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Abstract: The main goal of deformable solid mechanics is to determine the stress–strain state of parts,
structural elements, and their connections. The most accurate results of calculations of this state allow
us to optimize design objects. However, not all models can be solved using exact methods. One such
model is the problem of a layer with cylindrical embedded supports that are parallel to each other
and the layer boundaries. In this work, the supports are represented by cylindrical cavities with
zero displacements set on them. The layer is considered in Cartesian coordinates, and the cavities
are in cylindrical coordinates. To solve the problem, the Lamé equation is used, where the basic
solutions between different coordinate systems are linked using the generalized Fourier method. By
satisfying the boundary conditions and linking different coordinate systems, a system of infinite
linear algebraic equations is created. For numerical realization, the method of reduction is used to
find the unknowns. The numerical analysis has shown that the boundary conditions are fulfilled with
high accuracy, and the physical pattern of the stress distribution and the comparison with results of
similar studies indicate the accuracy of the obtained results. The proposed method for calculating
the stress–strain state can be applied to the calculation of structures whose model is a layer with
cylindrical embedded supports. The numerical results of the work make it possible to predetermine
the geometric parameters of the model to be designed.

Keywords: Lamé equation; embedded supports; cylindrical cavity in a layer; generalized Fourier method

1. Introduction

The main goal of designing structures, machine parts, and mechanisms is to optimize
dimensions and materials. For this purpose, it is very important to choose the most accurate
methods for determining the stress–strain state of a body. However, most 3D models
(especially those with more than three boundary surfaces) do not allow for analytical
methods. In these cases, such a scheme is simplified, or approximate methods are used,
such as the finite element method [1]. However, to use the finite element method, the
model must have finite dimensions, which is not always the case. In addition, approximate
methods do not give confidence in the final result. Therefore, to improve accuracy, tests of
finished elements are performed [2] or a combination of different calculation methods [3].
The use of tests is time-consuming and requires new tests whenever any element parameters
change. Therefore, for complex models, it is relevant to find the most effective application,
combination, or generalization of existing analytical and analytical-numerical methods.

A layer with cylindrical embedded supports can be represented as a layer with cylindri-
cal cavities on which displacements are given or as a layer with cylindrical rigid inclusions
(provided that the loads are balanced). There are many works in the literature on the study
of cylindrical stress concentrators in a body. For example, in [4], a plate with a cylindrical
hole is considered, where metaheuristic optimization algorithms are used to determine the
stress–strain state of a body around stress concentrators. In [5], a semi-analytical polyno-
mial method is used for a similar plate. In the problem, a system of nonlinear algebraic
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equations is created that takes into account the nonlinearity in thickness, and then it is
solved using the Newton–Raphson method. The bending of rectangular plates with a stress
concentrator in the form of a circular cutout is studied in [6] using the complex potential
method. However, the methods used in [4–6] can only be applied to a plane problem with
a stress concentrator located perpendicular to the body surface.

The spatial problem for a slab with a stress concentrator located perpendicular to
the body surface is studied in [7]. The authors investigate the wave field for a layer with
a perpendicular cylindrical hole. The solution is based on a combination of the Laplace
integral transform and the finite integral sin- and cos-Fourier transforms. However, this
method does not allow solving problems for a layer with cylindrical cavities that are parallel
to the layer surfaces.

A combination of analytical and experimental methods has been proposed in [8–11]. For
example, in [8], a layered composite is considered under impact loading. In the analytical
part, the parameters of the displacement vector in each layer are decomposed into a
power series along the transverse coordinate. By way of experiment, the authors study the
maximum displacement of samples under impact loading using an indenter. In [9], a simple
analytical problem is formulated for a similar model in the form of a trigonometric series
expansion. To perform this, the original non-canonical shell is embedded in an auxiliary
canonical form. An auxiliary form for this is the experimental model [10], which reproduces
the process of a bird hitting the surface of a rigid body. An analytical model of multilayer
glazing was developed in [11]. This model is a generalization of the first-order theory,
which allows for transverse shift deformations. In the experimental part, a mathematical
model of an impulsive load is investigated. In the experimental part, the pressure pulse
was studied and a mathematical model was developed. The above methods [8–11] can be
applied to laminated composites with transverse cylindrical inhomogeneities, but they do
not allow to consider longitudinal inhomogeneities.

