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Abstract: The article presents the development of new physics-informed evolutionary neural network
learning algorithms. These algorithms aim to address the challenges of ill-posed problems by
constructing a population close to the Pareto front. The study focuses on comparing the algorithm’s
capabilities based on three quality criteria of solutions. To evaluate the algorithms’ performance,
two benchmark problems have been used. The first involved solving the Laplace equation in square
regions with discontinuous boundary conditions. The second problem considered the absence of
boundary conditions but with the presence of measurements. Additionally, the study investigates
the influence of hyperparameters on the final results. Comparisons have been made between the
proposed algorithms and standard algorithms for constructing neural networks based on physics
(commonly referred to as vanilla’s algorithms). The results demonstrate the advantage of the proposed
algorithms in achieving better performance when solving incorrectly posed problems. Furthermore,
the proposed algorithms have the ability to identify specific solutions with the desired smoothness.

Keywords: pareto front; physics-informed neural networks; discontinuous boundary conditions;
Laplace equation; multi-criteria; multi-objective optimisation; neuroevolution

1. Introduction

The vast majority of papers presenting physics-informed neural network models
and solutions use a pre-selected network architecture, mentioning that the corresponding
parameters were found empirically. This dilemma is also mentioned in Haykin’s classic
book [1]. The concept of architecture in this case can include both types of activation
functions, the number of layers and neurons in them, and methods for initializing the
output parameters of a neural network. But for its purposeful selection, it is desirable to
use evolutionary algorithms [2–6]. These optimisation techniques utilise a set of potential
solutions that evolve over time through various operations, including selection, mutation,
and crossover.

The problem of determining the optimal architecture is particularly pertinent when
considering neural network solutions for problems that involve differential equations [7,8].
At present, these types of neural networks are commonly referred to as Physics-Informed
Neural Networks (PINNs) [9]. Although the prevailing trend in most studies involves
a fixed PIN (Physics-Informed Network) architecture, a considerable number of works
delve into discussions on algorithms for selecting not just weights, but also the architecture
itself [10–13].

In recent years, the number of articles devoted to the search for optimal architecture
has been growing. The evolutionary algorithms are employed to discover the optimal
combination of weights and biases that minimise the error for a neural network are known
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as Grey Wolf Optimiser [14], Particle Swarm Optimiser [15] and the others [11]. The applica-
tion of evolutionary algorithms to train neural networks is known as neuroevolution [16,17],
which has gained attention as a promising approach for solving complex problems in vari-
ous fields. The most recent studies focusing on the application of evolutionary methods for
training Neural Networks are the EDEAdam algorithm [18] that combines the contempo-
rary differential evolution technique with Adam; Enhanced colliding bodies optimization
algorithms showed good results and high accuracy in [19].

One of the drawbacks of evolutionary algorithms is their significant resource intensity.
Consequently, a key concern is to enhance their effectiveness. Recognising the charac-
teristics of the problem at hand is a crucial resource for improving the efficiency of such
algorithms. Additionally, a purposeful approach to population information, which encom-
passes a set of models involved in evolution, plays a significant role. Both of these aspects
are explored in detail in this paper.

Considering the problem of population formation, it is noteworthy that constructing a
Physics-Informed Neural Network (PINN) is inherently a multi-criteria task, given that
boundary value problems involve multiple criteria, as they consist of an equation and
boundary conditions, each of which is described by separate loss functions to assess accu-
racy. Additionally, when measurements are involved, an additional loss function emerges.

Typically, these individual loss functions are combined into a single function, thereby
giving rise to the challenge of selecting appropriate penalty factors. Numerous approaches
to addressing this problem have been proposed in the existing literature. Adaptive weights
are suggested in [20], where the penalty parameter is updated at each or some steps of
network training according to a predetermined formula. In [21], the weights are updated
after 100 epochs of training to balance the contribution of each term. In [22], the impact of
the parameter on the learning rate is assessed, and a fixed value is used to obtain the final
solution. Authors of [23] examines the effect of weight on both the loss function and its
individual components by comparing their values for the resulting network. In [24], the
approximate solutions obtained for different values of the weight parameter are compared
with the exact solution.

