Tj

R

}J

j=1
, we obtain the

corresponding MLEs of θ. We summarize our UQ approach in Algorithm 2.

Algorithm 2 UQ framework

1: Input: TL, TR, QL, QR, σ1, σ2, σ3, σ4
2: estimate µL and µR from TL and TR, respectively
3: for j = 1 to J do
4: draw Tj

L from N(µL, σ1) and Tj
R from N(µR, σ2)

5: maximize the likelihood function (12) to find θ j

6: end for
7: estimate θ = 1

J ∑J
j=1 θ j

As a special case, if the thermal conductivity and the heat capacity are assumed constants,
then the heat equation becomes linear and the effect of the noise in the boundary conditions
can be integrated analytically, as shown in [17,18]. The UQLab Matlab toolbox [29] could be
utilized to generalize Algorithm 2 to estimate temperature-dependent thermal parameters
without assuming a specific functional form for them. In addition, our UQ framework could
be extended to sequential filtering following the approach discussed in [30].

In the next section, we reconsider Dataset 1 after adding noise and apply Algorithm 2
to estimate the unknown parameters using the noisy data.

4.1. Numerical Example 1

Noisy data are obtained by adding independent Gaussian random perturbations to
the four time series TL, TR, QL, and QR from Dataset 1 as in (8) where σ1 = σ2 = 0.1 and
σ3 = σ4 = 0.5. Using deterministic methods results in biased estimates of the parameters
as presented in Table 4. Approach 1 works directly given the noisy data, and despite
the increased value of the objective function, the estimated parameters are similar to the
ones obtained in Table 1. On the other hand, Approach 2 fails when using the noisy data
directly as the numerical solver cannot converge with rough boundary conditions. Instead,
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we construct smooth boundary conditions using moving average and smoothing splines
and then maximize the likelihood function (12) or equivalently minimize the objective
function (13). In this case, we use N = 100 to eliminate the effect of the modeling error and
study only the noise effect.

Table 4. The optimization results using noisy Dataset 1, where f ∗ is the minimum value of f1 or f N
2

depending on the approach.

ac bc ak bk f∗

Approach 1 84.90 1.74 2.74 1.02 543.53

Approach 2
(N = 100) 96.46 1.20 2.82 1.01 462.12

Following the UQ framework, we construct two probability distributions:

TL ∼ N(µL, σ1IM), TR ∼ N(µR, σ2IM)

where µL and µR are the moving averages of the noisy temperature data. Figure 8 shows one
sample of the boundary conditions compared with the noisy data. We draw 50 independent
samples of boundary conditions and find the corresponding maximum-likelihood estimate
of θ for each sample. The sample mean and standard deviation are presented in Table 5.
In general, the estimated mean is close to the true parameters with small values for the
standard deviation. Increasing the sample size would improve the estimates and their
confidence levels.

Table 5. Mean and standard deviation of θ obtained using Algorithm 2 and noisy Dataset 1.

ac bc ak bk

mean 97.08 1.16 2.78 1.01

STD 2.67 0.16 0.28 0.017
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Figure 8. Plot of one estimated sample of the boundary conditions with the noisy measurements.

The estimated parameters from Algorithm 2 can be further analyzed by looking at their
bivariate correlations. Scatter plots of the 50 samples are presented in Figure 9. The heat
capacity parameters, ac and bc, are highly correlated. A similar conclusion can be drawn
for the thermal conductivity parameters, ak and bk. Other combinations of parameters
show only moderate correlations. This observation is crucial when making f predictions, as
random perturbations of these parameters will not produce realistic physical simulations.
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Figure 9. Scatter plots of the estimated samples of θ using noisy Dataset 1.