The problem of determining the stress state in a half-space with longitudinal inho-
mogeneity in the form of a thick-walled pipe was considered in [12]. In this problem, the
generalized Michell solution in a plane system of polar coordinates for radially homoge-
neous bodies is applied. However, the proposed method does not allow for consideration
of the problem in a spatial formulation and cannot sufficiently take into account the layer
boundaries. Another approach to solving problems with longitudinal inhomogeneities
is the Fourier series expansion and the image method. For example, for a slab with a
cylindrical hole, the stress state is calculated based on the Fourier series in [13]. As a result,
the stress distribution is obtained with high accuracy. In [14], the method of images is
used in the problem of wave diffraction for a slab with a cylindrical hole. However, the
methods used in [13,14] can only solve problems for a plane model and take into account a
maximum of three boundary surfaces.

The most effective analytic-numerical method for a spatial problem with many bound-
ary surfaces is the generalized Fourier method [15]. The justification of this method in
terms of the formulas for the transition of the basic solutions of the Lamé equation between
a cylinder and a half-space is presented in [16]. The results of these studies make it possible
to transfer the basic solutions of the Lamé equation from one coordinate system to another.
However, for the case of transition between the Cartesian and cylindrical systems, only the
case when these systems are equally oriented and connected to each other is taken into
account.

Thus, in [17], the problem for an infinite cylinder with four cylindrical cavities parallel
to each other was solved using the generalized Fourier method. The problem for an
elastic cylinder with N parallel cylindrical cavities was solved in [18]. The problem for
a model where cylindrical cavities form a hexagonal structure in a cylinder was solved
in [19], and for a model where 16 cylindrical inclusions are in an elastic cylinder in [20].
Works [17–20] use formulas for the transition of basic solutions only between different
cylindrical coordinate systems. This approach does not allow solving problems for a layer
where the Cartesian system is used.
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This relationship is applied in [21–27], where the generalized Fourier method is also
used. For example, the problem for an elastic half-space with a longitudinal cylindrical
cavity was solved in an actually flat formulation in [21] and in a spatial formulation
in [16]. However, problems for half-space do not take into account the lower surface of
the layer. The lower bound has been considered in the problems for a layer with a single
circular cylindrical cavity or a single elastic cylindrical inclusion in [22–26]. Thus, the
third basic problem of elasticity theory is considered in [22]. In this problem, the stresses
in the cylindrical cavity are set to zero, the lower surface of the layer is rigidly fixed,
and the upper surface of the layer is subjected to a non-zero load. Paper [23] solves the
second basic problem of elasticity theory with a given periodic load. Paper [24] solved
the problem of an infinite elastic layer with an elastic solid cylindrical inclusion and given
displacements on the layer surface. In [25], stresses are set on the layer surfaces, and zero
displacements are set on the inner surface of an embedded cylindrical pipe. In [26], a
calculation methodology is proposed, and a numerical analysis of the stressed state is
performed for a bilayer structure with a cylindrical void between parallel flat surfaces.
However, papers [22–26] do not take into account the formulas for the transition between
basic solutions from one cylindrical coordinate system to another, which does not allow
solving problems with more than one cylindrical stress concentrator. The formulas for
two cylindrical stress concentrators are considered in [27], where a method for solving the
problem for a fiber composite (in the form of a layer with two cylindrical solid inclusions)
is proposed. However, the specified transition formulas in [27] do not take into account the
relationship between the shifted cylindrical coordinate systems (relative to the Cartesian
system of the layer), which does not allow solving problems with three or more stress
concentrators. Additionally, works [21–24,26] study boundary conditions that do not satisfy
the condition for modeling cylindrical supports.

From this point of view, the closest to the present work are publications [25,27], where
displacements are set on the inner cylindrical surface of the pipe, or a rigid cylindrical
inclusion is placed in the layer (under the condition of load balancing). This makes it
possible to compare some of the results obtained in order to assess their reliability.

Thus, the problem of highly accurate determination of the stress state for a layer with
N cylindrical indentations can be solved by employing the analytic-numerical generalized
Fourier method. Infinite layer boundaries and longitudinal cavities will also be taken into
account. However, in contrast to existing works, it is necessary to consider other types of
boundary conditions and to apply formulas for the transition between the layer and the
cylindrical coordinate systems shifted relative to the Cartesian system. Considering the
necessity to calculate such models in practice, it is important and relevant to develop the
most accurate methods for determining the stress–strain state for them.