In this paper, we have chosen to approach the problem directly as a multi-criteria task.
Solving problems with multiple objectives and multi-criteria decision making are challenges
across disciplines, leading to alternative approaches beyond traditional techniques. In [25],
various strategies to dynamically balance the impacts of multiple terms and gradients in
the loss function by selecting the best scaling factors are explored.

Evolutionary algorithms for multi-criteria problems are considered in a number of
papers. In [26], evolutionary algorithms are applied for multi-objective multi-task optimi-
sation. The article [10] proposes an evolutionary algorithm for multi-objective architecture
search that enables approximating the complete Pareto front of architectures under multiple
objectives, including predictive performance and number of parameters. Evolutionary
algorithms, due to their population-based nature, have been utilised to generate multiple
elements of the Pareto optimal set in a single run [27]. Some practical applications to engi-
neering problems are presented in [2]. These techniques also are well-suited for addressing
challenges associated with irregular Pareto fronts [28]. It has been noticed that approaching
the Pareto front [29,30] gives a set of solutions that can be regarded as a population for
constructing evolutionary algorithms.

The task of building PINN was also regarded as multi-criteria. In [31], a multi-objective
optimisation method for PINN training employed the non-dominated sorting algorithm is
proposed and tested on simple ordinary and partial differential equation problems. In [32],
it is proposed a self-adaptive gradient descent search algorithm which manually design the
learning rate of different stages to match the different search stages. The evolutionary sam-
pling algorithm dynamically evolving where collocation points over the training iterations
is proposed in [33].
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In this paper, the approaches mentioned above are combined. Due to the fact that
evolutionary algorithms are usually resource-intensive, approaches to their acceleration
are of interest. This work is devoted to the comparison of these approaches.

To evaluate the algorithms’ performance, two benchmark problems have been used.
They can be attributed to the class of problems of constructing mathematical models
based on heterogeneous data. Refs. [34–37] Due to the particular characteristics of the
algorithms employed, it is necessary for the differential equation and the operator defining
the boundary conditions to be linear. In this study, the classical Laplace equation has
been chosen as the differential equation, as it is frequently utilised for testing methods
designed to solve boundary value problems. Extending the algorithms to handle other
linear equations generally does not introduce significant challenges.

The tasks described in this paper are classified as decision-making tasks under multi-
criteria conditions. Our objective is not to construct the ultimate Pareto front, as it is
typically understood in multi-objective optimization, but rather to utilize it as a mechanism
that introduces the fundamental concept in the evolutionary algorithm. When modelling
real objects, it is common to encounter difficulties resulting from the complex nature of
the object being modelled. One such challenge is the possibility of obtaining contradictory
mathematical models when describing different aspects of the object. To illustrate this, we
present a benchmark example in which the solution at the corners of a square should be
both 0 and 1 simultaneously. However, the continuous solution we are constructing cannot
satisfy this condition, leading to significant errors in the vicinity of these points. Never-
theless, it is important to ensure that the errors are small in the rest of the area, and that
our solution is consistent with the one obtained using a fundamentally different approach
(in our case, the classical Fourier method). Corner singularities for initial boundary value
problems have recently emerged as a topic of research interest [38,39].

Another challenge in modelling real objects is the possibility of incomplete mathemat-
ical models. In such cases, additional information can be obtained through observations
of the object. In this paper, a second example is considered that highlights this challenge.
Specifically, the problem consists of solving an equation without sufficient data on bound-
ary conditions, making it impossible to obtain a correct solution using standard methods.
Instead, "measurement" data is available, which does not make the problem well-posed.
Computational experiment demonstrate that the proposed approach successfully regu-
larises this problem. Both examples involve solving the Laplace equation in a closed
domain. This problem is widely used as a benchmark for evaluating the performance of
multi-objective evolutionary algorithms [40].

