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Abstract: Cross-ties have proven their efficacy in mitigating vibrations in bridge stay cables. Several
factors, such as cross-tie malfunctions due to slackening or snapping, as well as the utilization of high-
energy dissipative materials, can introduce nonlinear restoring forces in the cross-ties. While previous
studies have investigated the influence of the former on cable network dynamics, the evaluation
of the impact of nonlinear cross-tie materials remains unexplored. In this current research, an
existing analytical model of a two-shallow-flexible-cable network has been extended to incorporate
the cross-tie material nonlinearity in the formulation. The harmonic balance method (HBM) is
employed to determine the equivalent linear stiffness of the cross-ties. The dynamic response of a
cable network containing nonlinear cross-ties is approximated by comparing it to an equivalent linear
system. Additionally, the study delves into the effects of the cable vibration amplitude, cross-tie
material properties, installation location, and the length ratio between constituent cables on both
the fundamental frequency of the cable network and the equivalent linear stiffness of the cross-ties.
The findings reveal that the presence of cross-tie nonlinearity significantly influences the in-plane
modal response of the cable network. Not only the frequencies of all the modes are reduced, but the
formation of local modes is delayed to a high order. In contrast to an earlier finding based on a linear
cross-tie assumption, with nonlinearity present, moving a cross-tie towards the mid-span of a cable
would not enhance the in-plane stiffness of the network. Moreover, the impact of the length ratio
on the network in-plane stiffness and frequency is contingent on its combined effect on the cross-tie
axial stiffness and the lateral stiffness of neighboring cables.

Keywords: cable; nonlinear cross-tie; material nonlinearity; cable network; dynamic behavior

1. Introduction

The continuous growth in the span length of cable-stayed bridges leads to longer stay
cables, which are more flexible and prone to large-amplitude vibrations [1–4]. Besides
the aerodynamic treatment of cable surface [5,6] and installing supplemental damping
devices [7–12], the cross-tie solution is another typical countermeasure for suppressing
unfavorable vibrations of bridge stay cables [13–16]. Cross-tie(s) can be employed to
connect a vulnerable cable transversely to its neighboring ones and form a cable network,
as shown in Figure 1. Studies in recent years show that such a measure would enhance
the in-plane stiffness of the vulnerable cable [17,18], introduce additional damping to
the connected cables [19,20], increase the modal mass of the vibrating system [21], and
redistribute energy contained in the consisting cables [22]. In conjunction with these,
it has been confirmed experimentally that the cross-tie solution could also improve the
aerodynamic stability of a cable by eliminating the wake effects induced by the proximity
of neighboring cables [23,24]. On the other hand, however, the cross-tie solution has a few
critical drawbacks, including limitations in suppressing out-of-plane cable vibrations and
the inability to directly dissipate energy from oscillating cables unless the cross-tie material
itself can dissipate energy [25,26].
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In the majority of the existing cable network analytical models, the cross-tie is as-
sumed to be either a rigid or a linear elastic connector (e.g., [14,16,26,28]). However, their 
applications on real cable-stayed bridges show that cross-ties typically exhibit nonlinear 
behavior [3,25], and a slight change in their properties could have a considerable impact 
on the dynamic response of cable networks. Under large-amplitude cable vibrations, the 
cross-tie could fail due to different mechanisms. For example, if two adjacent stays in a 
cable network vibrate out-of-phase, it may cause either slack or snap of the cross-tie, 
which could lead to a reduction in the local stiffness of the cross-tie. Due to this fact, the 
restoring force in the cross-tie cannot be properly transferred to the main cables [29]. It is 
worth noting that the relationship between the cross-tie restoring force and the cross-tie 
axial deformation is nonlinear when slackening and snapping occurs. In addition, high 
energy dissipative material, such as rubber [30], can be used as cross-tie material, which, 
in general, exhibits nonlinear behavior. The presence of these potential sources of cross-
tie nonlinearity could engender non-negligible discrepancies between the actual dynamic 
response of a cable network and that predicted based on the linear cross-tie assumption. 
Thus, it is necessary to take into account the effect of cross-tie nonlinearity when formu-
lating the cable network analytical model for investigating its dynamic behavior. 

A number of studies investigated the performance of cable network systems when 
the cross-tie nonlinear behavior is considered and when high-energy dissipative material 
is used as cross-tie material. In an earlier experimental study by Yamaguchi and Nagaha-
watta [20], the damping effect of cross-tie and connected cables was evaluated by taking 
into account the nonlinear interaction between the cross-tie and the cables. Results 
showed that the impact of cross-tie damping on the effectiveness of cable vibration control 
can be significant if more flexible and energy-dissipative cross-ties were employed. In ad-
dition, the nonlinear impact due to the interaction between the secondary cable and main 
cables on the cable network response was studied by a few researchers through experi-
mental tests [15,31]. In addition, by adopting highly energy-dissipative material for the 
cross-tie, the impact of cross-tie stiffness on the in-plane vibration mitigation of cable net-
work systems was explored in an experimental study [30]. Since this kind of energy-dis-
sipative material has a nonlinear property, an energy-based method was employed to an-
alytically evaluate the equivalent linear damping ratio of the cable network when the non-
linear cross-tie was used. However, a detailed analytical study to show how the dynamic 
response of a cable network would be affected by using an energy-dissipative cross-tie is 
not available. Later, Giaccu and Caracoglia [29] proposed a nonlinear spring element with 
cubic stiffness combined in parallel with a linear stiffness spring element to model the 

Figure 1. Cable cross-tie [27].

In the majority of the existing cable network analytical models, the cross-tie is as-
sumed to be either a rigid or a linear elastic connector (e.g., [14,16,26,28]). However, their
applications on real cable-stayed bridges show that cross-ties typically exhibit nonlinear
behavior [3,25], and a slight change in their properties could have a considerable impact
on the dynamic response of cable networks. Under large-amplitude cable vibrations, the
cross-tie could fail due to different mechanisms. For example, if two adjacent stays in a
cable network vibrate out-of-phase, it may cause either slack or snap of the cross-tie, which
could lead to a reduction in the local stiffness of the cross-tie. Due to this fact, the restoring
force in the cross-tie cannot be properly transferred to the main cables [29]. It is worth
noting that the relationship between the cross-tie restoring force and the cross-tie axial
deformation is nonlinear when slackening and snapping occurs. In addition, high energy
dissipative material, such as rubber [30], can be used as cross-tie material, which, in general,
exhibits nonlinear behavior. The presence of these potential sources of cross-tie nonlinearity
could engender non-negligible discrepancies between the actual dynamic response of a
cable network and that predicted based on the linear cross-tie assumption. Thus, it is
necessary to take into account the effect of cross-tie nonlinearity when formulating the
cable network analytical model for investigating its dynamic behavior.