The purpose of this paper is to:
1. develop a method for solving the problem for a layer with N cylindrical embedded

supports based on the analytical-numerical Fourier method;
2. evaluate the influence of having more than one support on the stress–strain state of

the body;
3. assess the impact of the distance between the supports on the stress–strain state of

the body.

2. Materials and Methods

There is one layer located on N cylindrical embedded supports. Cylindrical embedded
supports will be considered in local cylindrical coordinates (ρp, ϕp, z), p = 1. . . N. as cavities
with zero displacements defined on their surface (Figure 1).

We will consider the layer in the Cartesian coordinate system (x, y, z). We combine
this Cartesian system with the coordinate system of the first cylinder (p = 1, x1 = y1 = 0)
and orient it equally. Distance to the center of the Cartesian coordinate system from the
upper boundary of the layer y = h, from the lower boundary y = −h̃. The surfaces of the
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cylindrical cavities and the surface of the layer must be parallel to each other. The material
of the layer is elastic, isotropic, and homogeneous, meaning it has linear elastic properties.

Computation 2023, 11, x FOR PEER REVIEW 4 of 12 
 

 

 
Figure 1. Layer with rigidly fixed cylindrical cavities. 

We will consider the layer in the Cartesian coordinate system (x, y, z). We combine 
this Cartesian system with the coordinate system of the first cylinder (p = 1, 011 == yx ) 
and orient it equally. Distance to the center of the Cartesian coordinate system from the 
upper boundary of the layer y = h, from the lower boundary hy ~

−= . The surfaces of the 
cylindrical cavities and the surface of the layer must be parallel to each other. The material 
of the layer is elastic, isotropic, and homogeneous, meaning it has linear elastic properties. 

The solution to the Lame equation needs to be found. The stresses 
( ) ( )zxFzxUF hhy ,, 0

==  , ( ) ( )zxFzxUF
hhy ,, 0~~


=−=   are specified on the boundaries of the 

layer, and the displacements ( ) ( )zUzU ppRp
pp

,, 0 ϕ=ϕ
=ρ


 are specified on the boundaries 

of the cylindrical cavities, where 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
z

p
z

pp
pp

z
h
yzy

h
yx

h
yxh

z
h
yzy

h
yx

h
yxh

eUeUeUzU

eeezxF

eeezxF







++=ϕ

τ+σ+τ=

τ+σ+τ=

ϕϕρρ,

, ,

, ,

0

~~~0
~

0

 (1) 

( ) ( ) ( ) ( ) ( ) ( )h
yz

h
y

h
yx

h
yz

h
y

h
yx

~~~
,,, ,, τσττστ  are the given functions of tangential and normal stresses on 

the corresponding boundary surface of the layer; ( ) ( ) ( )p
z

pp UUU ,, ϕρ   are the given 
displacement functions on the corresponding boundary surface of the cavity and along 
the corresponding coordinate axis; , xe


ye


 ,  ze
  are orts of the Cartesian coordinate 

system, ρe


 , ϕe


 , ze


  are orts of the cylindrical coordinate system. For cylinders, these 
functions should decay rapidly to zero along the z axis. For layer boundaries, these 
functions should decay rapidly along the x and z coordinates. 

We take the basic solutions of the Lamé equation in the form proposed in [15]. This 
allows us to obtain an exact solution for a single cylinder or layer. These basic solutions 
are as follows: 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )[ ] ;,,;sign;,,

;;,,

;,;,,

,

,

321=⋅ρλλ=λϕρ

λρ=λϕρ

=μλ

ϕ+λ

ϕ+λ

γ±μ+λ±

keKNzS

eINzR

eNzyxu

mzi
m

mp
kmk

mzi
m

p
kmk

yxzid
kk







 (2) 

Figure 1. Layer with rigidly fixed cylindrical cavities.