The article is structured as follows. The “Materials and Methods” section highlights
the advantages of using neural network methods to model real objects, followed by a
discussion of the general formulation of the modelling problem in the context of multi-
criteria optimisation. The section concludes with an introduction to a family of evolutionary
algorithms based on the approximation to the Pareto front. In the “Computational Methods
and Results” section, we specify the problem to be solved, describe the parameters of the
algorithms studied in this paper, and present their results. Section “Discussion” provides a
summary of the proposed methods and a discussion of their prospects.

In [32], it is proposed a self-adaptive gradient descent search algorithm which manu-
ally design the learning rate of different stages to match the different search stages. The
evolutionary sampling algorithm dynamically evolving where collocation points over the
training iterations is proposed in [33].

2. Materials and Methods
2.1. Advantages of Physics-Informed Neural Network Modelling

To compare our results with previous works, it’s important to note the difference
in mathematical modelling paradigms. The classical paradigm consists of three stages:
first, a mathematical model of the simulated object is built based on available information,
typically in the form of a differential equation (or system of equations) with additional
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conditions. Second, an exact or approximate solution is constructed using known numerical
methods, with parameters selected to minimise error. Finally, results are interpreted and
conclusions are drawn based on how well they correspond to the original object. However,
this paradigm assumes perfect correspondence between the differential equation and
the original object, and if results are unsatisfactory, the process must start over from the
first stage.

The practicality of the following paradigm is evident. A differential equation model
with additional conditions is inherently approximate. As a result, striving for very high
accuracy in solving a differential problem may not be meaningful. In the second stage of
this work, a set of physics-informed neural network (PINN) models is constructed to solve
differential problems with varying levels of accuracy. It is crucial to obtain a sufficiently
accurate solution when the differential problem corresponds to an object that requires high
precision. The adaptive properties of the PINN model, such as its ability to be refined based
on additional data (e.g., measurements from sensors, changes in equation parameters), are
even more important. At this stage, the modest accuracy of the differential model is not a
final assessment of its quality, as long as it reflects the qualitative behaviour of the solution.
The differential problem should accurately reflect the qualitative behaviour of the solution,
and the model should allow for refinement based on additional data.

2.2. Problem Statement

Let us examine a non-linear partial differential equation (PDE) problem, as described below

D[u(x)] = 0, x ∈ Ω. (1)

The problem under consideration may have various conditions, including boundary
conditions in the form of

B[u(x)] = b(x), x ∈ Ω̄, (2)

initial conditions in the form of

C[u(x)] = c(x), x ∈ Ω̄ ∪Ω, (3)

measurement data
M[u(xi)] = m(xi), xi ∈ Ω̄, (4)

and other conditions of different types, such as asymptotic relations [41]. Here, D[·], B[·],
C[·], M[·] are some differential operators, x is spatial-time coordinates, Ω is a solution
domain with a boundary Ω̄, and b(x), c(x), m(x) are appropriate functions.

To solve these types of problems using neural networks, multi-objective optimisation
is employed, where the losses corresponding to Equations (1)–(4) and additional conditions
are minimised.

Vanilla Physics-informed neural networks [9,42] provide a solution to the problem
considered in the form of a fully-connected feed-forward neural network û(x, a), and the
unknown parameters a are found by minimising the mean squared error losses over the
space of these parameters,

LD(û(x, a), XND ) =
1

ND

ND

∑
i=1

(D[û(xi, a)])2; (5)

LB(û(x, a), XNB) =
1

NB

NB

∑
j=1

(B[û(xj, a)]− b(xj))
2; (6)

LC(û(x, a), XNC ) =
1

NC

NC

∑
k=1

(C[û(xk, a)]− c(xk))
2; (7)
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LM(û(x, a), XNM ) =
1