A number of studies investigated the performance of cable network systems when
the cross-tie nonlinear behavior is considered and when high-energy dissipative material
is used as cross-tie material. In an earlier experimental study by Yamaguchi and Naga-
hawatta [20], the damping effect of cross-tie and connected cables was evaluated by taking
into account the nonlinear interaction between the cross-tie and the cables. Results showed
that the impact of cross-tie damping on the effectiveness of cable vibration control can be
significant if more flexible and energy-dissipative cross-ties were employed. In addition, the
nonlinear impact due to the interaction between the secondary cable and main cables on the
cable network response was studied by a few researchers through experimental tests [15,31].
In addition, by adopting highly energy-dissipative material for the cross-tie, the impact
of cross-tie stiffness on the in-plane vibration mitigation of cable network systems was
explored in an experimental study [30]. Since this kind of energy-dissipative material has a
nonlinear property, an energy-based method was employed to analytically evaluate the
equivalent linear damping ratio of the cable network when the nonlinear cross-tie was used.
However, a detailed analytical study to show how the dynamic response of a cable network
would be affected by using an energy-dissipative cross-tie is not available. Later, Giaccu
and Caracoglia [29] proposed a nonlinear spring element with cubic stiffness combined in
parallel with a linear stiffness spring element to model the nonlinear restoring-force mecha-
nism of the cross-tie. This nonlinear cross-tie model was applied to analytically study the
dynamics of cable networks in the presence of nonlinear interactions between the cross-tie
and the connected cables. Subsequently, a nonlinear spring element with a more general
power-law form of stiffness was employed to account for the nonlinear restoring-force



Computation 2023, 11, 169 3 of 23

in the cross-tie [32]. In these investigations, the original cable network with a nonlinear
cross-tie was replaced by an equivalent linearized system using the equivalent linearization
method (ELM). The modal frequencies of the original system were determined by solving
the eigenvalue problem of the equivalent linearized system. It is known that the most
common causes of cable vibrations are wind and rain-wind excitations. Due to the random
nature of these excitation sources, the amplitude of the induced cable vibrations could
be affected by various uncertainties. Therefore, stochastic analysis was performed [33,34]
for cable networks to address these uncertainties. It has been highlighted that the impact
of cross-tie nonlinearity on the performance of a network system can be significant, con-
tingent upon factors, such as cable tension and cross-tie pre-tension. Moreover, Giaccu
et al. [35] proposed a discrete mass model for cable networks. Their study encompassed an
exploration of the dynamics of a three-cable network featuring nonlinear cross-ties, as well
as the incorporation of considerations regarding initial pre-tension force and its subsequent
loss. It was demonstrated that a significant reduction in the cross-tie stiffness might occur
when the cross-tie pre-tension force was smaller than the tension force in the stay. In the
studies by Giaccu et al. [29,32–35], the focus was on the nonlinear interaction between the
cross-tie and main cables due to cross-tie malfunctions when slackening and/or snapping
occurs, but the cross-tie nonlinearity caused by its material property was not considered.
However, when energy-dissipative material is used for the cross-tie, the presence of ma-
terial nonlinearity in the cross-tie and its impact on the cable network response cannot
be ignored.

There are a number of nonlinear techniques, such as nonlinear normal mode and
the perturbation method, which can properly take care of the problem related to the
geometric nonlinearity in a single cable [36–38]. However, extending their applications to
a complex cable network system is not warranted in a simple way due to the challenge
in the implementation. The existing cable network analytical models with nonlinear
cross-ties employed the ELM to examine the dynamics of cable network systems in the
presence of a cross-tie malfunction caused by slackening and/or snapping [29,32]. Results
showed that while the ELM was acceptable for cable network modeling and practical
applications, its accuracy was inadequate. Therefore, to address the impact of the cross-tie
material nonlinearity, a technique that is simple to implement, yet can still achieve a desired
accuracy, is required. The harmonic balance method (HBM) is considered to be one of the
effective methods that is capable of handling problems associated with strongly nonlinear
systems [37,39]. This method was originally developed to study structural vibrations of
elastic systems and used for the calculation of periodic solutions of nonlinear systems [40].
The HBM is based on the assumption that the time domain response of a system can be
expressed in the form of a truncated Fourier series. The series coefficients can be determined
by solving a set of equivalent linear equations. Another advantage of the HBM is that it can
be combined with other methods, such as the Volterra series approach, to further improve
its accuracy [41].

In this present investigation, the Harmonic Balance Method (HBM) is employed to
develop an analytical model for a two-cable network, taking into account the material
nonlinearity of the cross-tie. This involves refining an existing analytical model that pertains
to a cable network consisting of two flexible shallow cables [42]. To incorporate HBM
into the proposed analytical model, the non-dimensional force-displacement relationship
that characterizes the cross-tie material property is adapted using a piecewise power
series polynomial format. Two distinct types of material nonlinearity, in particular, strain-
softening and strain-hardening behaviors, are taken into consideration. A comparative
analysis will be conducted between the responses of cable networks featuring linear and
nonlinear cross-ties. Furthermore, beyond evaluating the amplitude of cable vibrations,
the study will delve into the impact of other system characteristics. These include the
cross-tie material property, installation location, and the relative length ratio between the
neighboring cable and the designated cable. These factors will be examined with regard to
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their influence on both the equivalent linear stiffness of the cross-tie and the fundamental
frequency of the cable network.

2. Formulation of Analytical Model

Illustrated in Figure 2 is a configuration of a cable network comprising two horizontally
positioned flexible shallow cables. These cables are linked by a transverse cross-tie. Main
cable 1 is assumed to be the target cable, which is vulnerable to dynamic excitations and
could experience large-amplitude oscillations. Main cable 2 serves as a colleague cable to
assist in vibration control of the target cable. The kth cable (k = 1, 2) is characterized by its
length Lk (L1 ≥ L2), the mass per unit length mk, the chord tension Hk, and the bending
stiffness Ek Ik, where Ek and Ik are the Young’s modulus and the moment of inertia of the
cable cross-section, respectively. The sag at the mid-span of the kth cable is represented by
dk. Both cables are fixed at two ends. The horizontal displacement of cable 2 from the left
and right side of cable 1 is represented as OL and OR, respectively (OL 6= OR). A transverse
cross-tie is installed at a distance l1,1 from the left end of the target cable (l1,1≤ l1,2). It
divides each cable into two segments. In addition, it is assumed that vibrations of the main
cables are dominated by the in-plane transverse motion, whereas that of the cross-tie is
dominated by the longitudinal oscillation. Thus, this study disregards the longitudinal
motion of the main cables and the transverse motion of the cross-tie. Notably, a positive
value is ascribed to the downward vertical displacement.
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Figure 2. Schematic diagram of the mathematical model of a two-shallow-flexible-cable network
with a nonlinear cross-tie.

The analytical model of a flexible-shallow-cable network with the same layout as that
in Figure 2 has been derived by Younespour and Cheng [42] under the condition of a linear
elastic cross-tie. However, for real cable networks on site, the imperfect transfer mechanism
of the restoring force at the connection of the cross-tie and the main cable and the adoption
of energy-dissipative material for the cross-tie would inevitably induce nonlinearity in
the cross-tie behavior. To explore the influence of cross-tie material nonlinearity on the
in-plane dynamic response of cable networks, in the current study, the analytical model
developed in [42] will be extended to take into account the cross-tie material nonlinearity
in the formulation. This would allow for a prediction of the dynamic response of cable
network systems more realistically and accurately.

In the model formulation, the mass and the pre-tension of the cross-tie are not consid-
ered. If we assume that δc = [v1,1(x, t)− v2,1(x, t)] is the axial deformation of the cross-tie,
vk,j(x, t) is the in-plane transverse displacement of the jth segment in the kth cable (k = 1, 2;
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j = 1, 2), Kc is the cross-tie linear axial stiffness, Fu is the maximum force resisted by the
cross-tie, and δ0 and δu are the total elastic deformation and the ultimate deformation of
the cross-tie, respectively, the non-dimensional cross-tie restoring force Fc can be defined
as follows:

Fc
(
δc
)
=


Kcδc , 0 < δc ≤ δ0/δu

p
∑

m=1
Kmδc

m
, δ0/δu < δc ≤ 1

(1)

where δc = δc/δu and Kc = Kcδu/Fu are the non-dimensional cross-tie deformation and
the non-dimensional cross-tie linear stiffness, respectively. Km is the coefficient of the mth

polynomial term, and p is an integer representing the highest order of the polynomial term,
which can be either odd or even and is determined based on the required accuracy of the
approximated force-displacement relation of cross-tie material. It is worth mentioning that
in the current study, the constitutive relationship of a type of nonlinear material is obtained
by applying curve fitting to a set of force-displacement data of the material. Therefore,
the proposed model is able to describe the elastic perfectly plastic behavior of a cross-tie
as well.

