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Abstract: Infectious diseases are one of the most important problems of the modern world, for
example, the periodic outbreaks of coronavirus infections caused by COVID-19, influenza, and many
other respiratory diseases have significantly affected the economics of many countries. Hence, it
is therefore important to minimize the economic damage, which includes both loss of work and
treatment costs, quarantine costs, etc. Recent studies have presented many different models describing
the dynamics of virus spread, which help to analyze the epidemic outbreaks. In the current work
we focus on finding solutions that are robust to noise and take into account the dynamics of future
changes in the process. We extend previous results by using a nonlinear model-predictive-control
(MPC) controller to find effective controls. MPC is a computational mathematical method used in
dynamically controlled systems with observations to find effective controls.

Keywords: epidemic process; SIIR model; MPC controller; effective control

1. Introduction

Infectious diseases are some of the modern world’s most important problems, e.g., in-
fluenza, the periodic outbreaks of coronavirus infections caused by COVID-19, and many
other respiratory diseases have significantly affected the economies of many countries
(lockdowns, masks, and reduced production efficiency) [1,2]. It is therefore important to
minimize the economic damage, which includes both loss of work and treatment costs.
Recent studies have presented many different models describing the dynamics of virus
spread, which help to analyze and explain epidemic outbreaks [3,4]. Previously, it was
shown that several infections can circulate in the population at the same time. In this case,
the controlled Susceptible–Infected–Recovered model with multiple infected subgroups
can be used [5]. The solution of this model is usually found by using classical optimality
criteria, e.g., the Pontryagin’s maximum principle [6]. In this study, we focus on finding so-
lutions that are robust to noise and take into account the dynamics of future changes in the
process. We extend previous results by using a nonlinear model-predictive-control (MPC)
controller to find effective controls [7]. MPC is a computational mathematical method used
in dynamically controlled systems with observations to find effective controls.

It has been shown that several virus species, or several different virus strains of the
same species, can circulate simultaneously in a population. In this case, the subpopulation
of infected individuals can be divided into several subgroups. In our study, two types
of virus were considered to simplify the calculations, but the results obtained can be
generalized to a larger number of circulating strains.

Experience with influenza epidemics and the SARS-CoV-2 pandemic has shown that
there can be several waves of illness in a population during a single epidemic season.
To reduce the morbidity of an epidemic wave, the government and health authorities apply
various measures to prevent and contain the epidemic. The use of different preventive
and curative measures during a single wave reduces the number of cases and the rate at
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which the virus spreads in the population. Thus, the rise of the disease in the next wave
of the epidemic begins with new initial states of the system. A review of the literature led
to the idea of using predictive control models to develop effective control that takes into
account changes in the environment. MPC controllers allow for the resulting control to be
adapted by dividing the entire time interval into smaller sub-intervals. At each interval,
the control system is checked to see if the constraints are satisfied, and if not, the control
action is adjusted.

The main applications of this method are in the petrochemical [8], woodworking [9],
and energy [10,11] industries, where, among other things, the stability of the obtained
controllers and the possibility of their automatic adjustment are important. The MPC
controller finds a solution in the form of piecemeal functions on the control interval, but the
optimization problem is solved over a larger time interval—the forecast horizon. The MPC
controller finds the solution in the form of piecewise constant functions on the control
interval, but the optimization problem is solved on the forecast horizon.

As the main contribution of this work, we formulated a control problem and solved it
using an MPC controller, a series of numerical experiments are carried out to confirm the
effectiveness of the solutions obtained by the MPC controller for the SIIR model.

The paper is organized as follows. Section 2 presents the epidemic models and
modified infection rate parameter. Section 3 shows the application of MPC-controllers to
a SIIR epidemic model. In Section 4, we use numerical simulation to illustrate our results.
The paper is concluded in Section 5.

2. Epidemic Process in Total Urban Population

Our model is based on the extended Susceptible–Infected–Recovered model with two
types of viruses, which circulate simultaneously in an urban population [6]. A size of
population is equal to N. According to these assumptions, we can consider four groups:
the Susceptible, the Infected by virus V1, the Infected by virus V2, and the Recovered
group. Susceptible is a group of people who are not infected by viruses, but can be infected
by one or both types of viruses and who have no immunity to the viruses. Depending
on the viral strength, we observe that the number of people infected by virus 1 or by
virus 2 can be different, and people infected by virus V1 or V2 belong to the subgroup
Infected. The Recovered subgroup consists of people who have recovered from the infection.
The mixing of populations allows for viruses to spread quickly, and each person in the
population is assumed to have an equal probability of coming into contact with others.
Therefore, when an infected person interacts with a susceptible person, the virus can spread.
A virus with higher virulence, we assume, will have a higher probability of success in
spreading when an encounter occurs between the infected and the susceptible. The scheme
of process is represented in the Figure 1.