NM

NM

∑
l=1

(M[û(xl , a)]−−m(xi))
2. (8)

These multiple loss functions, residual loss, initial loss, boundary loss, and data loss
for inverse problems, are employed in PINNs. To train PINNs, the most common method
is to optimise the total loss, which is a weighted sum of the loss functions, using standard
stochastic gradient descent algorithms. The classical approach offers several options for
constructing general loss functions using the method of linearisation for multi-objective
optimisation problems. These options include varying the number of collocation points
ND, NB, NC used to calculate the discrepancy for Equations (1)–(3), the volumes of training
NM and test set (M− NM) for measurement data, and the inclusion,

L(XND , XNB , XNC , . . .) = LD(XND ) + δBLB(XNB) + δCLC(XNC ) + δMLM(XNM ) + . . . (9)

or exclusion [9],

L(XND , XNB , XNC , . . .) = LD(XND ) + LB(XNB) + LC(XNC ) + LM(XNM ),

of penalty multipliers δB, δC, . . . for the terms in the general loss function. Selecting an
appropriate penalty parameter is a crucial task, and various approaches have been proposed
in the literature.

Next, we propose the general idea of an evolutionary algorithm for solving multi-
criteria decision making problems. The Pareto front principle is one of the important
components of this algorithm.

2.3. Evolutionary Algorithms Based on Pareto Front: General Idea

In this scientific paper, we investigate the use of evolutionary algorithms to train
physics-informed neural networks based on the Pareto front. Our proposed approach
involves incorporating schemes of mutation, crossover, and selection of individuals based
on specific criteria. As criteria, the loss functions (1)–(4) presented earlier can be used, as
well as expert knowledge or any information that becomes available in real-time.

To account for the multi-objective nature of the optimisation problem, we vary the
penalty factor in the loss function. By training separate solutions for different penalty factor
values, we generate an analogue of the Pareto front and select the best instances using a
chosen criterion. To implement the principle of survival of the fittest individuals from the
population, our evolutionary algorithm selectively chooses individuals from the initial
population for mutation.

To illustrate the underlying concept, we assume that L1, L2, . . . represent different
criteria for decision making, such as loss functions, logical indicators, or custom-designed
functions [43].

Figure 1 shows the mutation procedure used in our family of evolutionary algorithms,
called the Pareto Mutation.

Then the Pareto mutation is incorporated into the overall framework. It’s worth noting
that specific criteria are employed both at various stages of the general algorithm, as shown
in Figure 2, and within the Pareto Mutation. The points of variation are indicated by yellow
circles. The dotted line represents the expansion of the scheme, which is beyond the scope
of this paper. The overall structure of the scheme follows a standard pattern observed in
evolutionary algorithms. For instance, one can refer to the scheme of the optimization
genetic algorithm process for artificial neural networks presented in [44] as an example.
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Figure 1. Evolutionary interpretation of Pareto mutation. The diagram showcases the construction of
an analogue of the Pareto front of solutions, as well as the selection of a new generation of solutions
through evolutionary processes. The yellow circles represent locations where specific problem criteria are
incorporated by individuals’ evaluation.The training of PINNs is considered as Mutation 1–Mutation P1.

Figure 2. The evolutionary algorithm used for generating a PINN solution population. The yellow circles
represent locations where specific problem criteria are incorporated by individuals’ evaluation. The
‘Crossover’ refers to the process of introducing additional neurons to the current generation of PINNs.



Computation 2023, 11, 166 7 of 16

Assuming a general scheme for a family of evolutionary algorithms based on the
criteria outlined in conditions (1)–(4), various algorithms can be developed using criteria
such as (5)–(8) or others. The properties of solutions generated by these algorithms and
the impact of neural network hyper-parameters on these solutions are promising research
areas. This article addresses ill-posed tasks that present challenges when solved using
vanilla PINNs.