The step-by-step time integration method is commonly used in analyzing strongly
nonlinear vibration problems [43]. However, obtaining the frequency responses from
this approach can be challenging. The Harmonic Balance Method (HBM) is based on the
assumption that the dynamic response of a nonlinear system in the time domain can be
expressed in the form of a truncated Fourier series. Unlike other nonlinear approaches,
such as the perturbation method, HBM can offer satisfactory results even for strongly
nonlinear systems and is applicable to complex nonlinear systems [37,39]. In addition, the
accuracy of the HBM can be improved with a simple combination of other approaches
if needed, such as the Volterra series approach [41]. In this study, the non-dimensional
nonlinear restoring stiffness of the cross-tie in Equation (1) can be transformed into a non-
dimensional equivalent linear stiffness using the HBM. This approach has been applied
to various types of nonlinear problems as a means of approximating frequency response
functions of nonlinear systems [44,45], of which the nonlinear quantity can be expressed as
a truncated Fourier series based on the applied force and the resulting system response. In
the current study, the in-plane transverse displacement of the jth segment in the kth cable
can be expressed as [14,29]

vk,j

(
xk,j, t

)
= AEk,jsin

(
Ωηk

xk,j

Lk

)
sin(ωt) (2)

where AEk,j is the approximated amplitude of the eigenfunction of the jth segment in
the kth cable, ηk = f1/ fk is the frequency ratio between the target cable (cable 1) and
cable k (k = 1, 2), Ω = π f / f1 is the dimensionless system frequency of the studied cable
network, fk is the fundamental frequency of main cable k (k = 1, 2), f is the fundamental
frequency of the cable network, which needs to be determined, ω is the circular frequency
of vibration, and Lk is the length of the kth cable. The non-dimensional axial deformation
of the cross-tie is expressed as δc = 1

δu
[v1,1(l1,1, t)− v2,1(l2,1, t)] = 1

δu
Qsin(ωt), where

Q = AE1,1sin(Ωη1ε1,1)− AE2,1sin(Ωη2ε2,1). εk,j = lk,j/Lk is the segment ratio, and lk,j is
the length of the jth segment in the kth cable, and the non-dimensional cross-tie nonlinear
restoring force can be obtained as

Fc
(
δc
)
= Keqδc =

Keq

δu
Qsin(ωt) (3)



Computation 2023, 11, 169 6 of 23

where Keq is a non-dimensional equivalent linear axial stiffness of the nonlinear cross-tie,
which can be determined using the HBM. To apply the HBM, Fc

(
δc
)

is expressed as a
truncated Fourier series [46], i.e.,

Keq

δu
Qsin(ωt) = a0 +

q

∑
n=1

an cos(nωt) +
q

∑
n=1

bn sin(nωt) (4)

where q is an integer that is determined by the required accuracy of the approximation, and
a0 = 1

2π

∫ 2π
0 Fc

(
δc
)
d(ωt), an = 1

π

∫ 2π
0 Fc

(
δc
)
cos(nωt)d(ωt), and bn = 1

π

∫ 2π
0 Fc

(
δc
)
sin(nωt)

d(ωt) (n = 1, 2, . . . , q) are the HBM solution Fourier coefficients [46].
The HBM finds frequent applications in cases where the amplitude An =

√
a2

n + b2
n

of the higher-order harmonics (n > 1) and the constant term a0 is substantially lesser
than the amplitude A1 of the harmonic term [41,47]. The truncated Fourier series must
yield convergence to the anticipated value, aligning with the precision sought for the
approximation; otherwise, more terms are needed. Since large value of n will yield small
integration values of an and bn, for the purpose of HBM, the most important terms of
the expansion in Equation (4) are the fundamental terms (i.e., a0, a1, and b1). In addition,
noticing that all terms on the left-hand side of Equation (4) contain only the sin(ωt) term, it

yields Keq
δu

Q = b1, where b1 can be calculated over a period [0, 2π] as

b1 =
1
π

∫ 2π

0
Fc
(
δc
)
sin(ωt)d(ωt) (5)

Substitute Equation (5) into Keq
δu

Q = b1 and considering the cross-tie restoring force
function Fc

(
δc
)

in Equation (1), it yields

Keq =
δub1

Q
=

δu

πQ


∫ 2π

0
Fc
(
δc
)
sin(ωt)d(ωt)︸ ︷︷ ︸

0<δc≤δ0/δu

+
∫ 2π

0
Fc
(
δc
)
sin(ωt)d(ωt)︸ ︷︷ ︸

δ0/δu<δc≤1

 (6)

Since Q is a function of AE1,1 and AE2,1, which are the approximated amplitude of
eigenfunctions of segment 1 of cable 1 and segment 1 of cable 2, an arbitrary scale parameter
is required in Equation (6). It is assumed that the arbitrary amplitude of the eigenfunction
can be expressed in terms of the cable length, i.e., AEk,j = κLk [29,46], where κ is a constant
that needs to be determined based on the maximum strain of the cross-tie material. Thus,
as can be observed from Equation (6), the non-dimensional equivalent linearized cross-tie
axial stiffness Keq depends on the cable network modal frequency Ω, the cross-tie location
ε, the frequency ratio η, the amplitude of vibration κ and the cross-tie material property. It
can be rewritten as follows:

Keq(Ω, ε, η, κ, material) = Kc +
δu

πQ


∫ 2π

0
Fc
(
δc
)
sin(ωt)d(ωt)︸ ︷︷ ︸

δ0/δu<δc≤1

 (7)

where Kc is the non-dimensional cross-tie linear axial stiffness. After obtaining Keq, the
modal properties of a considered cable network can be determined by solving the eigen-
value problem of the equivalent linear cable network system. As shown in Figure 2, the
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cross-tie divides each main cable into two segments. The equation of motion for the in-plane
free vibration of the jth segment in the kth cable can be expressed as [48]

d2∼vk,j

dx2
k,j

+ β2
k
∼
vk,j −

∼
hk

mkg
H2

k
− µkβ2

k
d4∼vk,j

dx4
k,j

= 0 (8)

where βk = ωk
√

mk/Hk is the wave number and µk = Ek Ik/
(

HkL2
k
)

is the flexural rigidity

parameter of the kth cable.
∼
hk = 8dk

L2
k Lek/(Ek Ak)

∑2
j=1
∫ lk,j

0
∼
vk,j

(
xk,j, t

)
dxk,j is the additional

chord tension of the kth cable induced by dynamic motion [49], of which dk = mkgL2
k/(8Hk)

is the sag of the kth cable. Lk and Hk are the length and the chord tension of the kth cable
(k = 1, 2), respectively. Lke = Lk

[
1 + 8(dk/Lk)

2
]

is the effective length of the kth cable static

profile [49], and Ek Ak is the axial stiffness of the kth cable (k = 1, 2).
Assume one end of the cable segment is fixed, the general solution to Equation (8) can

be expressed in a form shown in Equation (9). Derivation details of Equation (9) can be
found in Younespour and Cheng [42] and Fujino and Hoang [48].

