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Abstract: The complexity (number of spanning trees) in a finite graph I' (network) is crucial. The
quantity of spanning trees is a fundamental indicator for assessing the dependability of a network.
The best and most dependable network is the one with the most spanning trees. In graph theory,
one constantly strives to create novel structures from existing ones. The super subdivision operation
produces more complicated networks, and the matrices of these networks can be divided into block
matrices. Using methods from linear algebra and the characteristics of block matrices, we derive
explicit formulas for determining the complexity of the super subdivision of a certain family of
graphs, including the cycle C,;, where n = 3,4, 5, 6; the dumbbell graph Dby, ,,; the dragon graph
P, (Cp); the prism graph IT,, where n = 3,4; the cycle C, with a Pg -chord, where n = 4, 6; and the
complete graph Kj. Additionally, 3D plots that were created using our results serve as illustrations.

Keywords: complexity; super subdivision; dragon graph; cycle with a chord; dumbbell graph
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1. Introduction

Graph theory is a theory that merges mathematics with computer technology. For a
simple, undirected and connected graph T' = (V(T'), E(T')), a spanning tree is a subset of
the edges of I that connect all the vertices together without any cycles [1]. The complexity
of T, denoted by 7(T'), is the total number of spanning trees existent therein. It is used
to calculate the connected and acyclic components that are present in it. Spanning trees
are well recognised, and several studies have been conducted to prove their existence and
count all of their numbers. One can introduce the complexity function 7(I') = 7(«) for an
infinite family of graphs I'y, x € N, which makes it much easier to calculate and identify
the number of corresponding spanning trees, especially when these numbers are very large.
The number of spanning trees is employed in a variety of fields, including engineering and
network reliability. This invariantly contributes to enhancing the robustness of wireless
sensor networks (WSNs) and other analogous mobile networks. The security plan for a
building’s sensitive area is an example of another way complexity is used.

One of the biggest chemistry challenges is correctly recognising a chemical molecule.
In [2], Joita et al. introduced graph representations of molecules as well as answers to
questions about relationships between the structure of chemical compounds and various
parameters. The number of spanning trees is employed in the field of chemistry. In [3,4],
Nikoli¢ et al. studied the complexity of molecules using approaches based on the topo-
logical complexity, that is, the complexity of the corresponding molecular graphs. Several
measures of the topological complexity, such as those introduced by Bertz and Randi¢ or
based on the number of spanning trees, have been studied and a comparison was made
between these measures of topological complexity for selected molecular graphs. For more
details, please refer to [5-7].
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A different way of displaying and condensing data from graphs is via matrices. The
same information is contained in both a matrix and a graph, but a matrix is more effective for
computing and computer analysis [8]. Given a graph T = (V(T'), E(T)) with |V(I')| = «,
the adjacency matrix of T denoted by A(T) = ay,, is a ¥ x x matrix defined as follows. The
rows and the columns of A(T') are indexed by V(I'). If £ # m, then the (¢, m) -entry of A(T)
is 0 for nonadjacent vertices ¢ and m, and the (¢, m)-entry is 1 for adjacent £ and m . The
(¢,0)-entry of A(T)isOfor ¢ =1,--- ,x,1ie,

1 if vpvy, € E(T),
Apm = . .
0 if otherwise.

The degree matrix [8] D for I is a k X x diagonal matrix defined as

Dy = {deg(vg) if {=m,

0 if otherwise.

where the vertex’s degree deg(v,) is the number of times an edge ends at that vertex.

The Laplace matrix of I denoted by L(T') is defined as D(I') — A(T). It is well known
that L(T) is a positive semidefinite matrix with the smallest eigenvalue 0. Kirchhoff
presented the first method to calculate the number of spanning trees defined as the matrix
tree theorem [9], which says that all the cofactors of L are equal and their common value is
equal to the complexity 7(T') of T.

Temperley [10] has shown that

(T) = % det(L + J), 1)

where [ isa x X x matrix, all of whose elements are ones.

Brownaj et al. [11] applied various methods to calculate the complexities of graphs
that represent fullerenes (Cgp, C79 and Cypp molecules). These graphs are large, regular
and highly symmetrical. Kirby et al. [12] presented a theorem called the cycle theorem, by
means of which the complexity of a labelled planar or non-planar graph may be calculated
from, in general, two determinants. These are much smaller than in the traditional matrix
tree theorem. They applied this theorem to a conventional toroidal polyhex.

The contraction—-deletion theorem is one of the most often used techniques for deter-
mining complexity. The complexity 7(I') of a graph T'is equal to (') = 7(I' — x) + 7(I'/x),
where x is any edge of I', I' — x is the deletion of x from I' and I'/ x is the contraction of x in
I' . This provides a recursive way to determine how complex a graph is, see [13].

Another significant technique is using electrically equivalent transformations of net-
works. Zhang et al. [14] discovered a clear-form formula for the enumeration of spanning
trees of the subdivided line graph of a simple connected graph using the theory of electrical
networks. Teufl and Wagner [15] have demonstrated that the number of spanning trees
in a network only varies by a factor if any of its subnetworks are replaced by an electrical
equivalent network. This is crucial information that makes it simple to calculate the number
of spanning trees in a network [16].

Zeen El Deen et al. [17] created a clear computation of the complexity of a duplicate
graph using the splitting, shadow, mirror and total operations of a certain family of graphs.
The authors presented nine network designs in [18], built using squares of various average
degrees, and established a more precise, simple formula for the number of spanning trees
in each of these networks. In [19], Zeen El Deen examined the complexity of several classes
of prisms of graphs with connections to paths and cycles. For several families of graphs,
counting and maximising the number of spanning trees has recently been the subject of
numerous studies [20-25].

The complement of a graph T is a graph T’ on the same vertices such that two distinct
vertices of T are adjacent if and only if they are not adjacent in I'. That is, to create the
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complement of a graph, one removes all edges that were previously there and adds all
edges that are needed to build a complete graph.

Lemma 1 ([26]). Let I be a graph with « vertices. Then,
1 _
T(F):Pdef(KI—D—FA), )
where D, A are the degree and adjacency matrices, respectively, of T, where T is the complement
of T.