We model the spread of the virus in the population based on the classical SIR epi-
demiological model, where a system of differential equations is used to describe the
proportion of the population as a function of time. Then, at time t, nS(t), nI1(t), nI2(t),
and nR(t) correspond to the fractions of the population that are Susceptible, Infected by
virus v1, Infected by virus v2, and Recovered, respectively, and for all t the condition

N = nS(t) + nI1(t) + nI2(t) + nR(t) is justified. Define S(t) = nS(t)
N , I1(t) =

nI1 (t)
N , I2(t) =

nI2 (t)
N , R(t) = nR(t)

N as proportions of Susceptible, Infected, and Recovered. At the beginning of
the epidemic t = 0, most people in the population belong to the susceptible subpopulation,
a small group in the total population is infected and other people are in the recovered
subpopulation. Therefore, initial states are 0 < S(0) = S0 < 1, 0 < I1(0) = I0

1 < 1,
0 < I2(0) = I0

2 < 1, R(0) = 1− S0 − I0
1 − I0

2 .
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We have extended the simple SIR model introduced by [12] to describe the situation
with two virus types:

Ṡ(t) = −δ1S(t)I1(t)− δ2S(t)I2(t);
İ1(t) = (δ1S(t)− σ1 − u1(t))I1(t);
İ2(t) = (δ2S(t)− σ2 − u2(t))I2(t);
Ṙ(t) = (σ1 + u1(t))I1(t) + (σ2 + u2(t))I2(t);

(1)

where δi are infection rates for virus Vi, i = 1, 2, σi are recovery rates (see Figure 1).
Infection rate is defined as a product of the contact rate l and transmissibility of infection,
i.e., probability of transmission infection during the contact, δi0

δi = lδi0(
nIi

N
).

Infection rate is integrated into the evolution of mutation process to epidemics in the
urban population.

Figure 1. Diagram of the two virus propagation model.

Medical treatment or quarantine reduces the number of the infected individuals in the
urban population. These prevention measures can be interpreted as control parameters in
the system defined as u = (u1, u2); here, ui is a fraction of the infected which are quaran-
tined or under intensive medical treatment. Recovered rates are inversely proportional to

disease duration T, hence σi =
1
T

.

The objective function: We will minimize the overall cost in time interval [0, T] [13–16].
At any given t following costs exist in the system:

• fi(Ii(t)), i = 1, 2 is a function measuring the direct costs of infection, with a non-
decreasing, twice differentiable function, such that fi(0) = 0, fi(Ii(t)) > 0 for Ii(t) > 0.
These costs can be interpreted as the price the government or medical organization
pays for the health system to treat the infected and increase the probability of recovery
for the treated individuals. Infected individuals who are not detected because they
are asymptomatic are not treated, and therefore there are no direct costs for them.

• The treatment or medical cure of those infected produces costs for society. The func-
tions hi(ui(t)) represents the costs of treating the infected to keep them out of the labor
market until recovery. The function hi(ui(t)) is increasing on the argument ui(t), is
twice differentiable, and is such that hi(ui(0)) = 0.

• The function g(R(t)) is a benefit rate. These are the bonuses that society receives from
Recovered individuals who have returned to work and started contributing to society.
The function g(t) is non-decreasing and differentiable and g(0) = 0.
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• Constants eI1 , eI2 , eR represent the costs and benefit for Infected and Recovered in the
end of the epidemic.

Aggregated system costs is given by

J =
T∫

0

[ f1(I1(t)) + f2(I2(t))− g(R(t)) + h1(u1(t)) + h2(u2(t))] dt+

eI1 I1(T) + eI1 I2(T)− eRR(T).

(2)

and the optimal control problem is to minimize the cost, i.e.,

min
{u1,u2}

J

To simplify the analysis, we consider the case where eI1 = eI1 = eR = 0.
Here, we assume that as a control parameters which help to reduce numbers of infected

in human population, medical treatment or isolation can be considered, then define variable
u = (u1, u2) as control 0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1, for all t.

2.1. SIIRS Models

The SIIR models discussed in the previous section are best suited to describe epidemic
processes in which viruses mutate slowly. Because of the small number of mutations,
individuals can develop lifelong immunity to the virus. However, there are viruses that
mutate rapidly and for these, SIIRS (Susceptible–Infected–Recovered–Susceptible) models
have been developed (see Figure 2) to account for the decline of immunity in the population
over time.

The system of differential equations describing the dynamics of state change is equal to
Ṡ(t) = γR(t)− δ1S(t)I1(t)− δ2S(t)I2(t),
İ1(t) = (δ1S(t)− σ1 − u1)I1(t),
İ2(t) = (δ2S(t)− σ2 − u2)I2(t),
Ṙ(t) = (σ1 + u1)I1(t) + (σ2 + u2)I2(t)− γR(t).

(3)

Here, as in the SIIR model, the parameters δi, σi, i = 1, 2 are responsible for the intensity
of infection and cure, ui —the proportion of infected people on medication, and γ —the
intensity of immune decline in the population. The objective function for such tasks is no
different from (2).

Figure 2. SIIRS model diagram.