∼
vk,j

(
xk,j

)
= Ak,j

[
γaksin(γb kxk,j

)
−γbksinh(γa kxk,j

)]
+ Bk,j

[
cos(γb kxk,j

)
−cosh(γa kxk,j

)]
+ 8dk

(βk Lk)
2

∼
hk
Hk

[
1− cosh(γa kxk,j

)] (9)

where Ak,j and Bk,j denote the shape function constants, which can be determined from
the continuity conditions at the point where the cross-tie and the main cables are con-

nected. γ2
a k = 1

2µk L2
k

(√
1 + 4µkβ2

kL2
k + 1

)
and γ2

bk = 1
2µk L2

k

(√
1 + 4µkβ2

kL2
k − 1

)
represent

the auxiliary wave number parameters (k = 1, 2).
Equation (9) finds application in characterizing the in-plane transverse displacement of

any cable segment in a cable network. For the shallow-flexible-cable network shown in Figure 2,
the eight unknown shape function constants Ak,j and Bk,j (k = 1, 2; j = 1, 2) can be determined
through the six compatibility conditions and two equilibrium conditions established at the
installation locations of the cross-tie, and they are outlined as follows [28,50]:

∼
v1,1(l1,1, t) =

∼
v1,2(l1,2, t),

∼
v2,1(l2,1, t) =

∼
v2,2(l2,2, t)

∼
v
′
1,1(l1,1, t) = −∼v

′
1,2(l1,2, t),

∼
v
′
2,1(l2,1, t) = −∼v

′
2,2(l2,2, t)

∼
v
′′

1,1(l1,1, t) =
∼
v
′′

2,1(l2,1, t),
∼
v
′′

2,1(l2,1, t) =
∼
v
′′

2,2(l2,2, t)

(10)

Keq

[∼
v2,1(l2,1, t)− ∼v1,1(l1,1, t)

]
= E1 I1

[
v′′′1,1(l1,1, t)− v′′′1,2(l1,2, t)

]
(11a)

E1 I1

[
v′′′1,1(l1,1, t)− v′′′1,2(l1,2, t)

]
= −E2 I2

[
v′′′2,1(l2,1, t)− v′′′2,2(l2,2, t)

]
(11b)

An application of the above conditions to Equation (9) leads to eight dimension-
less algebraic equations, which can be written in a matrix form as GHT = 0, of which the
matrix G is a function of the dimensionless parameters Ω, Keq, and κ, and
H =

[
A1,1 A1,2 A2,1 A2,2 B1,1 B1,2 B2,1 B2,2

]
is the coefficient matrix. For

the equivalent linear cable network system derived using the HBM approach, its modal
properties can be obtained from the nontrivial solutions to GHT = 0. (For more details
please refer to [42].)

3. Impact of Cross-Tie Nonlinearity on the Modal Behavior of Shallow-Flexible
Cable Networks

This section delves into the investigation of the influence of cross-tie nonlinearity on
the modal response of two-cable networks with varying configurations. The analytical
model developed in the previous section is employed for this purpose. Initially, the
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proposed analytical model will be applied to evaluate the impact of cross-tie nonlinearity
on the in-plane dynamic response of a twin-cable network with a cross-tie located at its
mid-span. Subsequently, a more generalized case is considered: a symmetric unequal-
length two-cable network with a nonlinear cross-tie positioned at the quarter span. In
both numerical examples, the analysis takes into account the bending stiffness and sag of
the main cables. The target cable is assumed to be the same as one of the stay cables on
the Tatara Bridge [51], which has the following properties: L1 = 260.20 m, H1 = 4689 kN,
m1 = 91.6 kg/m, E1 I1 = 2231 kN·m2. The properties of the neighboring cable (cable 2)
are the same as those of the target cable, except that in the symmetric unequal-length
cable network example, it has a shorter length of L2 = 234 m. If we define ρ = L2/L1 as
the length ratio between the target cable and the neighboring one, it will be ρ = 0.9. In
addition, since the considered cables are shallow flexible cables, the cable sag is taken into
account and it is assumed to have a value of λ2

1 = 3, where λ2
k (k = 1, 2) is the kth cable

sag parameter defined as λ2
k =

(
8dk
Lk

)2 Lk
Hk Lke/Ek Ak

[49]. It is worth mentioning that on real

cable-stayed bridges, the flexural rigidity parameter µ and the Irvine parameter λ2 for stay
cables of 20 m to 300 m in length are within the ranges of 2.82× 10−6 < µ < 1.59× 10−2

and 0.6 < λ2 < 3, respectively [51].
To verify the validity of the proposed analytical model, finite element (FE) simulations

will be conducted to compare the numerical results with those obtained from the proposed
analytical model. In addition, to assess the influence of cross-tie material nonlinearity on
the in-plane modal response of the two-cable networks in the numerical examples, their
modal behavior is also analyzed with the original nonlinear cross-tie being replaced by a
linear cross-tie of Kc = 2500 kN/m. A comparison is made between the nonlinear cross-tie
case and the linear one.

3.1. FE Simulation

For the validation of the proposed analytical model, a finite element simulation is
carried out using ABAQUS software. In this developed FE model, the B21 beam element
is chosen to replicate the in-plane behavior of the main cables. The B21 beam element
is a one-dimensional Timoshenko beam element characterized by two nodes. Each node
encompasses three degrees of freedom: two for translations along the x- and y-axes and
one for rotation about the z-axis. Employing a mesh size of 1 m, the result is a configuration
of 260 elements and 261 nodes for each cable. Notably, all three degrees of freedom of the
nodes located at the two ends of cable model are constrained, resulting in a fixed-fixed
boundary condition that aligns with the analytical model. To account for the influence of
cable pretension, the initial stress is incorporated within the B21 beam elements. Further-
more, a uniformly distributed load is exerted vertically downward along the cable length
to simulate the effect of the cable self-weight. In the FE model, the T2D2 truss element is
harnessed to simulate the nonlinear behavior of the cross-tie. This element has two nodes,
with two degrees-of-freedom associated with each node. The cross-tie material is assumed
to be an elastoplastic type with a stress–strain curve that exhibits a strain-softening behavior.
In addition, the linear cross-tie is simulated using the SPRING2 element.

In cases where the cross-tie exhibits linear behavior, the cable network’s modal char-
acteristics can be established by solving an eigenvalue problem utilizing a linear stiffness
matrix. Nonetheless, if the cross-tie material behaves elastoplastically; the stiffness matrix
of cable network is no longer linear and necessitates continuous updates based on cross-
tie deformation. Consequently, the modal properties cannot be ascertained through the
conventional eigenvalue problem approach. In this study, the modal frequencies of the
examined cable network featuring a nonlinear cross-tie are determined by applying the
Fast Fourier Transform (FFT) to the displacement response of the analyzed system. For
this purpose, the target cable is displaced transversely at five different locations along its
span and then released suddenly to excite free vibration of the entire cable network. The
introduced initial displacement is applied at 1/5L1, 1/3L1, 1/2L1, 2/3L1, and 3/4L1 along
the target cable, where L1 is the length of the target cable. The maximum axial strain in
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the cross-tie is defined based on the parameter κ introduced in the analytical model, which
is taken as κ = 0.0003. The free vibration response, in terms of the target cable mid-span
displacement time history, is recorded for 40 s. The Fast Fourier Transform (FFT) is then
employed to analyze this recorded dynamic response, aiming to discern the modal fre-
quencies inherent to the investigated cable network. The modal frequencies corresponding
to the initial 10 modes of both the analyzed twin-cable network and the unequal-length
two-cable network, as presented in the two numerical examples, are listed in Tables 1 and 2
from the FE simulation, respectively.