A matrix that has been broken up into blocks that are themselves matrices is known as
a block matrix. The matrix is divided by making one or more vertical or horizontal cuts
across it [27]. Block matrices are crucial for determining the number of spanning trees
in graphs.

Lemma 2 ([28,29]). Suppose ®, A, 2 and ¥ are block matrices of dimension £ x £ and P is
invertible. Then,

(i) det (g @) — det (®) x det (¥ —QdA).

(i) det (?; i): det (D +¥) x det ( —¥).

Lemma 3 ([8]). Let E;({) be the £ x { circulant matrix given by

1 1 1 ... 1
1 & 1 1 ... 1

E@) = | . . L  then det [Eo($)] = (E+£-1) (-1
111 .1 &/,

Graph operations [30] create new graphs from old ones; the super subdivision opera-
tion is employed currently.

Definition 1. In a complete bipartite graph Ky ; , the part consisting of two vertices is referred
as the two-vertex part of Koy , and the part consisting of t vertices is referred as the t-vertex

part of Kot .

Definition 2. Let I be a graph. The super subdivision of I' , denoted by SSD 5 4 (T) , is a new
graph obtained from I by replacing every edge Ay of T with a complete bipartite graph Ky + in such
a way that the end vertices of each edge Ay in T are merged with the two vertices of two-vertex part

of Ky ; after removing the edge Ay from T

2. Complexity of the Super Subdivision Graph SSD, 4)(Cy)

P Q -9
Lemma 4. Suppose P and Q are £ x € block matrices, and © = ( Q P Q )
-9 9 P
Then, det (©) = [det( P+ Q) ]> x [det(P —2Q)].

Proof. Utilising the characteristics of matrix row and column operations leads to



Computation 2023, 11,162 4 of 28

P Q -9
det (@) = det Q P Q adding Cp to C; and Cp to Cs
-Q 9 P

P+Q Q 0
= det P+Q P P+Q subtracting Ry from Rq
0 Q P+9Q

P+Q Q 0
= det 0 P-Q P+Q subtracting Rz from Ry
0 Q P+Q

P+Q Q 0
= det 0 P-Q P+Q expanding along Ry
0 20-P 0

= [det (P+Q)>x [det (P —2Q)]. O

P Q Q9 Q Q9
Q P Q Q Q
P
Lemma 5. Suppose P and Q are £ x ¢ block matrices, and Y = °© Q . Q Q
Q Q@ 9 ... P Q
Q Q 9 ... @ P

Then, det (Y) = [det (P — Q) |F"1 x [det (P+ (k—1)Q)]. o

Proof. The results of employing the row and column characteristics of a matrix are as follows:

P Q Q ... @ Q
Q P Q ... 9@ Q
Q 9 P ... Q@ Q
det (Y) = det : o subtracting Cy from all columns
Q0 0 .. P 0@
Q Q@ Q ... Q9 P/
P-Q 0 o .. 0 O
0 P-Q 0 0 Q
0 9-P P—-Q ... 0 Q
= det : A : adding C;to Ciq, 2 <i < k-1
o 0o o P-Q 0
Q-P 0 0 Q-P P/
P—-Q 0 0 0 Q
0 P-Q 0 0 o}
0 0 P-Q ... 0 20 ,
= det : N N : adding Rq to Ry
0 0 0 ... P-Q (k-2)Q
Q-P 0 0 .. 0 PH(k-2Q/
P-Q 0 0 0 Q
0 P-0Q 0 0 Q
0 0 P-0 0 20
= det
0 0 . P-Q  (k-2)Q

0 0 0 P-‘r(k—l)Q kxk
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= [det (P—Q)|F! x [det (P+ (k—1)Q)]. O

2.1. Complexity of the Super Subdivision Graph SSD, +(C3)

Theorem 1. For any positive integer t > 1, the number of spanning trees of the super subdivision
graph SSD 5 4)(C3) of the cycle Cs is given by:  T[SSD(54)(C3)] = 3 1223172,

Proof. Let Cj be a cycle with vertex set {uy, 1 < k < 3}. The super subdivision graph
SSD(54)(C3) of Cs has a vertex set V[SSD,(C3)] = {ux ,v;(, 1<k<3,1<j<t}
Thus, the graph SSD(, ;)(C3) has & = [V[SSD(,)(C3)]| = 3(t + 1) vertices and g = 6t
edges, see Figure 1.

Figure 1. Super subdivision SSD, ;) (C3) of the cycle Cs.

Using Lemma 1, we get the following:

1 [ — 1
T|SSD G)|l=—-—-5det|(B3t+3)[—-D +A]= ——= X

2t4+1 1 1 0o 0 O 0 1 1 1 0 0 O 0
1 2t4+1 1 0o 0 O 0 0 0 o 1 1 ... 1
1 1 2t+1 1 1 ... 1 0 0 O 0 0 0 O 0
0 0 1 3 1 1 1 1 1 1 1 1 1 ... 1
0 0 1 1 3 1 ... 1 1 1 ... 11 1 ... 1
0 0 1 1 1 3 1 1 1 1 1 1 1
0 0 1 1 ... 1 3 1 1 1 1 1 ... 1
1 0 0 1 1 1 3 1 1 1 1 1 1
det 1 0 0 1 1 1 1 3 1 ... 1 1 1 o1
1 0 0 1 1 1 1 1 3 1 1 ... 1 1
1 0 0 1 ... 1 1 1 ... 1 3 1 1 1
0 1 0 1 1 1 1 1 1 3 1 ... 1
0 1 0 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1

0 1 0 1 1 1 1 1 1 1 1 3 (3t43)x (3t+3)

_ 1 det Di3x3) Aixay
2
(3t +3) A ¥iaian
1
= —— [ det(®) x det (¥ — Ald7IA)]. 3)

