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Abstract: The aim of this study is to develop a physical model and investigate the bactericidal effect
of an automated hand-washing system through numerical computation, which is essential in areas
affected by COVID-19 to ensure safety and limit the spread of the pandemic. The computational
fluid dynamics approach is used to study the movement of the solution inside the hand-washing
chamber. The finite element method with the k-ε model is applied to solve the incompressible Navier–
Stokes equations. The numerical results provide insights into the solution’s hydrodynamic values,
streamlines, and density in the two cases of with a hand and without a hand. The pressure and mean
velocity of the fluid in the hand-washing chamber increases when the inlet flow rates increase. When
the hand-washing chamber operates, it creates whirlpools around the hands, which remove bacteria.
In addition, the liquid inlet flow affects the pressure in the hand-washing chamber. The ability to
predict the hydraulic and cleaning performance efficiencies of the hand-washing chamber is crucial
for evaluating its operability and improving its design in the future.

Keywords: numerical computation; computational fluid dynamics; hydrodynamic values; hand-
washing chamber

1. Introduction

During 2020, the SARS-CoV-2 virus rapidly spread across the globe, causing significant
damage to economies and claiming many lives. Even now, the virus remains unpredictable
and has resurfaced in some countries with new strains such as Omicron and its sub-variants.
This lack of information about the virus has created a void that is driving innovation in
many fields. Since ancient times, people have faced health problems related to viruses. Over
time, people have invented many different ways to prevent those pathogens. Scientists have
studied the properties of the coronavirus, thereby creating a vaccine against COVID-19 [1].
According to WHO, people did not stop working to prevent smallpox despite the material
constraints caused by the war [2]. As a result, hand-washing with soap has emerged as an
example of rapid innovation to combat the COVID-19 global pandemic.

Numerous scientific studies have focused on researching hand-washing machines.
One such study by Allegranzi et al. [3] examined the factors that impact hand hygiene
compliance in healthcare and the effects of promoting hand hygiene on the rates of cross-
transmission and associated pathogen infections. The hands of healthcare workers are
often the primary mode of transmission for healthcare-associated pathogens between
patients and within the healthcare environment. To prevent the spread of antimicrobial
resistance and reduce healthcare-associated infections (HCAIs), hand hygiene is considered
the most effective measure. However, despite this knowledge, healthcare worker adherence
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to optimal hand hygiene practices remains low in most healthcare settings. Thorough
hand washing is a simple yet effective way to prevent the spread of illnesses and diseases.
However, compliance with proper hand-washing techniques remains a significant issue
globally. Conover et al. [4] conducted a study that summarized the factors affecting hand
washing. Hand sanitizers can be antimicrobial or non-antimicrobial in terms of the content
of important substances used in the solution. The time taken to wash hands must be
suitable for hand washing to be effective and to optimize operating costs. In addition,
the paper also presented an evaluation of the effectiveness of hand washing using two
main methods: hand inoculation and the removal of microorganisms from hands. Recently,
Kukkala et al. [5] devised a standalone device that can automatically wash a user’s hands
without the need for the user to touch anything during or after the process, demonstrating
equally good decontamination. Users can place their hands in the machine and allow it
to perform various cycles, including wash, soap, scrub, and dry cycles, resulting in clean
hands. Jolan et al. [6] conducted a study on the effectiveness of multi-station automatic
hand-washing systems, which provide complete and hygienic hand-washing activities
with soap and water through multiple stations that operate independently of each other.
These systems meet the WHO hand-washing duration standard and accommodate the
WHO hand-washing technique, making them an effective solution for promoting proper
hand hygiene.