Table 1. In-plane modal properties of a twin-cable network with either a linear or a nonlinear cross-tie
at the mid-span.

Mode
Number

Modal Frequency (Hz)

Diff. * (%)

Mode Shape

Nonlinear Cross-Tie Linear
Cross-Tie Nonlinear Cross-Tie LinearCross-Tie

Analytical FEA Analytical

1 0.4649 0.4587 0.4649 1.3 GM, 1-Sym., IP GM, 1-Sym., IP

2 0.4921 0.4874 0.8733 1.0 GM, 1-Sym., OP GM, 1-Asym., IP

3 0.8654 0.8599 0.8802 0.6 GM, 1-Asym., OP LM-RS

4 0.8733 0.8666 0.8802 0.8 GM, 1-Asym., IP LM-LS

5 1.3540 1.3421 1.3540 0.9 GM, 2-Sym., IP GM, 2-Sym., IP

6 1.3856 1.3789 1.7836 0.5 GM, 2-Sym., OP GM, 2-Asym.,IP

7 1.4361 1.4301 1.7955 0.4 GM, 2-Asym., OP LM-RS

8 1.7836 1.7734 1.7955 0.6 GM, 2-Asym., IP LM-LS

9 2.3342 2.3409 2.3342 0.3 GM, 3-Sym., IP GM, 3-Sym., IP

10 2.4901 2.4840 2.7454 0.2 GM, 3-Sym., OP GM, 3-Asym., IP

* Absolute percentage difference between the analytically and numerically obtained modal frequencies considering
cross-tie nonlinearity (GM: global mode, LM: local mode, Sym: symmetric, Asym: anti-symmetric, FEA: finite
element analysis, IP: in-phase, OP: out-of-phase).

Table 2. In-plane modal properties of an unequal-length two-cable network with either a linear or a
nonlinear cross-tie at the quarter span.

Mode
Number

Modal Frequency (Hz)

Diff. * (%)

Mode Shape

Nonlinear Cross-Tie Linear
Cross-Tie Nonlinear Cross-Tie Linear Cross-Tie

Analytical FEA Analytical

1 0.4823 0.4790 0.4894 0.7 GM, 1-PS, IP GM, 1-PS, IP

2 0.5998 0.5900 0.6331 1.6 GM, 1-PS, OP LM-RS, OP

3 0.9682 0.9591 0.9781 0.9 GM, 1-PAS, IP GM, 1-PAS, IP

4 1.2091 1.1957 1.2590 1.1 GM, 1-PAS, OP LM-RS, OP

5 1.4489 1.4396 1.4657 0.6 LM, Cable 1, 2-PS GM, 2-PS, IP

6 1.8230 1.8097 1.8491 0.7 LM, Cable 2, 2-PS GM, 2-PAS, OP

7 1.9133 1.9011 1.9515 0.6 LM, Cable 1, 2-PAS LM, OP

8 2.1444 2.1379 2.1766 0.3 LM, Cable 2, 2-PAS LM, OP

9 2.3890 2.3784 2.4315 0.4 LM, Cable 1, 3-PS LM, OP

10 2.5622 2.5486 2.5676 0.5 LM, Cable 2, 3-PS LM, OP

* Absolute percentage difference between the analytically and numerically obtained modal frequencies considering
cross-tie nonlinearity, (GM: global mode, LM: local mode, PS: Pseudo symmetric, PAS: Pseudo anti-symmetric,
FEA: finite element analysis, IP: in-phase, OP: out-of-phase).
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3.2. Twin-Cable Network with a Nonlinear Cross-Tie at the Mid-Span

To evaluate the influence of cross-tie nonlinearity on the modal response of shallow-
flexible-cable networks, a nonlinear cross-tie with an elastoplastic behavior given in Figure 3
is considered. The total non-dimensional elastic deformation of the cross-tie is assumed
to be δ0/δu = 0.031, which means that the eigenfunction amplitude AE of the equivalent
linearized cable network system is generally small in comparison to the cable length. In this
study, the cross-tie is 8 m long and δu = 0.1. Therefore, the maximum vibration amplitude
can be 0.8 m, which leads to AE being less than L/300. To apply the HBM to determine
the equivalent linear cross-tie stiffness, the non-dimensional force-displacement relation of
the cross-tie material in Figure 3 needs to be fitted in the form of a piecewise power series
polynomial defined in Equation (1). An R2 value of 95% is considered to be an acceptable
accuracy for curve fitting. Based on this criterion, a 5th order polynomial is selected, the
R2 value of which is 95.3%. The fitted curve is given in Equation (12) and portrayed in
Figure 3. The arbitrary amplitude constant κ is assumed to be 0.0003, which yields a strain
of 0.019 in the cross-tie.

Fc
(
δc
)
=


51δc 0 < δc ≤ 0.031

12.33δc
5 − 31.99δc

4
+ 31.06δc

3 − 14.17δc
2
+ 3.36δc + 0.504 0.031 < δc ≤ 1

(12)
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Figure 3. Fitted curve to the original non-dimensional force-displacement data of the cross-tie
material (strain-softening behavior).

Table 1 presents the modal frequencies of the first 10 modes of the studied twin-
cable network obtained from the proposed analytical model. As a comparison, the modal
response of the twin-cable network is also analyzed by replacing the nonlinear cross-tie
with a linear one having Kc = 2500 kN/m. This set of results is also shown in Table 1.
The corresponding mode shapes in both the linear and the nonlinear cross-tie cases are
depicted in Figure 4.

The modal frequencies of the twin-cable network predicted by the FE simulation and
those obtained using the proposed analytical model demonstrate good agreement. As can
be seen in Table 1, the maximum percentage difference is only 1.3%, which occurs in Mode
1. This verifies the validity of the proposed analytical model, of which the HBM is applied
to determine the equivalent linear axial stiffness of the cross-tie in the studied nonlinear
cable network system.
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A comparison of the modal responses between the nonlinear cross-tie case and the
linear one reveals that the presence of cross-tie nonlinearity has no impact on the modal
frequencies and modal order of all symmetric in-phase global modes. This is consistent
with the results reported in earlier studies [28,42,52], in which it was shown that the modal
properties of these modes in a twin-cable network are unaffected by the change in the
cross-tie property. This happens due to the fact that in the symmetric in-phase global modes
of a twin-cable network, each cable vibrates independently, and the frequency of the cable
network global modes remains the same as that of a single cable. However, although the
modal frequencies of the anti-symmetric in-phase global modes remain unchanged, they are
observed to delay to higher order modes. For example, by considering nonlinear cross-tie
behavior, the modal order of the first and the second anti-symmetric in-phase global modes
are respectively delayed from Mode 2 to Mode 4 and from Mode 6 to Mode 8. In addition,
it is seen that by replacing a linear cross-tie with a nonlinear one, the out-of-phase global
modes are excited. As illustrated in Figure 4, when a cross-tie exhibits nonlinear behavior,
all the local segment modes evolved into anti-symmetric out-of-phase global modes with
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lower modal frequencies. For instance, the local segment modes in Mode 3 and Mode 4 of
the linear cross-tie case evolve into the first anti-symmetric out-of-phase global mode in the
case of the nonlinear cross-tie, which is Mode 3. In addition, it is noticed that in the case of
the linear cross-tie, there is no symmetric out-of-phase global mode. However, this type of
mode is excited when the cross-tie manifests nonlinear behavior (e.g., Modes 2, 6, and 10).
Results in Table 1 and Figure 5 clearly indicate that within the first 10 cable network modes,
while four of them are local modes in the linear cross-tie case, no local mode appears in the
nonlinear cross-tie case. The adoption of a nonlinear cross-tie would render them to evolve
into global modes and thus delay the formation of local modes to a high order. It is worth
mentioning that the reduction in the rigidity of the network and thus the system frequency
decrement is due to the use of a cross-tie material with strain-softening behavior.
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3.3. Symmetric Unequal-Length Two-Cable Network with a Nonlinear Cross-Tie at a Quarter-Span