(3t +3)2
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2t+1 1 1
det (®) = det 1 2t+1 1 = (2t +3) (2t)% (4)
1 1 2t+1
From Lemma 5, we have,
. P Q Q )
det (Y —AN®IA)=det |9 P Q| =[det(P—Q)]* x det (P+2Q),
Q QP
62 +8t—1 2242t —1 282 42t—1 ... 212 42t —1
1 202 42t —1 62 +8t—1 222 4+2t—1 ... 212 42t —1
where P = ——— : . . : and Q =
217+ 3t 20242t —1 202 42t—1 . 62 48t—1 22 42t—1
2242t —1 2242t —1 S 284201 6P 481/ 4y
[ a;j lixt , is a matrix with the same value in all entries in which
42 46t +1
611"]' = W,then,
1—4t 1 1 1
1 1 1—4t 1 1
det (P—Q) = (5)det | = .
1 .1 —4t 1
1 1 1—4t
txt
-1
= (g)f (—4t +t) (401 =322, (5)

Using matrix row and column operations and determinant characteristics, the follow-
ing results are obtained:

10t+14 6t+8 6t+8 ... 6t +8
1 6t+8 10t+14 6t+8 ... 6t +8
det 20Q) = (=——)" det : . :
et (P+2Q) (2t+3) ¢ : : : :
6t +8 6t +8 10t+14 6t+38
6t + 8 6t +8 ... 6t4+8 10t+414
txt
1 0 0 ... 0
6 12 1 4t+6 0 ... 0
t
_ o+ .
(2t +3)¢ L . :
0 Y ] 0
1 0 0 4t 46
txt
4t 46 0 0 0
0 4+6 0 0
o 6(t+1)? et _ 320 (t+1)2 ©)
(2t +3)1(4t+6 - S 1 -~ (2t+3
( + )( + ) 0 . 4t+6 0 ( + )
0 0 0 4t 46

txt

Substituting Equations (4)-(6) in Equation (3), we obtain the result. [

2.2. Complexity of the Super Subdivision Graph SSD 5 y(Cs)

Theorem 2. For any positive integer t > 1, the number of spanning trees of the super subdivision
graph SSD 5 4)(Cy) of the cycle Cy is given by:  T[SSD(54)(Cq)] = 3 241,

Proof. Using the same approach as in Theorem 1, we have:
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1 Diyxa)  Daxan
SSD Cy)|] = — det
755Dy () (4t +4)2 ‘ ( A" Y (g
=——_[det(®) x det (¥ —ADdA)]. 7
e[ der(®) X det )] )
2t +1 1 1 1
. 1 2t+1 1 1 . 3
det (®) = det 1 1 241 1 = (2t+4) (2t)°. 8)
1 1 1 2t+1
From Lemma 2, we have,
P Q R Q
Fa—1A\ Q P QR
det (Y —A®TA) = det | 5 o P ol
Q R Q P
32 45t—1 £2+t—1 £4+t—-1 ... P+t—1
1 2+t—1 324+5t—-1 £2+t—1 ... P+t—1
where P = ——— : ) ) : R =
2 t : . . : ’
(t +2t) P4t—1  24t—1 .32 45t—1 24t—1
Btt—1  2+i-1 Pt—1 3P2+45t—1/ 44
. . 242t +1 . . 2t+3
[aij]txt,lnw}uchaij = W,and Q= [bi]-]txt,mwhmhb,-j = Siia
Performing H = det (g %) and G = det (g 7%) , we have
ter—1 H G
det (¥ — A'®71A) = det = [det(H+G) x det(H—G)]
H G
P+R 20 P-R O
= det ( 20 73+R) X det < 0 P—R)
= det(P+R+2Q) x det (P+R—2Q) x [det (P —R)*
6t+10 4t+6 4t+6
4t+6 6t+10 ... 4t+6
4t+6 . 6t+10 4t+6
4t+6 4t+6 6t+10
Ext
2t +4 0 .. 0
0 2t+4 0 0
424+ 8t+4 ot 2 (41)? ©)
C(t+2) (2t +4 e : n t+2
( + )( + ) 0 . 2t+4 0 ( + )
0 0 2t +4 bt
2 0 0 0
0 2 0 ... 0
det(P+R —2Q) =det | ¢ KR = 2% (10)
00 2 0
0 0 0 2

txt
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Lemma 3 provides us with,

1-2t 1 1
1 1 1-2t 1 1
det (P—R)=(—)'det | = = =271, (11)
1 cee s 12t 1
1 1 1-2t

Ext

Substituting Equations (8)—(11) in Equation (7), we obtain the result. O

2.3. Complexity of the Super Subdivision Graph SSD5 y(Cs)

Theorem 3. For any positive integer t > 1, the number of spanning trees of the super subdivision
graph SSD 5 4)[Cs] of the cycle Cs is given by:  T[SSD(5(Cs)] = 5 th 254,

Proof. Using the same technique as in Theorem 1, we have:

1 _
7[SSD(,(C5)] = m[dEt(CD(SxS)) x det (¥ (spxsp) — D@ Dssyy) |- (12)
det (D(5,5)) = (2t+5) (2t)*. (13)
P Q R R Q
Q P Q@ R R
det (¥ —AO'A)=det | R @ P QO R
R R QP Q
Q R R QP
P+20+2R 20 2042R R Q
0 Q-P Q-R Q—-R 0
= det 0 OQ-R R-P R-Q 9Q-R
0 0 0 Q—-P R-Q
0 0 0 R—-Q R-P
Q-P Q-R 0 0
Q-R R-P 0 0
=det (P+2Q+2R)det 0 0 0-P R-0Q
0 0 R—Q R-P
=det (P+2Q+2R)det [(Q—P)(R—P)—(Q—R)*?
612 +12t -3 222 4+2t—3 2£242t—3 ... 202 42t -3
20242t —3 612412t —3 22242t -3 ... 202 42t -3
where77:71 ; : :
2 t : g " : ’
<2t +5t) 21242t -3 22 42t—3 s 62412t -3 262 42t—3
20242t -3 2£242t-3 s 2042t—3 612 +12t—3/ 1y
. . 4t> + 6t — 1 . . 212 44t 42
Q: [ﬂi]‘]txt/ anhIChai]‘: m, and R = [bij]txt/ in which bl]: W
52! (t+1)?
det 2 2R) = ———~— 14
et (P+2Q+2R) 2t +5) (14)
A straightforward calculation reveals that:
8t—5 -5 -5
1 -5 8t—-5 ... -5
(Q-PYR-P)=()" | + . .
-5 ... 8t—5 -5