4.2. Numerical Example 2

In this example, we add noise to Dataset 2 and apply the UQ framework to estimate the
thermal properties. The noisy measueremts are obtained by adding independent Gaussian
random perturbations to the four time series TL, TR, QL, and QR in Dataset 2 with standard
deviations σ1 = σ2 = 0.1 and σ3 = σ4 = 0.5, respectively. Applying the UQ framework, we
employ the noisy temperature data to calculate the probability distribution of the boundary
conditions. Figure 10 shows one sample of the boundary conditions compared to the
noisy data.
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Figure 10. Plot of one estimated sample of the boundary conditions with the noisy measurements.

Again, we draw 50 independent samples of boundary conditions and find the cor-
responding maximum-likelihood estimate of θ for each sample. The sample mean and
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standard deviation of the maximum-likelihood estimates are presented in Table 6. Scatter
plots of the 50 maximum-likelihood estimates obtained using noisy Dataset 2 are presented
in Figure 11. This time, all the parameters appear to be highly correlated. One reason for
these elevated correlations is the fact that the true value of the parameter bk is zero and the
optimization algorithm is constrained to find positive values for all parameters.

Table 6. Mean and standard deviation of θ obtained using Algorithm 2 and noisy Dataset 2.

ac bc ak bk

mean 101.30 0.94 2.95 0.002

STD 2.4 0.11 0.05 0.002

Figure 11. Scatter plots of the estimated samples of θ using noisy Dataset 2.

5. Conclusions

In summary, the inverse heat conduction problem in the one-dimensional heat equa-
tion with time-dependent temperature and heat flux at both ends was considered. Two meth-
ods were developed to estimate the temperature-dependent thermal conductivity and heat
capacity, which were assumed to have linear form of the temperature. The first method
used an integral approach with a third degree polynomial approximating the temperature,
while the second method used a numerical PDE solver and minimized the difference
between numerical simulations and measurements.

Multiple datasets were generated using different initial-boundary conditions and
thermal coefficients to test the two methods. The results showed that Approach 1 (integral
approach) generally required the boundary conditions to be increasing (monotonic) func-
tions, while that was not needed for Approach 2 (numerical approach). The performance of
Approach 2 depended on the accuracy of the numerical PDE solver, which was character-
ized by N. Despite the fact that it took more computational time, Approach 2 yielded better
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estimates than Approach 1. When N was not large enough, the objective function f N
2 had

rough surfaces, resulting in the presence of many local minimums. Selecting a very large
N was computationally expensive and impractical in some cases. Therefore, a recursive
optimization strategy was implemented to find the lowest possible value for N that would
guarantee a good estimate of the unknown parameters.

In real applications, data are corrupted by noise, and deterministic approaches need to
be modified to account for uncertainty. Approach 2 was integrated within an uncertainty
quantification framework. The proposed framework was tested with noisy synthetic
data. Temperature and heat flux measurements were modeled by independent Gaussian
distributions. By sampling the temperature boundary conditions and minimizing the
likelihood function given the heat flux measurements, a sampling mechanism for θ was
created. These samples were then used to estimate a complete probability distribution of θ
instead of a single estimate. It was also noticed that the parameters were highly correlated
due to their physical nature.

This work demonstrated that estimating temperature-dependent thermal properties
in a one-dimensional heat equation is a challenging but feasible task. The proposed
methods provided reliable and accurate estimates of the thermal properties under different
scenarios and conditions. The uncertainty quantification framework assessed the reliability
of estimated parameters and provided useful information for decision making.

Author Contributions: Conceptualization, Z.S.; Methodology, A.S. and Z.S.; Software, A.S. and Z.S.;
Validation, Z.S.; Formal analysis, Z.S.; Investigation, A.S.; Resources, A.S. and Z.S.; Writing—original
draft, A.S. and Z.S.; Writing—review & editing, Z.S.; Supervision, Z.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: This paper is based upon work supported by King Fahd University of Petroleum
& Minerals and the authors acknowledge the support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Woodbury, K.A.; Najafi, H.; De Monte, F.; Beck, J.V. Inverse Heat Conduction: Ill-Posed Problems; John Wiley & Sons, Incorporated:

Hoboken, NJ, USA, 2023.
2. Roy, A.D.; Dhiman, S. Solutions of One-Dimensional Inverse Heat Conduction Problems: A Review; Transactions of the Canadian

Society for Mechanical Engineering: Ottawa, ON, Canada, 2023.
3. Orlande, H.R. Inverse problems in heat transfer: New trends on solution methodologies and applications. J. Heat Transf. 2012,

134, 031011. [CrossRef]
4. François, A.; Ibos, L.; Feuillet, V.; Meulemans, J. Estimation of the thermal resistance of a building wall with inverse techniques

based on rapid active in situ measurements and white-box or ARX black-box models. Energy Build. 2020, 226, 110346. [CrossRef]
5. Biddulph, P.; Gori, V.; Elwell, C.A.; Scott, C.; Rye, C.; Lowe, R.; Oreszczyn, T. Inferring the thermal resistance and effective

thermal mass of a wall using frequent temperature and heat flux measurements. Energy Build. 2014, 78, 10–16. [CrossRef]
6. Sassine, E.; Cherif, Y.; Antczak, E. Parametric identification of thermophysical properties in masonry walls of buildings.

J. Build. Eng. 2019, 25, 100801. [CrossRef]
7. Kim, S.; Kim, M.C.; Kim, K.Y. An integral approach to the inverse estimation of temperature-dependent thermal conductivity

without internal measurements. Int. Commun. Heat Mass Transf. 2002, 29, 107–113. [CrossRef]
8. Kim, S.; Chung, B.J.; Kim, M.C.; Kim, K.Y. Inverse estimation of temperature-dependent thermal conductivity and heat capacity

per unit volume with the direct integration approach. Numer. Heat Transf. Part A Appl. 2003, 44, 521–535. [CrossRef]
9. Kim, S.; Lee, K.J.; Ko, Y.J.; Kim, M.C.; Kim, K.Y. Estimation of temperature-dependent thermal conductivity and heat capacity per

unit volume with a simple integral approach. Int. Commun. Heat Mass Transf. 2004, 31, 981–990. [CrossRef]
10. Ngo, T.; Huang, J.; Wang, C. Inverse simulation and experimental verification of temperature-dependent thermophysical

properties. Int. Commun. Heat Mass Transf. 2016, 71, 137–147. [CrossRef]
11. Hussein, M.S.; Lesnic, D.; Ivanchov, M.I. Simultaneous determination of time-dependent coefficients in the heat equation.

Comput. Math. Appl. 2014, 67, 1065–1091. [CrossRef]
12. Chen, H.; Lin, J. Simultaneous estimations of temperature-dependent thermal conductivity and heat capacity. Int. J. Heat

Mass Transf. 1998, 41, 2237–2244. [CrossRef]

http://doi.org/10.1115/1.4005131
http://dx.doi.org/10.1016/j.enbuild.2020.110346
http://dx.doi.org/10.1016/j.enbuild.2014.04.004
http://dx.doi.org/10.1016/j.jobe.2019.100801
http://dx.doi.org/10.1016/S0735-1933(01)00329-3
http://dx.doi.org/10.1080/713838252
http://dx.doi.org/10.1016/j.icheatmasstransfer.2004.05.008
http://dx.doi.org/10.1016/j.icheatmasstransfer.2015.12.016
http://dx.doi.org/10.1016/j.camwa.2014.01.004
http://dx.doi.org/10.1016/S0017-9310(97)00260-3


Computation 2023, 11, 184 20 of 20

13. Huang, C.; Jan-Yuan, Y. An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat
capacity. Int. J. Heat Mass Transf. 1995, 38, 3433–3441. [CrossRef]

14. Parthasarathy, S.; Balaji, C. Estimation of parameters in multi-mode heat transfer problems using Bayesian inference–Effect of
noise and a priori. Int. J. Heat Mass Transf. 2008, 51, 2313–2334. [CrossRef]