The solution to the Lame equation needs to be found. The stresses F
→
U(x, z)|y=h =

→
F

0

h(x, z), F
→
U(x, z)|y=−h̃ =

→
F

0

h̃(x, z) are specified on the boundaries of the layer, and the dis-

placements
→
U
(

ϕp, z
)
|ρp=Rp

=
→
U

0

p
(
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)

are specified on the boundaries of the cylindrical

cavities, where
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F
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yx
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yx
→
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y
→
e y + τ
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yz
→
e z ,

→
U

0

p
(

ϕp, z
)
= U(p)

ρ
→
e ρ + U(p)

ϕ
→
e ϕ + U(p)

z
→
e z

(1)

τ
(h)
yx , σ

(h)
y , τ

(h)
yz , τ

(h̃)
yx , σ

(h̃)
y , τ

(h̃)
yz are the given functions of tangential and normal stresses on the

corresponding boundary surface of the layer; U(p)
ρ , U(p)

ϕ , U(p)
z are the given displacement

functions on the corresponding boundary surface of the cavity and along the corresponding
coordinate axis;

→
e x ,
→
e y,
→
e z are orts of the Cartesian coordinate system,

→
e ρ,

→
e ϕ,

→
e z are orts

of the cylindrical coordinate system. For cylinders, these functions should decay rapidly to
zero along the z axis. For layer boundaries, these functions should decay rapidly along the
x and z coordinates.

We take the basic solutions of the Lamé equation in the form proposed in [15]. This
allows us to obtain an exact solution for a single cylinder or layer. These basic solutions are
as follows:

→
u
±
k (x, y, z; λ,µ) = N(d)

k ei(λz+µx)±γy;
→
Rk,m(ρ, ϕ, z; λ) = N(p)

k Im(λρ)ei(λz+mϕ);
→
S k,m(ρ, ϕ, z; λ) = N(p)

k

[
(signλ)mKm(|λ|ρ) · ei(λz+mϕ)

]
; k = 1, 2, 3;

(2)

N(d)
1 = 1

λ∇; N(d)
2 = 4

λ (ν− 1)
→
e
(1)
2 + 1

λ∇(y·);

N(d)
3 = i

λ rot
(
→
e
(1)
3 ·
)

;N(p)
1 = 1

λ∇;
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N(p)
2 = 1

λ

[
∇
(
ρ ∂

∂ρ

)
+ 4(ν− 1)

(
∇−→e

(2)
3

∂
∂z

)]
;

N(p)
3 = i

λ rot
(
→
e
(2)
3 ·
)

;γ =
√

λ2 + µ2;−∞ < λ,µ < ∞,

where Im(x), Km(x)—modified Bessel functions; ν—Poisson’s ratio;
→
S k,m,

→
Rk,m, k = 1,

2, 3—the external and internal solutions of the Lamé equation for cylindrical surfaces,

respectively;
→
u
(+)

k —solution of the Lamé equation for the Cartesian coordinate system at

y < 0;
→
u
(−)
k —solution of the Lamé equation for the Cartesian coordinate system at y > 0.

To switch between the basic solutions, we will use the following formulas proposed
in [15,16], modified for the shifted cylindrical coordinate system (p 6= 1):

1. transform the basic solutions
→
S k,m of the cylindrical coordinate system shifted by xp

and yp into the basic solutions
→
u
(−)
k (at y > 0) and

→
u
(+)

k (at y < 0) of the Cartesian coordinate
system

→
S k,m

(
ρp, ϕp, z; λ

)
= (−i)m

2

∞∫
−∞

ωm
∓ · e

−iµxp±γyp ·→u
(∓)
k · dµ

γ , k = 1, 3;

→
S 2,m

(
ρp, ϕp, z; λ

)
= (−i)m

2

∞∫
−∞

ωm
∓ ·
((
±m · µ− λ2

γ ± λ2yp

)→
u
(∓)
1 ∓

∓λ2→u
(∓)
2 ± 4µ(1− ν)→u

(∓)
3

)
· e−iµxp±γyp dµ

γ2 ,

(3)

where ω∓(λ,µ) = µ∓γ
λ ; m = 0, ±1, ±2, . . .; xp, yp– coordinates of the shifted local

cylindrical coordinate system (Figure 1);

2. transition from basic solutions
→
u
(+)

k and
→
u
(−)
k of the Cartesian coordinate system to

basic solutions
→
Rk,m of the cylindrical coordinate system

→
u
(±)
k (x, y, z) = eiµxp±γyp ·

∞

∑
m=−∞

(i ·ω∓)m→Rk,m, (k = 1, 3) ;

→
u
(±)
2 (x, y, z) = eiµxp±γyp ·

∞
∑

m=−∞

[
(i ·ω∓)m · λ−2

((
m · µ+ yp · λ2

)
·
→
R1,m+

+4µ(1− ν)
→
R3,m ± γ ·

→
R2,m

)]
,

(4)

where
→
Rk,m =

→
b̃ k,m

(
ρp, λ

)
· ei(mϕp+λz);