-5 ... ... =5 8t-5/,,
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det(¥ — A'®IA) = det

= det (

-1 1
and (Q — R) = [Q’j]txt; in which C,‘]‘ = E, then (Q — R)z = [hij]txt/ in which h1] = E

det [(Q—P)(R—P)—(Q—R)*| =524 (15)
Substituting Equations (13)—(15) in Equation (12), we obtain the result. [

2.4. Complexity of the Super Subdivision Graph SSD5 y(Ce)
Theorem 4. For any positive integer t > 1, the number of spanning trees of the super subdivision

graph SSD 5 4)(Ce) of the cycle Ce is given by:  T[SSD(54)(Ce)] = 3 £ 204,
Proof. Using the same approach as in Theorem 1, we have:

1

T[SSD(5,4)(Ce)] = m[

det(D(g,6)) X det (¥ (grxer) — AP Agran) |- (16)

det (Dg)) = (2t +6) (2t)°. (17)

Applying Lemma 4 and Lemma 5, we have

P Q@ R R R Q

Q P @ R R R

R Q@ P Q@ R R| _ H G\ _ _
RR opP onr|=det (g H>fdet(7{+g)><det(7{ g)
R R R Q@ P @Q

Q9 R R R Q P

P+R Q+R Q+R P-R Q-R R-Q
O+R P+R Q+R| Xdet | 9—-R P-R Q—-R
R—-Q Q-R P-R

Q+R Q+R P+R

= [det (P — Q)]® x det (P4+2Q+3R) x [det (P + Q —2R)]* x

det(P+ R —2Q).

32 4+7t—2 BP4t—2 £4+t-2 ... 2+t-2
Prt—2 324+7t-2 £24t-2 ... 2+t—2
where P = o : . ) .
2 t : g g : ’
(t +3t) Prt—2 B4t-2 L 32472 P24t-2
P4t—2 £2+t-2 G PHE=2 3P 4TE-2 )4y
. . 212 43t —1 . _ 24241
Q= [ﬂij]txtr in which ajj = W and R = [bij}txt/ in which bl] = W
det (P — Q) = 322, (18)
det (P+2Q+3R) = 32 (t41)? (19)
 (t+3)
det (P+Q —2R) = 2!2. (20)
det (P +R —2Q) = 2% (21)

From substituting Equations (17)—(21), in (16), we obtain the result. O

2.5. Application
2.5.1. The Dumbbell Graph Dby,

Theorem 5. For any positive integer t > 1, the number of spanning trees of the super subdivision
graph SSD, ;) (Kz) of the complete graph Ky is given by:  T[SSD(py(Ka)] = ¢ 271,
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Proof. Applying Lemma 1, we obtain:

AT 1T 0 0 ... .. 0
1 t+1 0 0 ... .. 0
1 0 0 3 1 .. .. 1 1 P O
T[SSD(2,1)(K2)] Imdet 0 0 1 3 1 .. 1 :mdet <O Q)
o0 111 s/,
1 1

det (P) x det (Q) = (P +20)3+t—1)(B3 -1 =271, O

T (t+2)2 (t+2)2
Definition 3. The graph created by joining two disjoint cycles C,, = {uy,up, -, uy} and
Cp ={v1,v2,- -+ ,vn} withan edge r = u1vy, is called a dumbbell graph , represented by Dby, .
The super subdivision SSD\y ;y(Dbay) of the dumbbell graph Dby ¢ is represented in Figure 2.

Figure 2. Super subdivision SSD; ) (Dbs) of the dumbbell graph Dby.

Definition 4 ([13]). By G1 ©, Gy, we mean the union of two graphs Gy and G, that share a single
vertex, vs., on their common external face.

Using Theorem (2.4) in [13] which states that if the graphs G1, Gy, ---, G, have a
common vertex in the external face, then 7(Gy &, Gy @y - - - ®p Gn) = T(G1) X T(G2) X

- X 7(Gp), then we have the following theorem:

Theorem 6. For any positive integer t > 1, then

(i) T[SSD(p(Db3z)] =9 27172, (ii) T[SSD(p ) (Dbs4)] = 3 16 2874,

(iii) T[SSD 2t)(Db35)] 15 17 2907, (iv) T[SSD(y)(Dbs)] =9 5 21077
(v) T[SSD(sy)(Dbay)] = 17 273, (vi) T[SSD(3,)(Dbys)] = 51521076,
(vii) T[SSD(p4)(Dbyg)] = 31721176, (viii) T[SSD(y4)(Dbss)] = 25 t7 21119,

[ (ix) T[SSD(a4)(Dbse)] = 15102129, [ (x) T[SSD(y)(Dbss)] = 9 112135, ]

Proof. Using Theorems 1-5, we obtain:

(i) SSD(z,t) (Db3l3) = SSD(Z,t) (Cg) Do SSD(ZJ) (Kz) Do SSD(Z,t) (Cg)

T[SSD(o,4)(Dbs3)] = T[SSD (5, (C3)] x T[SSD(5,4)(K2)] X T[SSD (3, (C3)]
— [3 t2 23t—2] % [t zt—l] X [3 t2 23t—2] =9 t5 27t—5.

(ll) SSD(Z,t) (Db3r4) = SSD(Z,t) (C3) @v SSD(Z,t) (Kz) @z} SSD(Z,t) (C4)

T[SSD (5,4 (Dbs4)] = T[SSD (3,4 (C3)] x T[SSD(5,4)(K2)] X T[SSD(2)(C4)]
— [3 t2 231‘72] % [t ztfl] % [t3 24t71} =3 t6 28t74.
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The proofs of (iii—x) follow similarly, as in (i-ii). O

2.5.2. The Dragon Graph Py, (Cy)

The dragon graph, represented by Py, (C,), is created by matching vertex v,, of the
path P, with vertex u; of a cycle graph C,. The vertex set of P, (Cy) is {vg, 1 < k <
m—1} U{ug, 1 <k < n}. The super subdivision graph SSD; ;[P (Cn)] of the dragon

graph has a vertex set V[SSD ) (P (Cn))] = {vk ,v{(, ke [l,m—1] }U{u ,u{(, k e
[1,n] }. As aresult, the graph SSD(, ;) [Pu(Cy)] has a = (m +mn —1)(f + 1) vertices and

B = 2t(m +n — 1) edges, see Figure 3.