15. Gnanasekaran, N.; Balaji, C. A Bayesian approach for the simultaneous estimation of surface heat transfer coefficient and thermal
conductivity from steady state experiments on fins. Int. J. Heat Mass Transf. 2011, 54, 3060–3068. [CrossRef]

16. Kaipio, J.P.; Fox, C. The Bayesian framework for inverse problems in heat transfer. Heat Transf. Eng. 2011, 32, 718–753. [CrossRef]
17. Ruggeri, F.; Sawlan, Z.; Scavino, M.; Tempone, R. A hierarchical Bayesian setting for an inverse problem in linear parabolic PDEs

with noisy boundary conditions. Bayesian Anal. 2017, 12, 407–433. [CrossRef]
18. Iglesias, M.; Sawlan, Z.; Scavino, M.; Tempone, R.; Wood, C. Bayesian inferences of the thermal properties of a wall using

temperature and heat flux measurements. Int. J. Heat Mass Transf. 2018, 116, 417–431. [CrossRef]
19. Alifanov, O.M. Inverse Heat Transfer Problems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.
20. Ozisik, M.N. Inverse Heat Transfer: Fundamentals and Applications; Routledge: Abingdon, UK, 2018.
21. Lesnic, D. Inverse Problems with Applications in Science and Engineering; CRC Press: Boca Raton, FL, USA, 2021.
22. Kaipio, J.; Somersalo, E. Statistical and Computational Inverse Problems; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2006; Volume 160.
23. Skeel, R.D.; Berzins, M. A method for the spatial discretization of parabolic equations in one space variable. SIAM J. Sci.

Stat. Comput. 1990, 11, 1–32. [CrossRef]
24. Craven, P.; Wahba, G. Smoothing noisy data with spline functions. Numer. Math. 1978, 31, 377–403. [CrossRef]
25. Broyden, C.G. The Convergence of a Class of Double-Rank Minimization Algorithms. J. Inst. Math. Applic. 1970, 6, 76–90.

[CrossRef]
26. Fletcher, R. A New Approach to Variable Metric Algorithms. Comput. J. 1970, 13, 317–322. [CrossRef]
27. Goldfarb, D. A Family of Variable Metric Updates Derived by Variational Means. Math. Comput. 1970, 24, 23–26. [CrossRef]
28. Shanno, D.F. Conditioning of Quasi-Newton Methods for Function Minimization. Math. Comput. 1970, 24, 647–656. [CrossRef]
29. Marelli, S.; Sudret, B. UQLab: A framework for uncertainty quantification in Matlab. In Vulnerability, Uncertainty, and Risk:

Quantification, Mitigation, and Management; American Society of Civil Engineers: Reston, VS, USA, 2014; pp. 2554–2563.
30. Iglesias, M.; Sawlan, Z.; Scavino, M.; Tempone, R.; Wood, C. Ensemble-marginalized Kalman filter for linear time-dependent

PDEs with noisy boundary conditions: Application to heat transfer in building walls. Inverse Probl. 2018, 34, 075002. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/0017-9310(95)00059-I
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.08.031
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.01.028
http://dx.doi.org/10.1080/01457632.2011.525137
http://dx.doi.org/10.1214/16-BA1007
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.09.022
http://dx.doi.org/10.1137/0911001
http://dx.doi.org/10.1007/BF01404567
http://dx.doi.org/10.1093/imamat/6.1.76
http://dx.doi.org/10.1093/comjnl/13.3.317
http://dx.doi.org/10.1090/S0025-5718-1970-0258249-6
http://dx.doi.org/10.1090/S0025-5718-1970-0274029-X
http://dx.doi.org/10.1088/1361-6420/aac224

	Introduction
	Methodology
	Approach 1: Integral Approach
	Approach 2: Numerical Approach
	Optimization Strategy

	Numerical Study
	Dataset 1
	Dataset 2
	Dataset 3

	Uncertainty Quantification
	Numerical Example 1
	Numerical Example 2

	Conclusions
	References