→
b̃ 1,n(ρ, λ) = i · In(λρ) ·

(→
e ϕ

n
λρ +

→
e z

)
+
→
e ρ ·

I′n(λρ);
→
b̃ 2,n(ρ, λ) =

→
e ϕi ·m

(
I′n(λρ) +

4(ν−1)
λρ In(λρ)

)
+
→
e ρ · [(4ν− 3) · I′n(λρ) + λρI ′′ n(λρ)]+

+
→
e ziλρI′n(λρ);

→
b̃ 3,n(ρ, λ) = −

[→
e ϕ · i · I′n(λρ) +

→
e ρ · In(λρ)

n
λρ

]
;

3. for transition from the basic solutions of the cylinder with index p to the basic
solutions of the cylinder with index q

→
S k,m

(
ρp, ϕp, z; λ

)
=

∞

∑
n=−∞

→
b

mn

k,pq

(
ρq

)
· ei(nϕq+λz), k = 1, 2, 3 (5)

→
b

mn

1,pq

(
ρq

)
= (−1)n

→
b̃ 1,n

(
ρq, λ

)
K̃m−n

(
λlpq

)
· ei(m−n)αpq ;
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→
b

mn

3,pq

(
ρq

)
= (−1)nK̃m−n

(
λlpq

)
· ei(m−n)αpq ·

→
b̃ 3,n

(
ρq, λ

)
;

→
b

mn

2,pq

(
ρq

)
= (−1)n

{→
b̃ 2,n

(
ρq, λ

)
− λ

2 lpq · K̃m−n
(
λlpq

)
·

·
[
K̃m−n+1

(
λlpq

)
+ K̃m−n−1

(
λlpq

)]
·
→
b̃ 1,n

(
ρq, λ

)}
· ei(m−n)αpq ,

where αpq—the angle from the xp axis to the segment lqp; K̃m(x) = (sign(x))m · Km(|x|);
q = 1. . . N; p 6= q.

The parallel shifted cavity q is located relative to the parallel shifted cavity p at a
distance and angle:

Lpq =

∣∣∣∣∣∣
√

L2
1p + L2

1q − 2 · L1p · L1q · cos
(
α1q − α1p

)
, at α1q ≥ α1p√

L2
1p + L2

1q − 2 · L1p · L1q · cos
(
α1p − α1q

)
, at α1q < α1p

, (6)

αpq =

∣∣∣∣∣∣∣∣
α1p − arccos

(
L1p

2+Lpq
2−L1q

2

2·L1p ·Lpq

)
+ π, at α1q ≥ α1p

α1p − arccos
(

L1p
2+Lpq

2−L1q
2

2·L1p ·Lpq

)
− π, at α1q < α1p

3. Results
3.1. Create and Solve a System of Equations to Determine the Unknowns of the Lamé Equation

The solution to the problem is represented in the form:

→
U =

3
∑

k=1

∞∫
−∞

∞∫
−∞

(
Hk(λ,µ) ·→u

(+)

k (x, y, z; λ,µ) + H̃k(λ,µ) ·→u
(−)
k (x, y, z; λ,µ)

)
dµdλ+

+
N
∑

p=1

3
∑

k=1

∞∫
−∞

∞
∑

m=−∞
B(p)

k,m(λ) ·
→
S k,m

(
ρp, ϕp, z; λ

)
dλ,

(7)

where
→
Rk,m

(
ρp, ϕp, z; λ

)
,
→
S k,m

(
ρp, ϕp, z; λ

)
,
→
u
(−)
k (x, y, z; λ,µ) and

→
u
(+)

k (x, y, z; λ,µ) basic

solutions (2); Hk(λ,µ), H̃k(λ,µ) i B(p)
k,m(λ)—unknown functions to be found from the bound-

ary conditions (1); p—cylindrical cavity number.
To assemble the system of equations, we satisfy the boundary conditions at the upper

and lower boundaries of the layer. To achieve this, the vectors
→
S k,m in the right side of (7)

are rewritten in the layer’s coordinate system by the basic solutions
→
u
(−)
k at y = h and

→
u
(+)

k
at y = −h̃. This is possible if we use the transition Formula (3). For the resulting vectors,

we find the stresses and equate them at y = h to the given
→
F

0

h(x, z), at y = −h̃ to the given
→
F

0

h̃(x, z), after representing them using a double Fourier integral.
From this system of equations described above, we find the functions H̃k(λ,µ) and

Hk(λ,µ) by B(p)
k,m(λ).