Figure 3. Super subdivision SSD 5 ) [P (Cy )| of the dragon graph Py, (Cp).

Theorem 7. For any positive integer t > 1, the number of spanning trees of the super subdivision
graph SSD 5 ) (Py) of the path is given by: T[SSD 5 4 (Py)] = [t 217171

Proof. Let P, be the path with vertex set {uy , k € [1,n] }. The super subdivision
graph SSD(;;)[Py] of the path P, has a vertex set V[SSD 5 y(Py)] = {ur, k € [L,n] } U

{v{(, k € [1,n—1] }. As aresult, the graph SSD ) (Ps) has a = n + t(n — 1) vertices and
B = 2t(n — 1) edges. Using Theorem 5, we obtain:

SSD(Z,t) (Pn) - SSD(Z,t) (Kz) @U SSD(Z,t) (Kz) @v e @v SSD(Z,t) (KZ)

(n —1) times.

T[SSD(2,1)(Pn)] = [T(SSD (2,1 (K2)] X [T(SSD(g,5)(K2)] x - -+ x [T(SSD (a1 (Kz)]

(n —1) times.

= [T(SSD(Z,t) (Kz))]"fl =t thl]n—l — =1 om=-1)(t-1)

Theorem 8. For any positive integer t > 1, then

[ () ©(SSDp 4 [Pu(Ca)]) = 3 #"+1 2 E=DF21 T (3) £(SSD(  [Pu(Cy)]) = #7227 (=043 ]
| (iii) T(SSD 5, [Pu(C5)]) = 5 #"+3 2m(=D+4=3 "1 (jv) 1(SSD(y ) [Pu(Ce)]) = 3 ¢+ 2m(E-D+51-5 ]

Proof. Using Theorems 1-4 and Theorem 7, we obtain:
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(i)

Since SSD(2,t) [Pu(C3)] = SSD(Z,t) (C3) @y SSD(zlt)(Pm)/ then

T(SSD (2, [Pu(C3)]) = T[SSD(24)(C3)] x T[SSD(2,4)(Pm)]

_ [3 2 231%2] « [(t 2t71)]m71 — 3 ¢mtl om(t=1)+2t-1

(11) Since SSD(Z,t) [Pm(C4)] = SSD(Z’t) (C4) Do SSD(Z,t)(Pm)/ then

3. Complexity of the Super Subdivision Graph SSD; ;) (I1,;) of the Prism II,
Let C, = {v1,v2,- -+ ,vn} beacycleand C;, = {uq,uy, -

Ciz foralli € {1,2, 3,--- ,1’1}, the edge set is E(Hn) = {vivi+1,viui, Uilliyq, ,1 =

T(SSD()[Pu(Ca)]) = TISSD(a)(Ca)] x TISSD (3 ) (Por)]

The proofs of (iii-iv) follow similarly, as in (i-ii).

_ [t3 241%71] « [(t ztfl)]mfl — pm+2 om(t=1)+3t

Thus, a(IT,) = 2n and B(I1,) = 3n.

Lemma 6. Suppose P, Q and R aret x t block matrices and () =

O

JOOIIIOIOD
LOIIIIOIO
OIOIIIVOWO
JovLoovaAA
LOIOIOIAA
oAV LOIAA

-, Uy} be a copy of Cy,. The
prism [],, is constructed by joining each vertex v; of C; to the corresponding vertex u; of

Then, det Q = [det (P — Q)]* det (3R —2Q — P) [det (2Q — P — R)]? [det 2R — P — Q)]*x
det [(2Q +R)(4Q — P) — (2R + P)?]

1,2, ,n}.
Q 2 R
R Q Q
Q R Q
Q2 2 R
R Q Q
Q R Q
P R R
R P R
R R P

Proof. The row and column properties of matrices are applied to the matrix (2 and the
following operations are performed consecutively:

)
@
®)
4)
©)
(6)
@)

det Q = det (P —

= [det (P — Q) det (3R —2Q — P) det

Subtracting R4 from Ry, Rs from Rj, and Rg from R3;

Adding C;q to Cy4, C; to Cs, and Cj3 to Cg;

Subtracting R, from Ry;
Adding C; to Cp;
Expanding along Ry;
Adding C; to Cp;
Subtracting R, from R;.

Then, we obtain

P-0Q 0
2R-2Q 3R-20-7P
2R 3R
2R 3R
Q) det R 3R
Q+R 20+ R
20 20+R

R+Q 20+R

0 0 0
0 0 0
R+P R+Q R+Q
R+Q R+P R+Q
R+Q R+Q R+P
29 2R 29
20 20 2R
2R 20 29

R+P R+Q R+Q
R+Q R+P R+Q

The following operations are performed consecutively on the above matrix:

20 2R 2Q
20 20 2R
2R 209 20 R

Q
R
R+Q R+Q R+P Q
P
R

0

0

Q
R
Q
P
R
R
Q
Q
R
R
P
R

0
0
Q
Q
R
R
P
R
R
Q
Q
R
R
P

VAILOAo

6x6
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(1) Subtracting R, from R3 and R4 from Rs;
(2) Adding Cs3 to C and Cs to Cy;

(38) Subtracting Rg from Ry;

(4) Subtracting Cy4 from Cy;

(5) Subtracting Ry from Ry;

(6) Expanding along Cy;

(7) Subtracting C; from C; and Cs from Cy;
(8) Adding C; to Cy;

(9) Subtracting R4 from R; .