As an illustration of a more general example, this section examines the modal behavior
of a symmetric unequal-length two-cable network with a nonlinear cross-tie placed at the
quarter span (i.e., εk,1 = 1/4 and εk,2 = 3/4). In this setup, the two constituent cables are
assumed to possess the same properties as the main cables outlined in the first example,
except the neighboring cable has a shorter length of L2 = 234 m. The horizontal offset on
both ends of cable 2 are the same, i.e., OL = OR = 13 m. The same nonlinear restoring
force model used in the first example is considered, and the arbitrary amplitude constant κ
is assumed to be 0.0003. Similarly, modal analysis has also been conducted for the linear
cross-tie case with Kc = 2500 kN/m. Table 2 presents the modal characteristics of the initial
10 modes within the investigated two-cable network, encompassing both the instances
of a nonlinear cross-tie and a linear one. These respective mode shapes are illustrated
in Figure 5.

As can be seen from Figure 5, when the cross-tie behaves linearly, there are four global
modes and six local modes in the first 10 modes with alternating modal orders. On the
other hand, when the cross-tie exhibits nonlinear behavior, although there are still four
global modes and six local modes among the first 10 modes, all four global modes are
excited at a low order from Mode 1 to Mode 4, while all six local modes appear at a higher
order. This implies that the presence of material nonlinearity in the cross-tie could delay
the formation of local modes. Compared to the linear cross-tie case, when the cross-tie
behavior is nonlinear, its axial stiffness would be decreased, resulting in less constrain to
the cable transverse motion at their connection point and allowing all connected cable
segments to oscillate simultaneously, which would encourage the development of global
modes and suppress the formation of local modes. This could be one of the reasons why
low-order modes in cable networks on real cable-stayed bridges are often observed to be
global modes [26]. There are four distinct changes in the characteristics of the cable network
modal response when the cross-tie behavior changes from linear to nonlinear: (a) the modal
order of the lowest in-phase global modes, both pseudo symmetric (Mode 1) and pseudo
anti-symmetric (Mode 3), are not affected. However, while their mode shapes remain
more or less the same, the modal frequencies drop slightly due to the strain-softening
behavior of the nonlinear cross-tie. (b) The out-of-phase local segment modes evolve into
out-of-phase global modes with a drop in the modal frequency. This occurs in Mode 2
and Mode 4. In the case of Mode 2, it is a local right segment mode in the linear cross-tie
case, of which the right segment of cable 1 and cable 2 vibrates out-of-phase in the first
pseudo symmetric pattern. With the cross-tie exhibiting nonlinear behavior, the oscillation
is extended to the left segment of both cables and thus excites the first pseudo symmetric
out-of-phase global mode. Similarly, such a change in the cross-tie behavior results in the
first pseudo anti-symmetric out-of-phase global mode being evolved from an out-of-phase
local right segment mode in Mode 4. (c) The evolution of a global mode to a local mode is
dominated by one of the main cables. This type of mode shape change is observed in Mode
5 and 6, where a second-order pseudo symmetric in-phase global mode becomes a local
mode dominated by the oscillation of cable 1 in a second-order pseudo symmetric pattern
(Mode 5), and a second-order pseudo anti-symmetric out-of-phase mode turns into a local
mode of cable 2 in the second-order pseudo symmetric shape (Mode 6). (d) A local mode
dominated by the oscillations of some cable segments becomes a local mode dominated by
the motion of one of the main cables. Modes 7, 8, 9, and 10 all fall into this category. The
above observations clearly indicate that the presence of cross-tie nonlinearity would not
only affect the modal frequencies and modal order, but could also considerably alter the
associated mode shapes and thus would significantly affect the in-plane modal response of
a cable network.

4. Parametric Study

Results of numerical examples in Section 3 show that the presence of cross-tie material
nonlinearity could considerably change the modal behavior of a cable network, and the
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prediction of the modal response of a cable network with a nonlinear cross-tie would
be influenced by the approximation of Keq, which is the non-dimensional equivalent
linear axial stiffness of the cross-tie. The analytical model of a cable network with a
nonlinear cross-tie proposed in Section 2 shows that Keq is not only mode-dependent but
also influenced by a number of parameters, including the cross-tie material property, the
cable vibration amplitude represented by κ, the cross-tie position ε, and the length ratio ρ.
To fully understand the impact of different parameters on the equivalent linear stiffness
of the cross-tie and the fundamental frequency of the studied cable network, a parametric
study is carried out using the proposed analytical model.

4.1. Effect of the Cross-Tie Material Property

The cross-tie material property has an important role in the dynamic behavior of
cable networks. To identify its effect on the fundamental frequency of the cable network,
Ω1, and the cross-tie equivalent linear stiffness associated with the network fundamental
mode, Keq1, two different types of cross-tie material nonlinearity, strain softening and strain
hardening, are considered. They are assumed to have the same behavior in the linear
range. The material behavior of these two types of nonlinearity are illustrated in Figures 3
and 6, respectively. The associated non-dimensional force-displacement relations are fitted
by piecewise power series polynomials of order 5 and 4, with R2 being 95.3% and 97.3%,
respectively. The fitted polynomials are given in Equations (12) and (13), respectively. The
total non-dimensional elastic deformation of the strain-hardening material is assumed to
be δ0/δu = 0.042.

Fc
(
δc
)
=


31.5δc 0 < δc ≤ 0.042

−0.45δc
4
+ 1.69δc

3 − 1.43δc
2
+ 0.72δc + 0.45 0.042 < δc ≤ 1

(13)
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To analyze the cross-tie material nonlinearity effect on 𝐾ഥ௘௤ଵ and 𝛺ଵ, the two cable 
networks studied in the previous numerical examples are considered, except now, the 
cross-tie in both networks is assumed to be located at the main cable mid-span (𝜀 = 0.5). 
Irvine’s parameter 𝜆ଶ and the flexural rigidity parameter 𝜇 of the main cables are taken 
to be 3 and 7.02 × 10ି଺, respectively.  