Computation 2023, 11, 173 5 of 20

Note that due to the gradual decline of immunity, the epidemic process in the SIIRS
problem can continue indefinitely. For this reason, when solving this problems we should
choose large values for T. However, in such a case there is a risk (due to the high mutation
rate of viruses) that the model parameters will no longer be relevant. Therefore, methods
that can adapt to changes in the process by predicting its behavior can be effective in
solving such problems.

2.2. SWIIRS Model

In 2020, the SWIIRS (Susceptible–Warned–Infected–Recovered–Susceptible) model
was proposed, which takes into account citizens’ awareness of the epidemic [17]. This
model divides the population into five groups instead of four. An additional group of
individuals is the group of warned W individuals who are aware of the virus (see Figure 3).
This approach allows a more accurate description of epidemic processes in large countries,
as the speed of spread of the virus often depends not only on the characteristics of the virus
itself, but also on the behavior of members of the population.

Figure 3. Diagram of the SWIIRS model.

The changes in population groups for the controlled SWIIRS model are described by
a system of five differential equations:

Ṡ(t) = γR(t)− δS
1 S(t)I1(t)− δS

2 S(t)I2(t)− (ηW(t) + u3)S(t),
Ẇ(t) = (ηW(t) + u3)S(t)− (δW

1 I1(t) + δW
2 I2(t) + σ3)W(t),

İ1(t) = (δS
1 S(t) + δW

1 W(t)− σ1 − u1)I1(t),
İ2(t) = (δS

2 S(t) + δW
2 W(t)− σ2 − u2)I2(t),

Ṙ(t) = (σ1 + u1)I1(t) + (σ2 + u2)I2(t) + σ3W(t)− γR(t).

(4)

In the system (4), the constants δS
i and δW

i describe the infection rates for groups S and
W, respectively, and σi– the cure rate i = 1, 2. The value σ3 is responsible for the probability
that a knowledgeable individual will acquire immunity to viruses (e.g., go to a health
facility to get a vaccine). The intensity of the decline in immunity is described by γ. Two
parameters are responsible for informing (warning) members of the population:

• Parameter u3—percentage of susceptible individuals informed by the media (be-
come Warned);

• Parameter η—probability of informing the susceptible individual when communicat-
ing with the warned individual.
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2.3. Controllable Infection Rate Parameter

Consider a model (1) with one virus Ii and let pi be the probability of virus transmission
Vi from a diseased individual to a susceptible one, and l be the average number of contacts
of an individual (with other members of the population) per unit of time. Consider
a random contact of a susceptible individual. Infection with the virus will only occur if two
events occur simultaneously: the contact was with the infected individual, and the virus
was transmitted on contact.

Define two incompatible events:

• Event A— a susceptible individual becomes infected through one of an l contacts;
• Event B—with a similar number of contacts, infection will not occur.

Obviously that events A and B form a complete group of events (see Figure 4), then

p(A) + p(B) = 1. (5)

Figure 4. The graph of outcomes.

The event B will only occur if there is no infection at any of the l contacts. In other words

p(B) = (1− pi Ii(t))
l . (6)

From Equations (5) and (6) we see that the probability of transmission to a susceptible
individual by l contact with infected individuals can be defined as

p(A) = 1− (1− pi Ii(t))
l . (7)

The same formula can be obtained in another way. The probability of the event A is
given by

p(A) = pi Ii(t) + (1− pi Ii(t))pi Ii(t) + (1− pi Ii(t))
2 pi Ii(t)+

(1− pi Ii(t))
l pi Ii(t) =

pi Ii(t)
[
(1− pi Ii(t))

l − 1
]

−pi Ii(t)
= 1− (1− pi Ii(t))

l .

(8)

This probability p(A) is called the modified infection rate parameter and it is denoted
by δ̃i(Ii(t), l).

Let us redefine ui(·) (intensive virus treatment) as ui1(·). Let us introduce two types
of control into the resulting system: isolation of infected individuals and reduction in the
number of contacts in the whole system. Let ui2(·) be the fraction of infected individu-
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als isolated, and ul(·) be the fraction of contacts prevented by reducing the mobility of
individuals in the whole population. In this case we obtain

δ̃i(Ii(t), l, ui2(t), ul(t)) =
(
1− pi Ii(t)(1− ui2(t))

)l(1−ul(t)), (9)

where 0 ≤ ui2(t), ul(t) ≤ 1. Then the system of differential equations of the corresponding
single-variable SIR problem is

Ṡ(t) = −
(
1− pi Ii(t)(1− ui2(t))

)l(1−ul(t))S(t),

İi(t) =
(
1− pi Ii(t)(1− ui2(t))

)l(1−ul(t))S(t)− (σ1 + ui1(t))Ii(t),
Ṙ(t) = (σ1 + ui1(t))I1(t).