Then, we obtain

det Q = [det(P — Q)]? det (3R —2Q — P) det (2Q — R — P) x

P+ Q+2R 0 R+Q 0 Q
0 2R—Q—P 0 0 0
det 4R P-2R+Q 20-R+P 0 2R —P
0 2R — 20 0 P-20+R 0
40 2R —2Q 2R P-204+R P 55

det Q) = [det(P — Q)]? det(3R —2Q — P) [det (2Q — R — P)]?det 2R — Q —P) x

2R—-Q—-P 0 0
det 4R 20+R 2R+7P
40 R+P 4Q-P )5 4

= [det (P — Q)]? det (3R —2Q — P) [det (2Q — P — R))? [det 2R — P — Q)J*x
det [2Q+R)(4Q —P)— (2R +P)?]. O

3.1. Complexity of the Super Subdivision Graph SSD ) (113)

Theorem 9. For any positive integer t > 1, the number of spanning trees of the super subdivision
graph SSD; 4)[113] of the prism 113 is given by:  T[SSD 54 (I13)] = 75 152943,

Proof. Let II3 be the prism with vertex set {uy, vy, 1 < k < 3}. The super subdivision
graph SSD ) [IT3] of the prism IT; has a vertex set V[SSD(, ;y(I13)] = {uy, vy, up, v, 1<
k<3,1<j<t}. Thus, thegraph V[SSD, ;) (Il3)] hasa = 3(3t +2) vertices, see Figure 4.

Figure 4. Super subdivision SSD, ) (I13) of the prism IT;.
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Applying Lemma 1, we have:

1 = | = 1 Dexe) Aot
T|SSD )| =——5det| (9t+6)[—D +A|=——= det
= (9{‘—}-16)2[ det(CD) X det (‘Ij — Atq)_lA) }, (22)
e ] ] -] 301 1 1
J e ] J 1 3 1 1
wherey = | 1 il,e=|:i . . | ,andJisatxt
T ] e ] 1 1 3 1
T ] © tt T3/
unit matrix.
3t+1 1 1 1
1 3t+1 1 ... ... 1
det (®) = det | : = (3t+6) (3t)°. (23
1 ... ... 1 3t+1 1
1 1 1 3t+1/ 6

Applying Lemma 6, we have

det (¥ — A'®1A) = det

VOOIIIJIOI
DOIAIIJIOIO
OIOIIIVO©
JOOOIOIIII
VOIOCIOIIA
OIOILOIAII
AAIJIOIVOIO
AVIIOIOO
YAIILOILOI

= [det (P — Q)]? det (3R —2Q — P) [det (2Q —P —R)]?> x
[det QR — P — Q)]? det [(2Q +R)(4Q —P) — 2R+ P)?],

2712 4+ 42t —8 92 +-6t—8 92 +6t—8 ... 9t> +- 6t —8
92 +6t—8 2712442t —8 9P +6t—8 ... 9t> + 6t —8
1 . . . .
wherepzi(gtzﬂ&), : . . : ’
9t>+6t—8 92+ 6t—8 s 272442t -8 92+ 6t—8
924+ 6t—8 9 46t—8 . 9P 46t—8 272442t-8/
9> 49t —2 9> + 12t + 4
= la;;lixt, inwhich g;; = —————, and R = |b;;|¢xt, in which b;; = —————
Q = [ajj]xt i = 92 1 18t [ijlex: ij 912 1 18t
1—6t 1 1 ... .. 1
1 1—-6t 1 ... .. 1 i
—1 52~
det (P — Q) = ()" det : : - : = . (29)
1 1 cer .. 1—6t 1
1 1 cee e 1 1—6t

txt
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—2t+1 1 1 1
) 1 “2t+1 ... ... 1 1
det (2R — Q= P) = ()" det : T : = (-2 @)
1 1 ce e =2t41 1
1 1 1 -2t+1 ), ,
—6t +4 4 4 4
1 4 —6t+4 ... ... 4 4
det B3R —2Q —P) = (ﬁ)tdet :
4 4 —6t+4 4
4 4 4 —6t+4
txt
—6t 0 0
5 0 -6t 0 0 ( Z)t
— 2t —
= ————det : : - : = . (26)
3ft—6t : . . : 3
( )( ) 0 . —6t 0
0 0 —6t
-2 0 0 0
0 2 0 ... ... 0
det 2Q—R—-P)=det | : 1 . " = (-2 @
0 0 -2 0
0 0 0o -2/,
—18)" (t+2)¢
det [2Q+R)(4Q — P) — (2R 2 (Z18) (E+2)
et[(2Q+R)(4Q - P) — 2R+ P)7] Gt
11t4+14 9t+10 ... ... 9t4+10 9t+10
9t+10 11t+14 ... ... 9t410 9t+10
det Z S E
9t+10 9t+10 ... ... 11t+14 9t+10
9t+10 9t+10 ... ... 9t+10 11i+14 /.,
2t+4 0 0
(<18)! (t+2)! OF +12t+4) 0 At 00
2t : . . .
(3t+6) (2t+4) 0 L. 2t+4 0
0 0 2t +4
—1)1(2)21(3t +2)2
_ ()@ B2 (28)
t+2

From substituting Equations (23)—(28) into Equation (22), we obtain the result. [

3.2. Complexity of the Super Subdivision Graph SSD ) (I1s)
Lemma 7. Suppose P, Q and R are t x t block matrices and
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PQRQRRRROQQRR
Q P QR RRRRRE QQR
R QP QRRRRRTPRQQ
QR QPRRRRO QRTRQ
RRRRPOQRQQQRR
F_ |[RRRR QP QR RQQR
RRRRROQPQRTRQ Q
RRRRQRQP QR R Q
QR R QQRROQPRTRR
Q QRR QQRRRPRR
R QQRRQQRRRTPR
RRQQRRQQRRRP

12x12

Then, det E = [det (P —R)]3 [det (3R —2Q — P)]3 [det (2Q —P — R)]® x
det (7R + P +40Q).