Now, we will collect the system of equations for cylindrical cavities. To perform
this, we rewrite the right-hand side of (7) in the local cylindrical coordinate system for
each cavity p separately. This is possible if, using the transition Formula (4), we rewrite
→
u
(+)

k (x, y, z; λ,µ) and
→
u
(−)
k (x, y, z; λ,µ) in terms of the basis solutions of

→
Rk,m, and, using

the transition Formula (5), for each cylinder p 6= q, we rewrite
→
S k,m

(
ρp, ϕp, z; λ

)
in terms

of the basis solutions of
→
Rk,m. The resulting vector, at ρp = Rp, is equal to zero (zero

displacements in the supports are set). From the resulting system of equations, we replace
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the previously found functions H̃k(λ,µ) and Hk(λ,µ) with these functions found using
B(p)

k,m(λ).
After eliminating the series over m and integrals over λ, we obtain a set of 3N infinite

systems of linear algebraic equations to determine the unknowns B(p)
k,m(λ).

The following reduction method can be applied to the obtained systems, which exhibit
fast convergence of approximate solutions to the exact ones, as evidenced by the results of
fulfilling the boundary conditions in a numerical study. In addition, similar systems and
the implementation of boundary conditions have been studied in detail in [16,26].

After finding the functions B(p)
k,m(λ), substitute them into the expressions for Hk(λ,µ)

and H̃k(λ,µ). This will determine all the unknowns.

3.2. Numerical Analysis of the Stress State of the Layer

The problem is solved for a layer and three cylindrical embedded supports represented
as cavities (Figure 1). The cylindrical coordinate system of the cavity p = 1 coincides with
the Cartesian coordinate system of the layer. The cavity p = 2 is located at a distance
L12 = 30 mm, at an angle α12 = 0. The cavity p = 3 is located at L13 = 30 mm, α13 = π.

Layer: ABS plastic, modulus of elasticity E = 1700 MPa, Poisson’s ratio ν = 0.38. The
radius of the cylindrical cavities (embedded supports) R1 = R2 = R3 = 5 mm. Distance from
the line of the supports to the upper and lower boundaries of the layer h = h̃ = 12 mm.

At the upper boundary of the layer, stresses are set in the form of a wave (Figure 1)
σ
(h)
y (x, z) = −108 ·

(
z2 + 102)−2 ·

(
x2 + 102)−2, τ

(h)
yx (x, z) = τ

(h)
yz (x, z) = 0. Zero stresses

are set at the lower boundary of the layer σ
(h̃)
y (x, z) = τ

(h̃)
yx (x, z) = τ

(h̃)
yz (x, z).

For comparison, a variant with one cavity (support), with three cavities (supports)
with a distance between them of L12 = L13 = 15 mm, and with the load shifted to the right
between the supports, was calculated.

To obtain numerical values, the infinite system of equations was replaced by a finite
truncated system up to m = 5. With the given geometric parameters and load value for
values from zero to one, it was possible to satisfy the boundary conditions with an accuracy
of 10−4.

In Figure 2, the stress distribution σρ, σϕ, σz, τρϕ on the surface of the cavity p = 1 at
z = 0, L12 = L13 = 30 mm.

Computation 2023, 11, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 2. Stress distribution on the surface of the cavity p = 1. 

Figure 2 shows that the stresses are concentrated in the upper part of the cavity 
surface. This is due to the location of the load above this support and its rigid fixation. For 
a maximum load value of yσ   = 1 MPa, the maximum stress values are ρσ   = –0.8528 
MPa, ϕσ  = –0.5159 MPa, zσ =  −0.5412 MPa, ρϕτ  = 0.3758 MPa. 

In Figure 3, the distribution of stress ϕσ  on the surface of cavity p = 1 at z = 0 is 
shown for different distances between the inclusions. 

 
Figure 3. Stress ϕσ  on the surface of the cavity p = 1. 

When the distance between the supports is reduced, the stress ϕσ  on the surface of 
the cavity p = 1 decreases (Figure 3). Thus, the maximum stress at L12 = L13 = 15 mm is equal 
to ϕσ  = –0.48516 MPa, which is 6% lower than ϕσ  = –0.51593 MPa (at L12 = L13 = 30 mm). 
The decrease in stress on the cavity p = 1 is due to its redistribution on the surface of the 
approaching cavities. 