Computational fluid dynamics (CFD) is known as an important technology for the
study of the hydro-aerodynamic characteristics of fluid motion, and has been applied to a
microchannel, sterilization chamber, torpedo-shaped underwater glider, centrifugal blower,
an infection isolation room, etc. [7–14]. Le et al. [7–10] investigated the thermocapillary
migration of the fluid flows in a microchannel. The numerical results showed that the heat
and mass transfer problems strongly affect the motion behavior of fluids in a microchannel.
Feurhuber et al. [15] utilized CFD simulation to measure the temperature and pressure
in sterilizers. In addition, the estimation of non-condensable gases (NGCs) in stream
sterilizers has an important role in calculating the real volume fraction of NGCs. The
volume fractions of NCGs within steam sterilizers, according to many indexes such as fluid
flow, temperature, and heat transfer, are separated in time and space. Lewinski et al. [16]
studied the effectiveness of iron oxide nanoparticles to remove the bacteria from human
skin. The research indicated γ− Fe2O3, ZnO nanoparticles have a remarkable ability to
remove pathogens attached to the surface of human skin. Vuai et al. [17] investigated
the disinfection effectiveness of hand sanitizer products on the market to mitigate the
COVID-19 outbreak. The research indicated that there is a need to develop cleaning and
disinfecting products and processes that are more effective against present and future
pathogens. Huang et al. [18] demonstrated the effect of parameters on the hydrodynamics
of a high-pressure water-jet nozzle. The results indicated the impact of the sprinkler char-
acteristics on the performance and behavior of the nozzles. CFD analysis has rarely been
used to analyze the hydrodynamic characteristics of the flow in hand-washing machines.
Nonetheless, it is an interesting approach that could improve the cleaning performance of
these machines.

The purpose of this paper is to develop a parametric representation of an automated
hand-washing system and enhance its hydrodynamic performance using a feasible method.
The proposed approach involves representing the system’s profile using velocity values
at the inlet and pressure values at the outlet, which are then optimized to improve the
system’s hydrodynamic efficiency and cleaning performance. To evaluate the profile’s
performance at specific sample points in the design space, CFD analysis is conducted.

2. Methodology
2.1. Physical Model

In this study, a physical model of the hand-washing chamber was designed to represent
all the important features of this chamber in real life. The model is guaranteed to be widely
used and suitable for most Vietnamese people with an average arm length of 0.65 m or
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more. For these needs, this rotating chamber has a diameter of 0.2 m and a height of
0.32 m (the part of the hand to be washed is half the average arm length). This hand-
washing rotary chamber has entry and exit points, a chemical tank, and a spray mechanism
system. According to the size of the chamber, the liquid flow is calculated to ensure that
the disinfectant liquid is sprayed all over the hand after 20 s.

q =
δV
δt

=
1.6
20

= 0.01 m3/s (1)

The CleanTech Automated Hand-Washing System (CTAHS) ensures complete control
of hand hygiene. The system has a compact design with a turnstile that automatically opens
at the end of each 12 s wash and rinse cycle, and uses 75% less soap and water than manual
washes. It also removes 99.98% of dangerous pathogens from bare skin and gloved hands.
The CleanTech Automated Hand-Washing System is designed for high-use areas and can
wash the hands of up to 4–5 users per minute. It is ideal for environments such as food
processing areas, clean rooms, and pharmaceutical manufacturers where effective hand
hygiene is critical. This study used a combination of computational fluid dynamics (CFD)
and the Fluent module of Ansys Workbench to obtain predictions about the behavior and
movement of disinfection solution in this hand-washing rotating chamber. In this model,
the results were surveyed for 20 s. Figure 1 shows the 3D model of the hand-washing
machine and the vortex chamber in which hands are washed. The 3D model was designed
using SOLIDWORKS software. Within the scope of this article, we only introduce the
model of the redesigned hand-washing machine based on CTAHS; in this article, we do
not provide a detailed discussion of the mechanical design and control issues.
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Figure 1. Machine 3D hand-washing model and vortex chamber in which hands are washed.

In this study, the model was built based on the hand-washing rotating chamber in real
life. However, the main purpose of this study was to observe the distribution of the solution
inside the chambre, which means some solid parts of this chamber are not included. In
Figure 2, a model of the hand-washing chamber is presented with two forms, i.e., with and
without a human hand. Position 1 is the inlet, position 2 is the outlet, and the fluid used is
water. Water is sprayed from the inlets at a speed of 5 m/s. The fluid moves in rotation in
the chamber and then exits the chamber via the outlet position. The model has the inputs
arranged in 3 different ways. The drainage part is arranged below the chamber rotation,
ensuring effective water removal. The holes are clustered together, optimizing the water
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flow and distribution. To further enhance effective water drainage, each nozzle cluster is
designed with equal rotation angles.
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Figure 2. A model of the hand-washing chamber.

In the design of the rotating washing chamber, the solution is sprayed through nozzles
installed in the chamber. For the purpose of obtaining simulation results in this study, the
Navier–Stokes equations, conservation of mass, kinetic energy, and some related equations
are used to analyze the flow of fluids in three dimensions.