(10)

If we perform similar transformations to (8) for the SIIR dual virus model, the calcu-
lated formulae for the controllable infection parameters are as follows

δ̃i = δ̃i(I1(t), I2(t), l, u12 , u22 , ul)

=
pi Ii(t)(1− ui2)

[(
1− p1 I1(t)(1− u12)− p2 I2(t)(1− u22)

)l(1−ul) − 1
]

−p1 I1(t)(1− u12)− p2 I2(t)(1− u22)
,

(11)

where i = 1, 2. If we substitute these parameters into the system (1), the differential
equations take the following form:

Ṡ(t) = −δ̃1S(t)− δ̃2S(t),
İ1(t) = δ̃1S(t)− (σ1 + u1)I1(t),
İ2(t) = δ̃2S(t)− (σ2 + u2)I2(t),
Ṙ(t) = (σ1 + u1)I1(t) + (σ2 + u2)I2(t).

(12)

For the introduced controls we also need to redefine the cost functions. Let h12(u12 , I1),
h22(u22 , I2), hl(ul) be non-reducing functions corresponding to the costs of the controls u12 ,
u22 , and ul . Then the function (2) takes the form

J̃ =
T∫
0
[ f1(I1(t)) + f2(I2(t))− g(R(t)) + hl(ul(t)) + h11(u11(t))+

h12(u12(t) + h21(u21(t)) + h22(u22(t)] dt.
(13)

3. MPC Controllers

Model predictive control (MPC) is a set of methods for finding effective control based
on model prediction. The basic idea of MPC is to estimate the future behavior of the
controlled system at a finite time interval and to compute an effective control signal that
minimizes a given objective function, given the constraints on the system (see Figure 5).

Figure 5. Diagram for Model-Predictive-Control algorithm.
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The next algorithm of the model-predictive-control method includes the follow-
ing steps:

1. Modeling of an object or process using mathematical and computer modeling techniques;
2. Defining the main objectives to be achieved by management, selecting the forecast-

ing horizon;
3. Predicting the behavior of the process under the influence of the control signal;
4. Find an effective control signal, taking into account the full range of constraints

imposed on the control and manipulated variables;
5. Select the control horizon in which the effective control found is applied;
6. Measuring the actual process states at the end of the control horizon, which are taken

as the new initial conditions;
7. Shift the forecast horizon by the size of the management horizon and repeat steps 3–6.

3.1. Linear Prediction Model

We consider a linear controllable and observable finite-difference system:

x(t + 1) = A(t)x(t) + B(t)u(t),
y(t) = C(t)x(t), t ∈ [0, T],

u(t) ∈ U. (14)

where A(t), B(t), C(t) are some matrix functions of dimensions n× n, n×m, and n× k,
respectively, U is set of valid controls (is a subset of piecemeal functions), and [0, T] is
a given time interval.

Denote by xr, ur the reference values of state and control variables. The MPC is
a computational tool that finds the minimum either of its built-in target functionality (15)
or of a custom function that the user must describe. Efficient control is determined using
numerical Knows-What-It-Knows algorithms (KWIK) [18].

T∫
0

〈wx, (x− xr)
2〉+ 〈wu, (u− ur)

2〉dt, t ∈ [0, T], (15)

where wx and wu weight vectors for variables x and u. However, the system (1) should
be transformed to have a possibility to apply the MPC controller. In our case we find
a control u(t) that provides the minimum to the objective function (2). The system (1)
must be linearized before the MPC can be used. The predicted values are determined by
the formula:

y = Gx(t) + Hv + Fu(t), where (16)

• x(t), u(t)—the known current states and controls of the system,

• y =


y(t + 1)
y(t + 2)

...
y(t + N)

—model prediction,

• v =


v(t + 1)
v(t + 2)

...
v(t + N)

—planned control signals,

• H =


0 0 ... 0

CB 0 ... 0
... ... ... ...

CAN−2B CAN−3B ... 0

,
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• G =


CA
CA2

...
CAN

,

• F =


CB

CAB
...

CAN−1B

.

The solution of the obtained problem is carried out using standard methods for solving
quadratic programming problems. Let

v∗ =


v∗(t + 1)
v∗(t + 2)

...
v∗(t + N)

 (17)

solution of the problem (15), then v∗(t + 1) will be called the effective control for the
original system (14) on the interval [t, t + 1] obtained using MPC method. After applying
the control, we obtain the new initial data x(t + 1) and u(t + 1) to make the following
forecast and search for an effective control on the interval [t + 1, t + 2].

3.2. Linearization of SI1 I2R Problem

In the current section, we discuss the application of the MPC controller to the extended
SI1 I2R system [19].

Suppose, that the initial states for all states S(0), I1(0), I2(0), R(0) are known. Other-
wise, we can always measure it. Define SIIR(0) as a vector of initial states.

SI1 I2R(0) =


S0

I0
1

I0
2

R0

. (18)

Another assumption is that the initial control u(0) = u0 is defined. We divide the
initial period of time [0, T] into k equal parts, then the objective function (2) by the integral
property can be written as:

J =
T∫
0
[ f1(I1(t)) + f2(I2(t))− g(R(t)) + h1(u1(t)) + h2(u2(t))]dt

= J1 + . . . + Jk, where

Ji =
Ti∫

Ti−1

[ f1(I1(t)) + f2(I2(t))− g(R(t)) + h1(u1(t)) + h2(u2(t))]dt.