Figure 7a illustrates how the cable network fundamental frequency would be affected 
by the cross-tie material type. In the case of a twin-cable network, since the global modes 
would not be affected by the cross-tie properties [28,42,52], the change in the cross-tie ma-
terial type and deformation would thus have no influence on the fundamental frequency. 
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To analyze the cross-tie material nonlinearity effect on Keq1 and Ω1, the two cable
networks studied in the previous numerical examples are considered, except now, the
cross-tie in both networks is assumed to be located at the main cable mid-span (ε = 0.5).
Irvine’s parameter λ2 and the flexural rigidity parameter µ of the main cables are taken to
be 3 and 7.02 × 10−6, respectively.
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Figure 7a illustrates how the cable network fundamental frequency would be affected
by the cross-tie material type. In the case of a twin-cable network, since the global modes
would not be affected by the cross-tie properties [28,42,52], the change in the cross-tie
material type and deformation would thus have no influence on the fundamental frequency.
This, as reflected in Figure 7a, in that Ω1 remains as a constant when δc changes, and the
Ω1/π − δc curves associated with the two different cross-tie material types overlap with

each other. On the other hand, in an unequal-length cable network, when the cross-tie
deformation exceeds the elastic limit, Ω1 is observed to decrease as the cross-tie experiences
more deformation, except when the cross-tie material is of the strain-hardening type, for
which the fundamental frequency would gradually recover once the deformation of the
cross-tie is over a characteristic value corresponding to the curvature change in the Fc − δc
curve shown in Figure 6. For the strain-hardening material used in the current study, this
characteristic value is δc = 0.65.
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The impact of the cross-tie material nonlinearity type on its equivalent linear stiffness
Keq1 is shown in Figure 7b. Since the cross-tie equivalent linear stiffness depends on the
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modal frequency, the patterns of the Keq1 − δc curves are consistent with the respective
Ω1/π − δc curves in Figure 7a, i.e., those of the twin-cable network remain as horizontal

lines, whereas those of the strain-softening and strain-hardening material types manifest
as a monotonically decreasing trend and a decreasing-recover pattern, respectively. In
addition, for the two types of nonlinear cross-tie material properties selected in this study,
the strain-softening type of the cross-tie material is observed to render Keq1 to be more
sensitive to cross-tie deformation.

As indicated in Equation (8), the equivalent linear stiffness of the cross-tie, Keq, de-
pends on the vibration amplitude parameter κ. It is noteworthy that the non-dimensional
cross-tie deformation δc is directly related to κ, so the influence of κ on Ω1 and Keq would
be similar as that of δc shown in Figure 7a,b.

4.2. Effect of the Cross-Tie Position

This section investigates the effect of the cross-tie position ε on its equivalent linear
stiffness, Keq1, and the cable network fundamental frequency, Ω1. As mentioned earlier,
the fundamental frequency of a twin-cable network is independent of the cross-tie position
and material properties. Therefore, the cross-tie position effect is examined in this section
using an unequal-length cable network with ρ = 0.9. Two different vibration amplitude
parameters, i.e., κ = 0.001 and κ = 0.0015, are considered, and the position of the cross-tie
varies between ε = 0.2 and ε = 0.8. Figure 8a,b portray the variation of Keq1 and Ω1/π,
respectively, with respect to the cross-tie position when the cross-tie material has either
strain-softening or strain-hardening behavior. Since the considered unequal-length cable
network has a symmetric layout, the Keq1 − ε and Ω1/π − ε curves for both material types
show a symmetric pattern. Upon moving the cross-tie from the cable end to the mid-span,
Ω1 and Keq1 decrease gradually until they reach their minimum values at ε = 0.5. This
pattern can be explained by referring to Figure 9, where the fundamental mode shape of
the studied cable network is shown schematically. In the figure, “a” and “b” represent
cross-tie locations closer to the cable end and closer to the cable mid-span, respectively.
As can be seen from the figure, the axial deformation of the cross-tie increases as its
installation location moves towards the cable mid-span. When the deformation exceeds the
elastic range of the cross-tie material, the axial stiffness of the cross-tie would be reduced
considerably, as shown in Figures 3 and 6. Therefore, the in-plane stiffness of the entire
cable network would be less, leading to a lower fundamental frequency, Ω1, and a smaller
equivalent linear stiffness, Keq1. For example, when κ = 0.001, by changing the cross-tie
position from ε = 0.2 to ε = 0.5, the non-dimensional fundamental frequency of the cable
network, Ω1, decreases from 1.107π to 1.094π by 1.2%, and the non-dimensional equivalent
linear stiffness of the cross-tie for the fundamental mode, Keq1, drops 33.7% from 18.62 to
12.34. It is worth pointing out that this finding contradicts the results reported in earlier
studies based on a linear cross-tie [52], where it was found that moving the cross-tie to the
cable mid-span would enhance the in-plane stiffness of a cable network and thus increase its
fundamental frequency. This contradiction suggests that neglecting the cross-tie nonlinear
behavior can result in a misleading prediction of the cable network dynamic response.
Therefore, to evaluate the cable network dynamic behavior more accurately, the cross-tie
nonlinearity needs to be considered in the analysis. Nevertheless, it is noteworthy that
from a practical point of view, such an impact is minor.

Further, a comparison between Figure 8a and b indicates that the influence of the
cross-tie position on Ω1 and Keq1 would not only be affected by the main cable vibration
amplitude, but also depend on the cross-tie material nonlinearity type. When a more severe
cable vibration occurs, while Ω1 and Keq1 would be less sensitive to the cross-tie position
effect, should the cross-tie material be of the strain-softening type, they are affected more
by the change in ε if a strain-hardening-type cross-tie is used. In addition, it is noticed
in Figure 8b that the cable network would have a higher fundamental frequency and a
larger cross-tie equivalent linear stiffness when more severe cable vibration occurs. This is
believed to result from the strain-hardening characteristic of the cross-tie material. The fact
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that the axial stiffness of a cross-tie has an important contribution to the in-pane stiffness of
a cable network suggests that any variation in the equivalent linear stiffness of a cross-tie
will lead to a change in the system frequency. Though the equivalent linear axial stiffness of
a cross-tie depends on its material type and cable vibration amplitude and its contribution
to the in-plane stiffness of a cable network is also affected by the cross-tie installation
location, for a given cross-tie material type and installation location, an approximate linear
relationship is observed to exist between the equivalent linear axial stiffness of the cross-tie
and the cable network fundamental frequency at a specific level of the cable vibration
amplitude, as illustrated in Figure 8c,d.
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4.3. Effect of the Cable Length Ratio

In this section, the impact of the length ratio ρ between the main cables, i.e., ρ = L2/L1,
on Ω1 and Keq1 will be evaluated. From the stay cable database [51], it is found that the
practical range of the length ratio between two neighboring cables on real cable-stayed
bridges is from 0.64 to 1.56. Figure 10 shows, schematically, the fundamental mode shape of
an unequal-length two-cable network when the target cable is longer, equal to, and shorter
than the neighboring cable, respectively. As defined in Figure 2, in the current study, the
upper cable (main cable 1) is assumed to be the target cable, whereas the lower one is the
neighboring cable. It can be seen from the figure that when ρ > 1, the cross-tie would be
in compression. This could result in slackening of the cross-tie and would thus lead to
its malfunction. In addition, as reported in [28,42], since in the in-phase global mode of a
twin-cable network (ρ = 1.0), the two cables oscillate independently, there will be no axial
deformation in the cross-tie. Based on these, a length ratio range of 0.6 to 1.0 is chosen for
the current study.
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two-cable network.