3. Computational Experiments and Results
3.1. Benchmark Problems Statement

Let us examine one benchmark problem—specifically, the Laplace equation

∆u(x) = 0, x ∈ [0, 1]× [0, 1] (10)

with discontinuous Dirichlet boundary conditions

u(x, 0) = u(0, y) = 0, u(x, 1) = u(1, y) = 1, x, y ∈ (0, 1); (11)

and the same Laplace equation that lacks boundary or initial conditions but includes
additional data that simulates measurements

u(xi) = zi, xi ∈ [0, 1]× [0, 1], i ∈ 1, . . . , M; (12)

The considered problems have already been solved by other methods [12,13,43], they
seem to us convenient for comparative testing of algorithms.

When approaching tasks (10)+(11) and (10)+(12) using a general neural network
approach [9,42], the optimal choice is an RBF network with radial activation functions.
This is due to the closed domain on which the Laplace operator is calculated, where values
outside this set are not needed, as opposed to a multilayer perceptron which implies the
need for determining values beyond the boundaries. Radial basis functions are well-suited
for local approximation in a small neighbourhood of each point, making them an ideal
choice for these tasks.

It should be noted that, in all experiments, fixed collocation points have been used
at the boundaries, and randomly distributed and resampled points have been employed
within the region after a fixed number of training epochs to train the network.

3.2. Algorithms Description

A disadvantage of the classical solution of the problem (10)+(11) using the Fourier
method is the Gibbs effect on the boundary. The largest discrepancy between the Fourier
solution and the problem condition occurs when computing the root-mean-square error of
the function’s derivative error of satisfying the derivative equal to zero at the trial points on
the upper boundary of the square. When computed at 1000 randomly chosen points, it has
an approximate magnitude of 40. Therefore, the constancy condition of the function and
the equality of the function’s derivative to zero at the boundary are regarded as additional
criteria for evaluating the solution.

In this paper, algorithms are examined that result in the smoothest solutions being
constructed at the domain boundary based on these considerations.

This subsection describes the specific parameters of the algorithms and hyper-parameters
of neural networks used in the computational experiments. The scheme for the entire fam-
ily of algorithms presented in Figure 2 is followed, as well as the scheme for the Pareto
mutation depicted in Figure 1.

1. Termination condition:
The method terminates after achieving a predefined number of neurons, N, in a PINN
model. Different values of N are considered to investigate the impact of the total
number of neurons on the obtained solutions and their outcomes.

2. Initial Population
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A population of n1 = 100 neurons with radial basis functions of the form

û(x, a) = a1 + a2 exp
(
− a3((x− a4)

2 + (y− a5)
2)
)
, (13)

is randomly initialised as the initial population. Here, x = (x, y). Subsequently, all
individuals are fed into the input of the Pareto mutation process. The value n1 = 100
is quite small, but provides a stable penalty multiplier value (14) for Pareto mutation.

3. Pareto Mutation:
To select individuals from the incoming population, the following procedure is em-
ployed. During the initial mutation, the discrete quadratic errors for satisfying the
Laplace equation LD(û(x, a), XND ) and boundary conditions LB(û(x, a), XNB) are cal-
culated for each initialised network. These errors are then summed to derive a "global"
penalty multiplier

δ =
LD(û(x, a), XND )

LB(û(x, a), XNB)
√

P1
, (14)

for the linearised loss function LD + δLB, and where P1 is the number of different
mutations (see Figure 1). Afterwards, for each subsequent mutation i, i = 1, . . . , P1,
an individual is selected based on having the lowest loss LD + iδLB.
During the mutation process, the current networks are trained independently by
minimising the corresponding loss functions using algorithm Rprop [45] and by
regenerating points for the Laplace equation every 5 training epochs. The total
number of training epochs K1 can be selected separately. For the last mutation,
The total number of training epochs K2 is employed. The values considered in the
experiments are presented in Table 1.
Regarding the second selection procedure outlined in the Pareto mutation, all mutated
networks are preserved in all runs (P2 = P1) except for the final one.
As previously mentioned, collocation points are utilised at the boundary. Initially,
they are split into two sets: the first set is involved in the training of the network,
while the second set is employed in the selection process. Except for the first mutation,
all other mutations employ the first set of points for training PINNs.