(19)

Here, the total length of time interval is divided into several segments [Ti−1, Ti], where

Ti−1 =
(i− 1)T

k
and Ti =

iT
k , i = 1, k.

Obviously, that min
u∈U

J1 + min
u∈U

J2 + ... + min
u∈U

Jk ≤ min
u∈U

J. Then, instead of the original

problem, we consider k-th sub-interval with objective function of the form (20), taking into
account the system (1):

Ji → min
u∈U

. (20)

The initial conditions for the first iteration are defined in (18), for each subsequent
problem they can be found from the previous task as:
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SI1 I2R(Ti) =


S(Ti)
I1(Ti)
I2(Ti)
R(Ti)

 =


Si

Ii
1

Ii
2

Ri

, ui = u(Ti), i = 1, k− 1− iteration number. (21)

Let us redefine SI1 I2R(t) =


S(t)
I1(t)
I2(t)
R(t)

 as a vector x(t) =


x1(t)
x2(t)
x3(t)
x4(t)

. The system (1)

is also valid for initial values, i.e.,

ẋi
1 = f1(xi, ui, t) = −(δ1xi

2 + δ2xi
3)xi

1;
ẋi

2 = f2(xi, ui, t) = (δ1xi
1 − σ1 − ui

1)xi
2;

ẋi
3 = f3(xi, ui, t) = (δ2xi

1 − σ2 − ui
2)xi

3;
ẋi

4 = f4(xi, ui, t) = (σ1 + ui
1)xi

2 + (σ2 + ui
2)xi

3.

(22)

Consider some disturbance of this system:

• x̃(t) = xi(t) + ∆x(t), where ∆x(t)—state variable variation vector;
• ũ(t) = ui(t) + ∆u(t), where ∆u(t)—control variable variation vector.

Then, ẋi(t) + ∆ẋ(t) = f (x̃, ũ, t). The right hand sides of system (22) is decomposed
into a Taylor row:

ẋi(t) + ∆̇x(t)

= f (xi(t), ui(t), t) +
d f
dx

∣∣∣∣
xi ,ui

∆x(t) +
d f
du

∣∣∣∣
xi ,ui

∆u(t) + O((∆x)2, (∆u)2). (23)

Here, O((∆x)2, (∆u)2) is the second-order residual term of smallness. Subtract from (22)
and obtain

∆̇x(t) =
d f
dx

∣∣∣∣
xi ,ui︸ ︷︷ ︸

Ai(t)

∆x(t) +
d f
du

∣∣∣∣
xi ,ui︸ ︷︷ ︸

Bi(t)

∆u(t). (24)

As a result, the linearized controlled system is obtained. We substitute the solution
(x, u) of the linearized system into the original model (1), (20) and obtain the following value
of the objective function Ji(x, u) = Ji. Let (x∗, u∗) be a solution that provides a minimum
to the functional (20), then we can denote by an error in the solution the value of the εi,
which is determined by the formula:

εi = |Ji(x, u)− Ji(x∗, u∗)|, i = 1, k. (25)

Going to the limit k→ ∞, we have:

lim
k→∞

ẋi = Aix + Biu => lim
k→∞

(x, u) = (x∗, u∗) => lim
k→∞

εi = 0. (26)

This means that the greater the number of split points, the more accurate the solution
will be.

We have conducted a series of numerical simulations to check whether the MPC
controller solution converges to the optimal solution as the parameter k increases (the other
parameters remain the same). It can be seen that all the costs (standard, efficient, and
optimal) increase as k increases. This is due to the fact that the accuracy of the integral
calculation in the function increases. In test no. 2, the value of the effective costs is extremely
high, due to the fact that it is recommended to use the value k ≥ T. Starting from test no. 5,
the values of effective costs and optimal costs differ insignificantly, so in practice we use
the values k = 2T or k = 4T. However, the program execution time in the second case (test
no. 9) is 10 times longer than in the first case (test no. 5).
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3.3. Nonlinear MPC-Controller

Figure 6 shows the work of the nonlinear MPC controller [20]. The MPC controller
construct the efficient control (u∗)i and predictive values of the objective function using
a vector of outputs yi of the system. The main difference between nonlinear and linear
MPC controller is the linearization of the optimization problem before the application of
the solver [21,22].

Figure 6. Diagram of the nonlinear MPC controller.

The received control is inputted to the dynamic system, in the next iteration MPC-
controller obtains another output. The process of constructing a solution is complete when
the control horizon is reached. The final effective control strategy is chosen to minimize the
objective function on the predictive horizon. Since numerical algorithms are used to find
the solution, the resulting effective value can be suboptimal.