Navier–Stokes equation:

ρ

(
∂u
∂t

+ u.∇u
)
= −∇p +∇.T+ F (2)

The conservation of mass:
∂ρ

∂t
+∇.(ρ.u) = 0 (3)

where:
ρ is the density (SI unit: kg/m3)
u is the velocity vector (SI unit: m/s)
p is the pressure (SI unit: Pa)
F is the volume force vector (SI unit: N/m3).
In this study, the sterilization chamber was analyzed using the achievable k-ε module.

Shin et al. [19] investigated a new k-ε eddy viscosity model for high Reynolds number
turbulent flows. The k-ε eddy viscocity formulation describes realizability and includes
the effects of mean rotation homogeneous shear flows; boundary-free shear flows; channel
and flat boundary layer flows, with and without a pressure gradient; and backward-facing
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step flows. This module is known for computing turbulent flow by evaluating the kinetic
energy (k) and the turbulent dissipation (ε). The achievable k-ε modulus is widely used in
turbulence models in research or industrial applications because it provides better results
and reduces the number of computations in turbulent flow [20].

The kinetic energy equation (k):

∂

∂t
(ρk) +

∂

∂xj

(
ρkuj

)
=

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Gk + Gb − ρε−YM + Sk (4)

The turbulent dissipation equation (ε):

∂

∂t
(ρε) +

∂

∂xj

(
ρεuj

)
=

∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ GkC1ε

ε

k
− ρC2ε

ε2

k
+ C1ε

ε

k
C3εGb + Sε (5)

where:
Gk: turbulent kinetic energy due to the mean velocity
Gb : turbulent kinetic energy due to buoyancy
C1ε = 1.44
C2ε = 1.92
Cµ = 0.09

S =
√

2SijSij

uj is the velocity component in the corresponding direction

µt is eddy viscosity, µt = ρCµ
k2

ε
σk = 1 turbulent Prandtl numbers for k
σε = 1.3 turbulent Prandtl numbers for ε
YM : the overall dissipation rate
Sε, Sk: user-defined source terms.
Bernoulli’s equation:

p +
1
2

ρV2 + ρgh = constant

where:
p is the pressure (SI unit: Pa)
ρ is the density (SI unit: kg/m3)
V is the velocity
h is elevation
g is the gravitational acceleration (SI unit: m/s2).

2.2. Numerical Methods

Due to the development of computer technology, CFD is now widely used to estimate
the motion and hydrodynamic properties of objects in a fluid environment. Most studies
are based on Navier–Stokes equations and initial boundary conditions to analyze and
obtain velocity values, pressure distribution, kinetic energy, etc. To analyze various fluid
flows, we can use continuity equations, momentum equations, and energy equations. Since
it is too difficult to calculate all the hydrodynamic values when analytically solving these
equations, CFD was applied to derive the results. However, estimating values via CFD
helps to improve accuracy and reduce computation time. Feurhuber et al. [15] applied this
approach to much of his research. The CFD model of the steam sterilizer was developed to
simulate the inactivation of microorganisms at each position within the steam sterilizer [21].
The results indicated that the simulated temperatures are in very good accordance with
the measured data. The CFD approach is applied to develop all of the phenomena that
occur inside the steam sterilizer, and particularly inside the hollow load PCD tests [22].
Ref. [23] examined the reality of hand washing in some low-income countries around the
world, where people have difficulty accessing hand-washing chambers. All of the research
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presented below shows that the use of CFD to predict the hydrodynamic properties and
motion of liquid flow in a sterilization chamber is suitable.

2.3. Boundary Layer

The mesh is created to suitably model the boundary layer [24] and the layer thickness
near the profile person’s hand can be calculated as:

∆y = L∆y+
√

80Re−
13
14 (6)

where Re is the Reynolds number defined as VL/γ, where V is the velocity liquid, γ
is the coefficient of kinematic viscosity, L is the length of the hand in the chamber, and
20 ≤ ∆y+ ≤ 200. The thickness of the boundary layer and the first layer close to the hand is
approximately 5 mm.

Turbulence was modeled with a turbulence intensity of 5%. The steam quality at the
inlet is indicated in Equation (7).

x =
msteam

msteam + mwater
(7)

where:
msteam: stand for mass of the steam.
mwater: the mass of the water.