4. Crossover:
The present study investigates algorithm that employs crossover within the current
population. The optimal Pareto set for this PINN solutions is constructed based on
the discrete quadratic errors for satisfying the Laplace equation LD(û(x, a), XND ) and
boundary conditions LB(û(x, a), XNB). Next, the neurons are selected from individuals
located at the leftmost and rightmost ends of the current Pareto-optimal set, and added
one by one to all other networks multiplied by the optimal parameter in the sense of
least squares. From the resulting new individuals, the one with the minimum error is
selected for each value of the penalty multiplier iδnew, i, i = 1, . . . , P1. A scheme of
the Crossover procedure is presented in Figure 3.

5. A note on the set of penalty multipliers:
In the previous paragraph, we introduced two different sets of penalty multipliers.
The general scheme of the algorithm allows for new selections of such sets within
each mutation and crossover. In this study, we consider two options: in the first, the
set of penalty multipliers is fixed during the initialisation of the first population of
networks (δnew = δ), while in the second, parameter δ is updated during the crossover
process. In the latter case, the new parameter is calculated as follows:

δnew =

√
j1 jP1

P1
δ, (15)

where j1 and jP1 are the numbers of individuals from the leftmost and rightmost ends
of the current Pareto-optimal set.
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Figure 3. A scheme of ’Crossover’ procedure. P(1) and P(P1) are the leftmost and rightmost ends of
the current Pareto-optimal set with n neurons; P(q), q = 1, . . . , P1, are current population of PINNs
with extrernal multiplier (weight) cj of each neuron. ck,n+1(i, q, j) are optimal external weights of
new neuron minimising corresponding error LD(XND ) + iδLB(XNB ). The yellow circle represents
incorporating specific problem criteria by individuals’ evaluation.

Table 1 displays the parameter values of the described algorithm across different
variants. The parameter values were chosen to strike a balance between stability and the
duration of computational experiments. For instance, using P1 = 9 individuals in the
current population undergoing independent Pareto mutations yielded the same result as
using P1 = 20, while significantly reducing the execution time. Further reduction of threads
resulted in inferior outcomes.

Table 1. Algorithm parameter configurations used for a series of experiments in which prob-
lem (10)+(11) is solved.

P1 P2 N K1 K2

9 9 10, 20, 30 10, 50, 100 400, 800
Here, P1, P2 are the parameters that determine the number of individuals in the current population undergoing
independent mutations; N is a predefined number of neurons in a PINN solution utilised as the termination
condition; K1 is the total number of training epochs during the Pareto mutation except the last cycle, and K2 is the
total number of training epochs during the last Pareto mutation.

3.3. Results: Problem (10)+(11)

The restart method was applied to the three algorithm variations described in Figure 2
and above, with the parameters presented in Table 1, in a series of experiments. Different
variants of Algorithm 1 have been utilised. Algorithm 1_1 involves updating the set of
penalty factors, while Algorithm 1_3 stores the values obtained during the initialisation
stage of the initial population. One of the variants of Algorithm 1, Algorithm 1_2 in-
corporates an evolutionary mechanism for updating the PINN model’s weights. During
the Pareto mutation, some weights are replaced by the nearest elements of the current
Pareto-optimal set.