4. Numerical Simulations

This section presents the results of a numerical simulation that corroborates our
theoretical results. The numerical experiments are aimed at obtaining effective treatment
strategies using nonlinear MPC controllers. We selected MATLAB as our platform for
programming and numerical calculations for a series of experiments. MATLAB offers
an extensive library of the model-predictive-control method, including various examples.
Nonlinear-MPC controllers were employed in our study. These controllers utilize the
linearization algorithm described in the article to find solutions. Nonlinear MPC is adequate
to address these issues. However, larger systems may demand more precise predictive
models based on machine learning and neural networks. For first three experiments, two
variants of the SARS-CoV-2 virus were selected for study: Alpha [23] and Omicron [24].
The epidemic situation was considered for a period of 180 days (6 months). During this
period, six MPC controllers were used sequentially with a forecast horizon of 30 days
(1 month) and a control horizon of 21 days (3 weeks). Time dependence of MPC controller
accuracy and performance on k parameter are shown in Table 1. The values of the main
system parameters are shown in Table 2.

The serial application of multiple nonlinear MPC controllers allows the constraints, sys-
tem parameters and objective function coefficients to be adjusted step by step. To simplify
the calculations, we will use the same parameters in each iteration of the process.
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Table 1. Dependence of MPC controller accuracy and performance on k parameter.

Test T k Standard Costs Effective Costs Optimal Cost Operation Time

1 180 60 4264 825 803 5.31 s
2 180 90 4273 1017 817 9.64 s
3 180 120 4278 851 839 9.17 s
4 180 180 4282 860 856 15.00 s
5 180 360 4286 866 865 1 min 0.72 s
6 180 450 4286 868 867 1 min 58.87 s
7 180 540 4287 870 870 4 min 6.98 s
8 180 630 4287 870 870 6 min 20.63 s
9 180 720 4287 870 870 10 min 16.43 s

Table 2. Values of system parameters and initial states for Experiments 1, 2, and 3.

Parameter Value Characteristics

Dynamic System Settings

n 4 Number of system states
r 4 Number of system outputs
m 2 Number of control variables

Time parameters

Tl 6 Number of time intervals
Ts 0.25 Step of the controller

PH 30 Prediction Horizon
CH 21 Control Horizon

Parameters of the SIIR model

1 (Exp. 1) Average number of contacts per day
k 3 (Exp. 2) (Exp. stands for Experiment)

10 (Exp. 3)

Virus 1 (SARS-CoV-2 Alpha)

δ1 0.256 Infection rate of Virus 1
σ1 0.025 Recovery rate of Virus 1

Virus 2 (SARS-CoV-2 Omicron)
δ2 0.517 Infection rate of Virus 2
σ2 0.07 Recovery rate of Virus 2

Cost function parameters

f1 134.5 Infection costs for virus 1
f2 134.5 Infection costs for virus 2
h1 192.07 Treatment costs for virus 1
h2 192.07 Treatment costs for virus 2

Experiment 1. In the first experiment, we considered the epidemic process with
a small number of contacts, which is possible in cases where most of the infected comply
with the quarantine. It can be seen that applying control is having a positive impact on
stopping the virus spreading (Figure 7). On the effective control graph (Figure 8), you can
notice “jumps” due to the fact that a new MPC controller is connected each new month
(30th day). However, the resulting control greatly reduces the damage from the epidemic
compared to a situation where we do not control the epidemic process. So the cost in
the uncontrolled case is J0 = 3159 monetary units (m.u.) and with the effective strategy
Je f f = 1016 m.u. The benefit of using control is therefore 2143 m.u.
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Figure 7. Experiment 1. Behavior of SIIR model with the nonlinear-MPC controller. Average number
of contacts per day is equal to 1.

Figure 8. Experiment 1. Structure of the effective control and aggregated system costs in uncontrolled
and controlled cases.

Experiment 2. A second experiment (Figures 9 and 10) was run with the average
number of contacts per day k = 3. This experiment is the most different from the others.
The main wave of the epidemic does not occur in the first few days, but only at the
beginning of the third month. The highest costs are in the same period. After t = 60,
the effective control is similar to that of experiments 1 and 3. With this strategy, it is possible
to reduce the cost of the epidemic from J0 = 3613 m.u. to Je f f = 1045 m.u., which saves
2568 monetary units.

Figure 9. Experiment 2. Behavior of SIIR model with the nonlinear MPC controller. Average number
of contacts per day is equal to 3.

It can also be seen that as the average number of contacts increased, so did the values
of the objective functions. Just as importantly, the benefits of using MPC controllers have
also increased.
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Figure 10. Experiment 2. Structure of the effective control and aggregated system costs in uncontrolled
and controlled cases.

Experiment 3. In the third simulation the number of contacts is k = 10, which
approximates the real situation. Figure 11 shows that with a large number of contacts,
almost all agents are infected by t = 5. However, when efficient control is used, the infection
peaks are significantly reduced (from 0.63 to 0.29 and from 0.26 to 0.14). As in the previous
experiments, the use of efficient control is economically beneficial, reducing costs from
J0 = 4282 m.u. to Je f f = 860 m.u. The benefit of using an effective strategy is 3422 m.u.
(see Figure 12).