2.4. Boundary Conditions for Rotatory Simulations

Boundary conditions were applied to simulate hydrodynamic values, streamlines, and
density in the two cases of with a hand and without a hand, including a velocity inlet, a
pressure outlet with zero relative pressure, a moving wall, and no slip wall. In this study,
the rotational speed of the hand-washing chamber was set to 40 rad/s.

2.5. Mesh Generation

In Figure 3, a typical mesh is used in the computational domain for the hand-washing
rotating chamber in the cases of without a hand and with a hand. In the first case, that
is, without a hand inside the chamber, there are 132,643 nodes and 678,774 elements. The
other case, which has one hand in the chamber, has 287,429 nodes and 1,158,678 elements
in total. The maximum skewness of the mesh was 0.8373 and the maximum aspect ratio
was 9.98. All of the surfaces, including of the human hand, are set as walls, and the inlets
are located in the nozzles, which have a speed of 2–7 m/s. The orientation of this flow is
perpendicular to the inlet.
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3. Results and Discussion

The results obtained from the simulations show that the flow is evenly spread through-
out the chamber and around the human hand. Figure 4 illustrates the distribution of fluid
flow through the entire rotating chamber at t = 5 s. Both pictures show the vector line of
the liquid in the chamber being rotated by the mechanics of the machine; flows reach the
bottom of the chamber and are strongly sprayed outside. A dense stream of the solution
reaches the areas of the hands that can easily become infected with viruses. Specifically, the
figure shows the distribution of the flow in the hand image, and it can be seen that in places
where it is difficult to achieve a high degree of disinfection, such as the thumb and the gaps
between the fingers, the density of the flow is still very good. Figure 5 shows the velocity at
t = 5 s. The initial condition of the hand-washing chamber with a maximum speed (5 m/s)
of liquid occurs at the nozzle, along with the rotational speed (40 rad/s) of the chamber.
When water is sprayed, it forms streams of water with different vertical angles. Figure 5
also shows that the velocity of the water flow decreases nearer the middle of the chamber.
This is entirely appropriate as there should be a hand-washing vortex in the middle of the
chamber to remove the virus from the hands.
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Based on Figure 6, the distribution of the flow is appropriate as it covers all the space
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Figure 7a shows the flow distribution of the chamber at different times; the nozzles
in turn spray a stream of hand-washing liquid. Based on the rotating mechanism of the
hand-washing machine system, these hand-washing liquid lines will rotate at a speed of
40 rad/s. Here, the various times are considered to observe the change in hydrodynamic
characteristics of the flow in the chamber when the hand-washing system operates. During
this period, the vortexes around the hands change significantly. Initially, the liquid is
sprayed from the nozzles and the rotation speed of chamber is not reached (40 rad/s), so
the liquid hits the chamber wall and bounces back to form whirlpools, which are created at
different positions in the chamber by the liquid being partially held by centrifugal force
on the walls of the chamber. In addition, when the liquid flows from the nozzle holes to
the opposite wall, the liquid creates straight lines. Because there are no flow obstructions,
the velocity of the liquid when entering the middle of the chamber is slightly reduced.
Figure 7b shows the flow distribution of the liquid at different times. At t = 1 s, the liquid
flows ejected by the nozzles produce the same phenomenon as in the case without a hand
at the beginning. However, at this time, the hand is an obstacle that prevents the fluid
from moving in a straight line. The flow of liquid moving to the hand creates many small
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vortexes that are not very concentrated around the hand. At a later time, the vortexes are
more concentrated around the hand.
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up and down change because the draining holes are always opened with the fluid being 
continuously sprayed. The mean velocity through a point is lower than the initial velocity 
of the fluid because we chose to position the survey point in the middle of the chamber. 
In fact, the liquid flows sprayed into the hand-washing chamber also cause them to hit 
and reduce the velocity of the fluid. In the case with a hand in the hand-washing chamber, 
the velocity field has a shape quite similar to that in the case without a hand; however, 
when the fluid is sprayed against an obstacle (arm), the fluid is blocked. At a certain time, 
the velocity fluctuation in the liquid at the chosen point in the case with a hand is higher 

Figure 7. The flow distributions of the hand-washing chamber at different times for the two cases of
(a) without a hand and (b) with a hand.