Figure 4 shows the distribution of tangential stresses ρϕτ  on the surface of the cavity 
p = 1 at z = 0 and different distances between the supports. 

Figure 2. Stress distribution on the surface of the cavity p = 1.

Figure 2 shows that the stresses are concentrated in the upper part of the cavity surface.
This is due to the location of the load above this support and its rigid fixation. For a
maximum load value of σy = 1 MPa, the maximum stress values are σρ = −0.8528 MPa,
σϕ = −0.5159 MPa, σz= −0.5412 MPa, τρϕ = 0.3758 MPa.

In Figure 3, the distribution of stress σϕ on the surface of cavity p = 1 at z = 0 is shown
for different distances between the inclusions.
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When the distance between the supports is reduced, the stress σϕ on the surface of the
cavity p = 1 decreases (Figure 3). Thus, the maximum stress at L12 = L13 = 15 mm is equal
to σϕ = −0.48516 MPa, which is 6% lower than σϕ = −0.51593 MPa (at L12 = L13 = 30 mm).
The decrease in stress on the cavity p = 1 is due to its redistribution on the surface of the
approaching cavities.
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Figure 4 shows the distribution of tangential stresses τρϕ on the surface of the cavity
p = 1 at z = 0 and different distances between the supports.
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Figure 4 shows that the distance between the supports has a slightly greater effect
on the tangential stresses. Thus, at L12 = L13 = 15 mm, the maximum stresses are equal to
τρϕ = +0.2828 MPa, and the difference is 7.5% (at L12 = L13 = 30 mm τρϕ = +0.3758 MPa).

When calculating a layer with one support [27], the maximum stress is σϕ = −0.521 MPa,
and the tangential stress is τρϕ = +0.381 MPa. This is an increase of 1% for σϕ and 1.4% for
τρϕ compared to the case with L12 = L13 = 30 mm. This means when the distance between
the supports is greater than L12 = L13 = 30 mm, the effect on the stress state of the support p
= 1 is insignificant, and the calculation with such a geometric arrangement of the load can
be carried out with only one support.

If, at L12 = L13 = 30 mm, the load is shifted to the right between supports p = 1 and
p = 2, the stresses σϕ on these cavities will have the form shown in Figure 5.

When the load is placed between the supports, the maximum stresses σϕ on these
supports (Figure 5) are equal to σ1

ϕ = −0.265 MPa and σ2
ϕ = −0.2621 MPa (1% difference).

This indicates that when the load is located between two supports, the influence of the
third support on the stress state is insignificant.
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Figure 6 shows the stress σx distribution at the upper boundary of the layer at
L12 = L13 = 30 mm, L12 = L13 = 15 mm, and the variant where the load is located between
the supports.
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Figure 6 shows that when the supports are approached, the maximum stress σx at the top
of the layer increases and is maximum in the zone of load application σx = −0.567968 MPa.
Shifting the load to the zone between supports p = 1 and p = 2, with L12 = L13 = 30 mm,
results in an increase of the maximum stress in the load application zone σx =−0.94884 MPa
(with the specified maximum σy = 1).

4. Discussion

A high-precision method for solving the problem for a layer with N circular cylindrical
embedded supports has been proposed. In difference from the existing works [17–27],
which also apply the generalized Fourier method, we used other types of boundary con-
ditions (1), and the transition formulas modified for the shifted cylindrical coordinate
systems (3)–(6) are taken into account.

The stress state for a layer with three embedded supports at different distances between
the supports and different load locations is numerically investigated.

The analysis of the stress state allows us to assert:
1. when the load is located above the support, the influence of other supports on the

stress state becomes noticeable at the distance between the supports R1+R2
L12

> 0.33;
2. when the supports are close to each other, the stress on the surface of the cavity

decreases, but the stress at the layer boundary increases;
3. when the load is located between the supports, the stresses on the supports decrease

but increase significantly at the layer boundary.
The proposed method can be used for high-precision calculations of the stress state of

structures, machine parts, and mechanisms whose model is a layer on cylindrical embedded



Computation 2023, 11, 172 10 of 11

supports or a layer with parallel cylindrical cavities with specified displacements in these
cavities.

Further development of this research is necessary for hinged supports, which are also
frequently encountered in practical calculations.
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