Figure 11. Experiment 3. Behavior of SIIR model with the nonlinear MPC controller. Average number
of contacts per day is equal to 10.

Figure 12. Experiment 3. Structure of the effective control and aggregated system costs in uncontrolled
and controlled cases.

It should also be noted that despite the largest value of k the costs of using effective
management in Experiment 3 turned out to be the smallest. This may be due to the fact
that when solving the problem, they are linearized and the accuracy of the solution can
vary from the parameters of the problem. At the same time, all three experiments showed
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that effective control can reduce the economic damage from the epidemic, which shows the
practical importance of using the model predictive control in SIIR problem.

Experiment 4. In the fourth experiment we examined the SIIR model with the data
taken from the paper “Optimal control of heterogeneous mutating viruses” [5]. Table 3
shows the parameter values used in the simulation.

Table 3. Values of system parameters and initial states for Experiment 4.

Parameter Value Description

Characteristics of the virus

δ1 0.4 Infection rate of V1
δ2 0.5 Infection rate of V2
σ1 0.001 Recovery rate from V1
σ2 0.002 Recovery rate from V2

Cost functions

f1(I1) 5I1 Infection costs of V1
f2(I2) 6I2 Infection costs of V2
g(R) 0.1R Benefit rate
h1(u1) 15u2

1 Cost of treatment u1
h2(u2) 10u2

2 Cost of treatment u2

Initial states

S(0) 0.50 Fraction of Susceptible
I1(0) 0.32 Fraction of Infected with V1
I2(0) 0.18 Fraction of Infected with V2
R(0) 0.00 Fraction of Recovered

Values of MPC controller

Tl 1 Number of time intervals
Ts 0.5 Step of the controller
PH 90 Prediction horizon
CH 90 Control horizon

Figure 13 shows the population states in the uncontrolled and controlled cases. It can
be seen that the use of the control found with MPC significantly reduces the number of
infections. In the uncontrolled case, the maximum proportion of the number of infections
is I1max = 0.594, I2max = 0.386, and in the controlled case, I1max = 0.32, I2max = 0.18,
corresponding to the initial proportion of infected in the population.

Figure 13. Experiment 4. Behavior of SIIR model with the MPC controller.

After the computer simulation, the solution of the formulated problem was obtained
and the values of the functional were found (see Figure 14).

The strategies that increased to u1 = 0.26 and u2 = 0.24 during the first three days of
the epidemic and then decreased to zero were found to be effective. The resulting control
signals are similar in appearance to the continuous controls presented in the experiments of
this paper. The aggregated costs are equal to 41.6 m.u. in the controlled case and 227.51 m.u.
in the uncontrolled case. Thus, the benefit of using the control is 185.91 monetary units,
which is slightly less than using the optimal control 189.17 m.u. In Figure 15, we can see
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the structure of the optimal control for the model and the data from this experiment. It
can be observed that the control structure in the case of effective control is similar to the
structure in the case of optimal control.

Figure 14. Experiment 4. Structure of the effective control and aggregated system costs in uncontrolled
and controlled models.

Figure 15. Experiment 4. Structure of the optimal control and comparison of the aggregated costs in
controlled and uncontrolled cases.

Experiment 4 showed that the developed software package finds near-optimal so-
lutions to classical SIIR problems and can be used as an alternative to classical optimal
control methods.

Experiment 5. As the software implementation of the MPC method showed good
accuracy for standard tasks, Experiment 5 was conducted using a modified SIIRS model
(with controlled infection rate parameter). Data for the experiment were obtained from
sources such as the World Health Organization, Our World in Data, and Worldometer.
The parameters of the experiment are shown in Table 4.

Using effective strategies (see Figure 16), it was possible to reduce the maximum
proportion infected with V2 virus from 0.6 to 0.3, but the proportion infected with V1 virus
increased from 0.34 to 0.38, which is due to the fact that the proportion of people (30% of the
population) who were not infected with V2 virus (due to the measures introduced) managed
to become infected with V1 virus. It can also be seen that from t = 15, the proportion
infected with both viruses does not exceed 1%.

Figure 16. Experiment 5. Behavior of SIIRS model with the nonlinear-MPC controller.
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Table 4. Values of system parameters and initial states for Experiment 5.