Figure 8 shows the mean velocity of fluid inside the hand-washing chamber in both
the case without a hand and with a hand. The mean velocity of the liquid varies in a similar
way during a hand-washing cycle of about 5 m/s. These values vary according to the curve
resulting from the rotating mechanism of the hand-washing machine system, which rotates
at a speed of 40 rad/s. In the case without a hand, the velocity has a relatively smooth
up and down change because the draining holes are always opened with the fluid being
continuously sprayed. The mean velocity through a point is lower than the initial velocity
of the fluid because we chose to position the survey point in the middle of the chamber. In
fact, the liquid flows sprayed into the hand-washing chamber also cause them to hit and
reduce the velocity of the fluid. In the case with a hand in the hand-washing chamber, the
velocity field has a shape quite similar to that in the case without a hand; however, when
the fluid is sprayed against an obstacle (arm), the fluid is blocked. At a certain time, the
velocity fluctuation in the liquid at the chosen point in the case with a hand is higher than
that in the case without a hand in the hand-washing chamber. Therefore, when the fluid
reaches the surface of the hand’s skin, it creates low-pressure places near the hand and
vortices. This causes the velocity of the fluid to increase.

Figure 9 compares the pressure in the case without a hand and the case with a hand,
with the rotation speed of chamber at 40 rad/s and the fluid speed at 5 m/s. In the
beginning stage of both cases, the pressure rapidly increases to peak at the maximum value,
and is then maintained at that level until the hand-washing procedure is completed. In the
case with a hand in the chamber, the arm is an obstacle to the flow of the moving liquid;
therefore, when the liquid comes into contact with the skin surface, the pressure in the case
with a hand is higher than the pressure in the case without a hand.
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Figure 10 illustrates the mean velocity through a point with rotation at a speed of
40 rad/s for the inlet flow rates of Q = 462 mm3/s, 770 mm3/s, and 1078 mm3/s. Figure 10a
shows that, for the different inlet flow rates, the velocity through a point does not change
much with the rise and fall in the fluid velocity in the hand-washing chamber. For the case
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of Q = 1078 mm3/s, the average velocity is greater than that in the other two cases due to
the change in the inlet flow. The velocity of the fluid that passes through the surveyed point
increases because the drainage holes are not drained in time. If the water flow is too high,
the fluid particles will be splashed out. In Figure 10b, we selected the point position for the
model with the hand in the middle of the finger gap. In this case, the graph shows that there
are times when the velocity changes are larger than in the case without a hand; at these
times, large whirlpools are created to help remove bacteria. In particular, after the initial
time, the hand-washing chamber starts to achieve the operating number of revolutions and
the amplitude of the speed fluctuation is more pronounced, proving that the hand-washing
chamber works effectively to clean hands.
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cases of (a) without a hand and (b) with a hand.

Figure 11 shows the pressure in the two cases of the hand-washing chamber during
a 20 s period. The pressure value in the chamber with a hand is larger than that in the
chamber without a hand. Because the hand is an obstacle, the pressure at the survey point
also increases at this time. Due to the reverse pressure created by the impact of the fluid
jets on the hand, the machine takes about 2 s to reach the maximum pressure, which is
maintained during the operation time. When the higher pressure is applied to the surface
of the hand’s skin, it creates a larger force. This force contributes to helping to remove the
bacteria attached to the skin’s surface.
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4. Conclusions

In this study, a conceptual design of a hand-washing chamber was modeled, meshed,
and analyzed to obtain characteristics such as pressure, velocity distribution, and flow. The
initial velocity of the different nozzles, the liquid velocity, and the liquid pressure passing
through a point change significantly. The combination of the velocity of the inlet holes
with the mechanical rotation of the hand-washing chamber creates whirlpools that help to
remove more bacteria.

The numerical results show that the higher the inlet flow rates, the larger the pressure
in the hand-washing chamber. Once the pressure in the hand-washing chamber increases,
bacteria are easily removed from the skin of the hands. The sterilization rate and bacteria
drift increase when the inlet flow rates increase. This offers the potential idea to upgrade
and optimize new designs having less energy usage and higher sterilization efficiency. The
achievements presented in this paper can be used to implement innovative solutions.

The identification of a relationship between liquid inlet flow and increased pressure in
the hand-washing chamber, and the high pressure, is useful to help eliminate pathogens. In
the future, the results of the paper can also contribute to advancements in fluid dynamics
and high-pressure water-jet nozzle technology.
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