Proof. Using the properties of determinants and matrix row and column operations yields:

R—-P 2R-2Q 0 0 0 0 0 0 0 0 O
R-Q R-P R-Q 0 0 0 0 0 0 0 O
0 2R —-2Q R-P 0 0 0 0 0O 0 0 O
R R R R+P R+Q 2R R+Q Q@ Q@ R R
R R R R+Q R+P R+Q 2R R Q@ @ R
detE = det(P — R)det | R R R 2R R+Q R+P R+Q R R Q Q
R R R R+Q 2R R+Q R+P Q@ R R Q
R R Q 20 2R 2R 2@ P R R R
Q R R 20 20 2R 2R R P R R
Q Q R 2R 209 2Q 2R R R P R
R 9 Q R 2R 20 20 R R R PJo oo
R—-P 2R-2Q 0 0 0 0 0 0 0 O
2R -2Q TR-P 0 0 0 0 0 0 0 O
R R R+P R+Q 2R R+Q Q Q@ R R
R R R+Q R+P R+Q 2R R Q Q R
2 R R 2R R+Q R+P R+Q R R Q Q
= det(P — R)"det R R R+Q 2R R+Q R+P Q R R Q
R R+Q 20 2R 2R 2Q P R R R
R Q+R 20 20 2R 2R R P R R
Q Q+R 2R 20 20 2R R R P R
o} R+Q 2R 2R 20 20 R R R P

10x10
= [det (P —R)]* det BR —2Q — P) det (R —2Q +P) x

R+P R+Q 2R R+Q
R+Q R+P R+Q 2R
2R R4+Q R+P R+Q
R+Q 2R R+Q R+P
20 2R 2R 20
2Q 29 2R 2R
2R 20 20 2R
2R 2R 20 20

det

VAIVOIIO
JAVAIIIOL

JIvIII0LA
VAINI0OCIA

8x8

= [det (P —R)]* det (3R —2Q — P) det (R —2Q + P) [det 2Q —P —R)J® x

R+P R+Q 2R R+Q Q
R+3Q P+R+2Q 3R+ Q AR 2R
det | 5R+Q 2R+P+3Q 2R+P+3Q 5R+ Q 3R
5R+Q 5R+Q 2R+P+3Q 2R+P+3Q 2R+ Q
R+3Q 4R 3R+ Q P+R+20 P+Q

5x5

= [det (P — R)]® [det (3R — 2Q — P)]? [det (20 — P — R)]* x
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R+P 2R 2R +2Q
det | R+3Q 3R+ Q P+5R+20
SR+Q 2R+P+3Q 7TR+4Q+P /, 4

= [det (P —R))? [det (B3R —2Q —P)]3 [det 2Q —P —R)]Pdet (7R +P +4Q). O

Theorem 10. For any positive integer t > 1, the number of spanning trees of the super subdivision
graph SSD 5 4 (T1y) of the prism T1y is given by:  T[SSD(p 4 (I1g)] = 3 t7 2121,

Proof. Applying the same methodology as in Theorem 9, we obtain:

1 _
T[SSD(a,1) (H4)]m[ det(P(g,.8)) x det (¥ (1a1x10t) — AP A(g,c121))]- (29)
3t+1 1 1 ... ... 1
1 3t+1 1 ... ... 1 ;
det (@) = det : . . = (3t+8) (3t)".  (30)
1 1 1 3t+1 8x8
Applying Lemma 7, we have:
P QR QR R R R Q Q@ R R
Q P QR RRRMRRIQQOR
R @ P QR R R RRR Q Q
QR @ P R R R R QR R Q
R RRRPAIR Q Q QR R
1Ay RRRRQP QR RQQOR
det (Y =N A)=det | 2 2 = = 0P QR R O Q
R R R R QR QP Q@ R R Q
O R R Q QR R QP R R R
Q Q RR QQRRRPRR
R Q Q@R R QI I RRMRTPR
R R QQRRQQRTRTRP

= [det (P —R)]? [det (3R —2Q — P))® [det (2Q — P — R)]° det (7R + P +4Q)

912 4+18t—4 32 +4+2t—4 3242t —4 ... 312 42t —4
3242t—4 92 4+18t—4 32 42t—4 ... 3242t —4
wherep= 1 : . .. :
(312 +8t)t : : . : ’
32 42t—4 3242t—4 s 92 4+18t—4 32 42t—4
32 42t —4 s, 32 42t—4 92418t —4
o 9t + 9t — 4 o 9t + 12t + 4
Q = [al‘]‘]txt, mn Wthh 11,1 = W, and R = [bij]txt, m Wthh bl] = W
1-3t 1 1 ... ... 1
2., 1 1-3 1 ... ... 1 ot+1
det —R) = (—=)"det = —. 31
AP=R)y=(gpydet | 3 D
1 1 1o1-3t), .
-2 0 0 0
o -2 0 ... ... 0 ;
det (2Q — R —P) = det : : ) : = (-2)" (32)
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—6t +4 4 4
4 —6t+4 4
det (3R —2Q —P) = (%)tdet : : : :
4 4 —6t + 4 4
4 4 4 —6t+4/,
—6t 0
0 —6t 0 '
—2¢ -2
= ——— _det | : | = . 33
GHi—e) ™ | - - 3 33
0 0
0 —6t
42t +58 36t + 42 36t +42 36t +42
. 36t +42 42t + 58 36t +42 36t + 42
det (7 4Q) = ——det : : : :
et (7R +P +4Q) Gire)e : : : :
36t +42 36t + 42 42t +58 36t + 42
36t +42 36t + 42 36t+42 42t+58 ),
6t+16 0 : 0
0 6t+16 0 0
_ 4(3t+2)? det (2)H1(3t +2)? (34)
(3t +8)f(6t + 16) . 3t+8
0 6t+16 0
0 6t + 16

From substituting Equations (30)—(34) in Equation (29), we obtain the result. O

Theorem 11. For any positive integer t > 1, then

(i) T[SSD(p(Il3 @y Ky By TI3)] =9 (5)* 11 21911,
(i) T[SSD(4)(IT3 ®o Ky @y T1y)] = 225 113 22276,
(i) T[SSDay)(Tly @5 Ky @y TLy)] =9 115 2251,

Proof. Using Theorem (9), Theorem (10) and Theorem (5), we obtain:

(i) T[SSD (a4 (I3 @y Ko @y I13)] = T[SSD(p4(I13)] X T[SSD (34 (K2)] % T[SSD(5 4 (1T3)]
= [75 22970 x [t 2!71] x [75 0 29175 = 9 54 11 91T,

The proofs of (ii-iii) follow similarly, as in (i). O

4. Complexity of the Super Subdivision of a Cycle with a Chord

Let P, be a path with k edges and k + 1 vertices. A cycle C, with a P,-chord, denoted
by C, % Py, is defined as a cycle with a path Py joining two nonconsecutive vertices of
the cycle. Taking the path P% = {vo, 01, - ,v%} and a cycle C, = {uq,up,--- ,u,} and
matching the vertices vy with u; and vy with Un,q, wWe obtain the graph C, % P%, where

V[Cy % Py] = {ug, k€ [1,n]} U{vr, k €[1,5 —1]}, see Figure 5.
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Figure 5. Super subdivision SSD(, 4)[Cy % Pu] of the cycle C, with a Py chord.