Solutions minimising expressions (5), (6) and

L(û(x, a), XND , XNB) ==
LD(û(x, a), XND )

maxa LD(û(x, a), XND )
+

LB(û(x, a), XNB)

maxa LB(û(x, a), XNB)
, (16)

have been selected from the final Pareto-optimal set if PINN solutions to evaluate the
results. The effectiveness of the latter criterion has been demonstrated in prior studies of
similar problems. In addition, upper bounds have been introduced for characteristics (5)
and (6). The nonparametric Kruskal-Wallis and Mann-Whitney tests were primarily used
to analyse the results. Unless otherwise specified, significant differences were determined
at the 0.05 level.
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Algorithm 1 Evolutionary PINN Learning Algorithms Inspired by Approximation to Pareto
Front

1: t← 0
2: InitPopulation [P(t)] . Initialises the population P(t)
3: EvalPopulation1 [P(t)] . Evaluates the population P(t) by Criterion 1
4: Select1 [P(t), P1] . Selects the best P1 individuals from P(t)
5: Mutate [P1(t)] . Mutates each from P(t)
6: while the termination condition do
7: EvalPareto [P(t)] . Evaluates the population P(t) and builds the Pareto front
8: (ParentL, ParentR)← SelectPareto [P(t)]
9: for each p(t) in P(t) do

10: Crossover (ParentL, p(t))
11: Crossover (ParentR, p(t))
12: end for
13: P(t + 1)←Select1 [New Generation, P1]
14: t← t + 1
15: end while

We investigate the effect of the number of neurons N in the final solution on the quality
of solutions obtained using all types of algorithm. Figure 4 indicates that solutions with
N = 20 and 30 approximate the Pareto front. Additionally, for Algorithm 1_3, there is a
significant difference in characteristics (5) and (6) at a significance level of 0.05.

Figure 4. Scatter plot shows all obtained and selected evolutionary PINN solutions for a two-
objective optimisation problem (10)+(11), depending on the predefined number of neurons N in the
final network.

When comparing the results of the algorithms themselves, Figure 5 shows that main-
taining a diverse range of solutions within the obtained set is especially observed in the
case of Algorithms 1_1 and 1_2 significant difference in the values of characteristics (5)
and (6) at the 0.05 significance level. It should be noted that when considering all solutions
obtained, Algorithms 1_1 and 1_2 tend to increase the importance of meeting the Laplace
equation criterion.
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Figure 5. Scatter plot shows all obtained and selected evolutionary PINN solutions for a two-objective
optimisation problem (10)+(11), depending on the certain algorithm variant (1_1, 1_2 and 1_3).

The experimental results indicate that the Pareto-optimal solutions correspond to the
smallest discrepancies with the analytical solution obtained by the Fourier method, which
confirms the consistency of methods being evaluated. There is a statistically significant
difference between the outcome of Algorithm 1_3 and that of Algorithms 1_1 and 1_2,
that is evident in Figure 6. Algorithm 1_3 is the only one for which the compliance with
the analytical solution is affected by the number of neurons in the resulting network.
Specifically, models with 10 neurons yield significantly worse results compared to those
with 20 and 30 neurons.

Figure 6. Boxplots of root-mean-square error of satisfying the evolutionary PINN solutions for
problem (10)+(11) equal to obtained using the Fourier method solution for different algorithm
variations (1_1, 1_2 and 1_3).
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Regarding the influence of hyperparameters, such as the number of epochs for PINN
training at different algorithm steps, no effect on compliance with the analytical solution
was observed.

As previously mentioned, in addition to the primary criteria for selecting the best
solution, the error of satisfying the derivative equal to zero on the boundary can also be
taken into consideration.

Upon analysing the general scattering diagram depicted in Figure 7, we observe that
the smoothest on the upper boundary solutions do not belong to the Pareto-optimal set.
Additionally, the maximum value of this criterion is 2, which is significantly lower than
the value of 40 obtained for the analytical solution using the Fourier method. Furthermore,
Algorithm 1_3 yield significantly worse results compared to Algorithms 1_1 and 1_2.
Additionally, this trend becomes more pronounced as the number of neurons increases. We
did not observe any impact on the adherence to the analytical solution when varying the
number of epochs for PINN training.

Figure 7. Scatter plot shows all obtained and selected evolutionary PINN solutions for a two-objective
optimisation problem (10)+(11), depending on the root-mean-square error ErrorDif of satisfying the
derivative equal to zero on the upper boundary.