To better observe the length ratio effect, the variations in Keq1 against the length
ratio ρ are illustrated for the strain-softening and the strain-hardening cross-tie behavior
in Figure 11a,b, respectively. Three different cable vibration amplitude parameters of
κ = 0.0005, 0.0010, and 0.0015 are considered in the analysis. Results show that increasing
ρ would lead to a larger Keq1, indicating that connecting a target cable with a longer
neighboring cable would enhance the equivalent linear stiffness of the cross-tie. When the
cross-tie has strain-softening behavior and the length ratio is less than a certain value, it can
be observed in Figure 11a that Keq1 would become less sensitive to the variation in ρ when
the main cables vibrate at a larger amplitude. If a 2% difference in Keq1 due to the change
in ρ is considered as the criterion, this threshold value ρt is identified to be 0.76 and 0.85 for
κ = 0.001 and 0.0015, respectively. Within the considered length ratio range (0.6 ≤ ρ < 1),
no clear ρt is observed when κ = 0.0005. Further, results show that beyond ρt, Keq1 rises
drastically with the increase in ρ for all considered κ values. For example, as depicted in
Figure 11a, when κ = 0.0015, by increasing the length ratio from 0.8 to 0.991, Keq1 increases
by 1217% from 3.87 to 51, while a variation of ρ between 0.6 to 0.7 would lead to a change
in Keq1 from 3.53 to 3.56 by only 1%. As shown in Figure 10, if the target cable is connected
to a longer neighboring cable and the cable network vibrates in its fundamental mode, the
axial deformation of the cross-tie would be less. When ρ is greater than a certain value, the
cross-tie deformation would be in the elastic range, and the cross-tie stiffness is its linear
stiffness, which, by referring to Figure 3, is seen to be much larger than the stiffness in
the plastic zone. The same Keq1 − ρ pattern is observed in Figure 11b when the cross-tie
material has strain-hardening behavior, except no clear threshold of ρ can be identified
for the three considered levels of the vibration amplitude. Based on the pattern of the
three Keq1 − ρ curves portrayed in Figure 11b, it seems that ρt in these cases is advanced
to a length ratio less than 0.6. Further, a comparison between the strain-softening and
strain-hardening cases reveals that while Keq1 is larger when κ = 0.001 in the former case, it
is larger when κ = 0.0015 in the latter. This occurs because, as mentioned in Section 4.1, in
the case of strain-hardening behavior, after reaching a certain level of cross-tie deformation,
the Keq1 − δc curve tends to rise and partially recovers the cross-tie stiffness loss. It is
important to note that the influence of the cross-tie deformation δc on Ω1 and Keq would be
similar to that of κ.
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Figure 11. Effect of the length ratio on the non-dimensional equivalent linear stiffness Keq1 of the
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The length ratio effect on the fundamental frequency of the studied cable network is
illustrated in Figure 12, where Ω1 is observed to decrease with the increase in ρ for all three
considered vibration amplitude levels. Further, it is noticed that the cable network funda-
mental frequency converges to Ω1 = 1.07π for different κ values and material nonlinearity
types at ρ = 1. This confirms that the fundamental frequency of a twin-cable network will
not be affected by the cross-tie properties, and it remains unchanged when the cross-tie
nonlinearity is taken into account. It is observed from Figures 11 and 12 that while using
a longer neighboring cable would improve the equivalent linear stiffness of the cross-tie,
the in-plane stiffness of the cable network would be reduced. It is worth noting that the
additional in-plane stiffness provided by the network system to the target cable is the sum
of the cross-tie axial stiffness and the neighboring cable lateral stiffness. With the increase
in the length ratio, while a longer neighboring cable would reduce the in-plane stiffness of
the cable network, a higher cross-tie axial stiffness would enhance the rigidity of the system.
This suggests that the change in the network in-plane stiffness and frequency would be
dictated by the net effect of the two, and a change in the cross-tie equivalent linear stiffness
due to its nonlinear behavior would not necessarily result in a change in the actual in-plane
stiffness of the entire cable network system with the same trend.
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5. Conclusions

A cross-tie is an effective solution to suppress unfavorable motions of stay cables
on cable-stayed bridges. One major drawback of this measure is its inability to directly
dissipate energy from the formed cable network. To address this limitation, employing
materials with high energy-dissipation features for cross-ties has been proposed, of which
the presence of material nonlinearity cannot be ignored. Although the nonlinearity in the
cross-tie restoring force resulting from slackening and snapping has been investigated
in a few studies, research on the effect of cross-tie material nonlinearity on the dynamic
response of the formed cable network is scarce. In this study, the authors have expanded
upon an existing analytical model of a two-shallow-flexible-cable network to incorporate
the nonlinear behavior of the cross-tie material. The cross-tie material properties are
captured using a piecewise power series polynomial. The application of the Harmonic
Balance Method (HBM) facilitates the determination of the equivalent linear stiffness
of the cross-tie. The dynamic response of a cable network with a nonlinear cross-tie is
approximated by evaluating that of an equivalent linear system. The modal responses of
cable networks yielded from the proposed analytical model and the HBM-based approach
manifest as good correspondence with those obtained based on an FE simulation. In
addition, the effects of the cable vibration amplitude, cross-tie material property, and
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installation location, as well as the length ratio between the neighboring cable and the
target cable, on the cross-tie equivalent linear stiffness and the fundamental frequency
of the cable network have been investigated and discussed. It is worth mentioning that
in the proposed method, the dynamic behavior of a nonlinear cable network system is
approximated by an equivalent linear system, of which the vibration amplitudes of main
cables are assumed to be insignificant when compared to the cable length. Thus, the
outcome of the current study may not be representative of a nonlinear cable network at a
very large vibration amplitude. The main findings are concluded as follows:

1. For a cable network with a general layout, the presence of cross-tie material nonlinear-
ity would not only affect its modal frequencies and order, but also considerably alter
the mode shapes. When the cross-tie material is of the strain-softening type, both the
cable network fundamental frequency and the cross-tie equivalent linear axial stiffness
show a monotonic decrease pattern with the increase in cross-tie axial deformation.
On the other hand, if a strain-hardening type of material is used for the cross-tie, these
two parameters are observed to exhibit a decrease–recover pattern.

2. Compared to the linear cross-tie case, when a strain-softening type of cross-tie is used
in a cable network with a general layout, the modal frequencies of all the modes would
decrease. The modal order of the lowest in-phase global mode is not affected and the
associated mode shapes remain more or less the same. However, some high-order
global modes would evolve into local modes dominated by one of the main cables,
and out-of-phase global modes are excited. In addition, the formation of local modes
is delayed to a high order. A local segment mode could evolve into a global mode or a
local mode dominated by one of the main cables.

3. In a twin-cable network, the presence of cross-tie material nonlinearity has no impact
on the modal frequencies and modal order of all symmetric in-phase global modes.
However, when a strain-softening type of cross-tie material is used, the anti-symmetric
in-phase global modes delay to a higher order with the same modal frequencies. In
addition, all local segment modes evolve into anti-symmetric out-of-phase global
modes with reduced modal frequencies.

4. In contrast to the linear cross-tie case, when a cross-tie exhibits nonlinear behavior,
moving it towards the cable mid-span was found to be disadvantageous to the en-
hancement of the cable network in-plane stiffness. This occurs regardless of whether a
strain-softening or a strain-hardening type of material is used for the cross-tie.

5. A cable network using a strain-softening or strain-hardening type of material for
the cross-tie would respond differently to the change in the cross-tie location. The
fundamental frequency and cross-tie equivalent linear axial stiffness in the former case
are less sensitive to the cross-tie position effect than that in the latter.

6. The increase of the length ratio would lead to less axial deformation in a cross-tie
when the cable network vibrates in its fundamental mode. Within the length ratio
range covered in the current study, the presence of a threshold length ratio has been
identified in the case of a strain-softening-type cross-tie, where the equivalent linear
stiffness of the cross-tie is observed to increase drastically beyond this threshold. In
addition, the effect of the length ratio on the network in-plane stiffness and frequency
is determined by the level of its influences on the cross-tie axial stiffness and the
neighboring cable lateral stiffness. A change in the cross-tie equivalent linear stiffness
would not necessarily result in a change in the actual stiffness of the entire cable
network system with the same trend.
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