Parameter Value Description

Characteristics of the virus

p1 0.256 Infection probability with virus V1 (single contact)
p2 0.517 Infection probability with virus V2 (single contact)
σ1 0.025 Recovery rate from V1
σ2 0.007 Recovery rate from V2
γ 1/120 ≈ 0.0083 Decreasing immunity rate
l 30 Average number of contacts in the population

f1(I1) 135I1 Infection costs of V1
f2(I2) 135I2 Infection costs of V2
g(R) 0 Benefit rate
h11 (u11 ) 192(u11 )

2 Treatment cost u11

h12 (u12 , I1) 94u12 I1 Isolation cost u12

h21 (u21 ) 192(u21 )
2 Treatment cost u21

h22 (u22 , I2) 94u22 I2 Isolation cost u22

hl(ul) 94(ul)
2 Cost of reducing the number of contacts ul

Initial states

S(0) 0.8 Fraction of Susceptible
I1(0) 0.13 Fraction of Infected with V1
I2(0) 0.07 Fraction of Infected with V2
R(0) 0.00 Fraction of Recovered

Values of MPC controller

k 1 Number of controllers
Ts 0.5 Step the controller
PH 45 Forecast horizon
CH 30 Control horizon

By running the computer simulation program, effective controls for the formulated
problem were obtained (see Figure 17). It can be observed that the treatment of individuals
for both viruses takes a maximum value starting from t = 1 and decreases for virus V1
after t = 21 and for virus V1 after t = 18. For V1, a small fraction (u12 = 0.1) of those
infected during [5, 8] are isolated, and after t = 15 the control u12 turns on again, reaching
a maximum value, and turns off after t = 24. For V2, maximum isolation of the infected
occurs at [0, 4], [5, 8], [12, 21], and partial isolation at [9, 11], [29, 30]. Reducing the total
number of contacts was most effective in periods [15, 25].

Figure 17. Experiment 5. Structure of the effective control.

For problems with a modified infection rate parameter, no optimality conditions have
yet been found, so the only way to assess the quality of the solution is the cost savings
provided by the constructed efficient control. For this reason, the values of the target
functional and the total control for the two viruses were calculated for this experiment (see
Figure 18). With the combined effect of all controls it was possible to significantly reduce
the value of the target function from 33,286 to 11,180 m.u. The benefit of using effective
controls was therefore 22,106 m.u.
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Figure 18. Experiment 5. Structure of the effective control for isolated individuals and aggregated
system costs.

Experiment 6. The SWIIRS model was used for Experiment 6, and the main objective
was to construct long term strategies (T ≥ 90) using multiple MPC controllers. The experi-
mental parameter values are available in Table 5.

Table 5. Values of system parameters and initial states for Experiment 6.

Parameter Value Description

Characteristics of the virus

δS
1 0.25 Infection rate for Susceptible (V1)

δS
2 0.3 Infection rate for Susceptible (V2)

δW
1 0.2 Infection rate for Warned (V1)

δW
2 0.25 Infection rate for Warned (V2)

σ1 0.3 Recovery rate from V1
σ2 0.4 Recovery rate from V2
σ3 0.3 Vaccination rate
γ 0.3 Decreasing immunity rate
η 0.15 Information spreading rate

Cost functions

f1(I1) 30I1 Infection costs of V1
f2(I2) 40I2 Infection costs of V2
g(R) 0 Benefit rate
h1(u1) 20u2

1 Treatment cost u1
h2(u2) 25u2

2 Treatment cost u2
h3(u3) 10u2

3 Cost of spreading information u3

Initial states

S(0) 0.85 Fraction of Susceptible
W(0) 0.00 Fraction of Warned
I1(0) 0.11 Fraction of Infected with V1
I2(0) 0.04 Fraction of Infected with V2
R(0) 0.00 Fraction of Recovered

Values of MPC controller

k 6 Number of controllers
Ts 0.5 Step the controller
PH 30 Forecast horizon
CH 20 Control horizon

Figures 19 and 20 show the results of Experiment 6. The effective control plots show
that when several MPC controllers are connected, there are pulses (switching points) in
the control. They are related to the fact that the prediction model is recalculated to a new
prediction interval. You may notice that from the third controller (t = 60) the constructed
controllers have a similar structure. This is reflected both in the behavior of the process and
in the behavior of the total cost function (they become periodic).
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Figure 19. Experiment 6. Behavior of SWIIRS model with the nonlinear MPC controller.

Figure 20. Experiment 6. Structure of the effective control and aggregated system costs.

By applying efficient management, the value of the target function was significantly
reduced from 2918.8 to 177.8 m.u. Thus, the benefit of applying management was 2748 mon-
etary units. It can be seen that model-predictive-control solutions remain effective over
long time intervals, but require the connection of several MPC controllers.

5. Conclusions

In this paper, we have investigated the application of MPC controllers to an extended
SIR model with two different viruses. Model predictive control is one of the ways to achieve
efficient control in dynamically controlled systems. We linearized the system of differential
equations describing the dynamics of the viruses and showed that as the linearization step
is reduced, the accuracy of the solution increases. We carried out a series of numerical
experiments in which we obtained effective strategies whose form is close to the optimal
strategies obtained by Pontryagin’s maximum principle. The experiments also showed that
the effective control has a similar form for different numbers of contacts. It can be seen that
efficient control is much simpler and faster than optimal control and uses fewer resources.
This method can also be used to assess the situation during the spread of epidemics, when
time is of the essence.
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Abbreviation
The following abbreviation is used in this manuscript:

MPC Model Predictive Control
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