3.4. Results: Problem (10)+(12)

As a reminder, the second set of experiments involves solving a problem without
boundary conditions, where measurement data is incorporated as a secondary criterion
to the Laplace equation. Computational experiments were carried out for the algorithm
parameters presented in Table 2. Algorithm 1_1 is used for this task due to its lower
susceptibility to retraining at collocation points.
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Table 2. Algorithm 1_1 parameter configurations and measurement data parameter set used for a
series of experiments in which problem (10)+(12) is solved.

P1 P2 N K1, K2 NM ε

9 9 10, 20, 30 30 16, 64 0.01, 0.1
Here, P1, P2 are the parameters that determine the number of individuals in the current population undergoing
independent mutations; N is a predefined number of neurons in a PINN solution utilised as the termination
condition; K1 = K2 is the total number of training epochs during the Pareto mutation except the last cycle; NM is
a common number of measurements; ε denotes the maximum of random measurement error.

The exact measurement data is obtained by solving the Laplace equation analytically
using the Fourier method. To simulate measurement uε(xi, yi) with error, a uniformly
distributed random variable t on the interval [−1, 1] is added to the analytical solution
u(x, y) using formula

uε(xi, yi) = u(xi, yi) + tε, i = 1, . . . , NM. (17)

To prevent overfitting, the measurement points are distributed on a pseudo-uniform
grid inside the square, with a random shift applied to the grid.

Half of the measurement points are allocated for training, while the remaining half is
used to select the best individuals during the crossover process and the optimal solution in
the final cycle of the algorithm.

Five runs of the computational experiment have been performed for each algorithm
parameter configuration and measurement data parameter set. The optimal Pareto set
among all solutions consists of neural networks that stopped training at N = 30 neurons.

Figure 8 illustrates how the algorithm places greater importance on satisfying the
desired solution of the Laplace equation with fewer measurements.

Figure 8. Scatter plot shows all obtained evolutionary PINN solutions for a two-objective optimisation
problem (10)+(12), depending on the maximum of random measurement error.

In general, there were no significant differences observed across different noise levels,
indicating that the algorithm is robust to errors in measurements. This is illustrated in
Figure 9. Furthermore, a large error in the data has no impact on the error in satisfying the
exact solution.
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Figure 9. Scatter plot shows all obtained evolutionary PINN solutions for a two-objective optimisation
problem (10)+(12), depending on a common number of measurements.

To compare with standard networks, we trained a network of 30 neurons on a lin-
earised loss function with a fixed penalty multiplier calculated during initialisation. How-
ever, none of the obtained solutions fell within the target range due to retraining towards
one of the terms, which was influenced by the initial random values of the network weights.

4. Discussion

In this article, we have explored the use of evolutionary algorithm to construct physics-
informed neural network models for real objects, which presents some challenges in their
description. One example highlights the difficulties arising from a contradictory mathemat-
ical model containing differential equations and boundary conditions. Another example,
which we analyse in this paper, involves the absence of a complete mathematical model for
the object, which is addressed by incorporating observational data. The tasks discussed in
this paper are categorized as decision-making tasks in multi-criteria scenarios. Our goal
is not to construct the ultimate Pareto front, as it is typically defined in multi-objective
optimization, but rather to employ it as a mechanism that introduces the fundamental
concept in the evolutionary algorithm.

The study has demonstrated that the proposed algorithm can incorporate various
criteria during both the training and selection stages of model populations. Increasing
the total number of neurons in the model enhances the quality of solutions, while parallel
training of individuals enables the emphasis on specific criteria or the attainment of so-
lutions with desired smoothness. All models from the Pareto optimal set exhibit the best
agreement with the analytical solution obtained by the Fourier method, and the stability of
the solutions to increasing measurement errors is also observed.

Future research can investigate the properties of this evolutionary algorithm family
on other types of ill-posed problems.
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