4.1. Complexity of the Super Subdivision of SSD 5 ;) (Cya % P2)

Lemma 8. Suppose P, Q, R and S are t x t block matrices and A =

AL IOY
HAINIJO
LAOI®HA
AW IJOIA®
OVHII®
JOoINnA

Then,det A = det (P + Q+2R +2S) det (P — Q —2R +285) x
det (P—Q+R—S8)*det (P+Q—-R—S)>

Proof. Using the properties of determinants and matrix row and column operations yields:

P o) R S 0 0
Q P S R 0 0
B 2R 28 S+P R+Q 0 0
det A = det 2§ 2R R+Q S+P 0 0
R-8 S—-R S-R R-8 R-Q-S+P 0
R S S R R-0Q R—-Q+S-P /46
— det(R—Q+S—P)det(R—Q—S+P) x
P P-0Q R R-S
gt | PHe 0 R+S 0
2R 2R -2S8 S+P S+P-R-Q
WR+25 0 S+P+R+Q 0 s

= —det(R—Q+S—P)det (R—QQ—S+P)det (P+Q+2R+2S) det x
P-Q P-R R-S
0 P+Q-R-S 0
2R-25 2R-S-P S+P-R-0Q /5.4

= det(P+ Q—R—S8)*det (R—Q—S+P)det (P+Q+2R+2S8) x

P-0Q R-S
det @R—w 8+P—R—Q>M2

=det(P+ Q+2R +2S) det(P — Q2R +28) det(P — Q+R — S)? x
det(P+Q—-R-8)?. O
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Theorem 12. For any positive integer t, the number of spanning trees of the super subdivision graph
SSD(p4)[Cy % Py] of the cycle Cy witha Py chord is given by : T[SSD(y)(Cy ¢ Pp)] = 3 #4252,

Proof. The super subdivision graph SSD, ;)[Cy % p2] of the cycle Cy with a P, chord has

a vertex set V[SSD(y ) (Cy % P2)] = {uy ,u}, 1 <ke[L,4] }U {o1,9, ke [1,2]}. The
graph SSD 5y (Cy % P2) has w = 6t + 5 vertices and p = 12t edges. Applying Lemma 1,

we have:
1 DPi5x5)  Asxet)
T[SSD Cy%P))]| = —— det
[ (Z,t)( 4 2)] (6t+5)2 ( Al ‘Y(6t><6t)
_  Atg—1
= (6t+5)2[d6t(q>) x det (¥ — A'®A). (35)
3t+1 1 1 1 1
1 3t+1 1 1 1
M L
det (®) = det 1 1 2t+1 1 1 = det
( ) 1 1 1 2t +1 1 <£t N>
1 1 1 1 2t+1
= det(M) x det (N — LML) = 12 4(6t +13). (36)

From Lemma 8, we have,

det (¥ — A'®IA) = det

AW n IO
“wAA IO
SN I O v BV
I IO
O VLI Ion
VIORA®NONA

= det(P+ Q+2R +28) det(P — Q —2R +28) det(P— Q+ R —S)? x
det(P+ QR —S)?%,

where
5412 +93t —20 182 +15t—20 182 +15t—20 ... 18t% + 15t — 20
182 + 15t —20 54t> +93t —20 18t> 4+ 15t —20 ... 18t + 15t — 20
1 . .
= (182 +39¢)! : - . :
1812 4+ 15t —20 18t% 4 15t — 20 ... 5412 +93t—20 18> +15¢t—20
1812 +15¢t —20 18> + 15t — 20 ... 182415t —20 5424+93t—-20 /, ,
. . 1812 +21t — 7 . . 36t% + 60t + 25
Q = [ajj]ixt, in which a;; = BT e [bij]txt, in which b;; = 362178t
3612 + 48t — 1
and S = |[¢;; ,inwhich¢;; = ——————
[ciflext T 3612 4 78t
2 0 ... 0
o 2 0 ... 0
det(P—Q+R—-8)=det |: : - :|=2 (37)
0o ... ... 2 0
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1
det(P+ Q+2R +28) = (——=)'
( ) (6t2+13t)
4812 + 74t —1 362 +48t—1 ... ... 362 +48t—1 36t24+48t—1
3612+ 48t —1 4812 +74t—1 ... ... 3612+48t—1 36124+48t—1
det : : : : =
3612 +48t—1 362 +48t—1 ... ... 48122 +74t—1 3612 +48t—1
3612 +48t—1 3612 +48t—1 ... ... 362+48t—1 482 4+74t—1/ .
1242 + 26t 0 0
0 1262426t 0 0
(6t +5)2 ot : . , .
(612 + 13t)E (12t + 26) : : - :
0 oo 1282 426t 0
0 0 1212 + 26t
21 (6t +5)? (38)
(6t +13)
det (P—Q—-2R+2S8)=det(P+Q—-R-3S)
1-2t 1 1 ... 1
1 1-2t 1 ... 1
-1
= (T)fdet N : = 271 (39)
1 e 12t 1
1 cee .1 1-—2t

Ext
From substituting Equations (36)—(39) into Equation (35), we obtain the result. O

4.2. Complexity of the Super Subdivision of SSD 5 ;) (Ce % P3)
Lemma 9. Suppose P, Q, R, S, W, U and V are t X t block matrices and

P Q R R § W W S§ R
Q U 9 § VvV § § VvV S
R @ P W S R R § W
R S W P Q@ R R § W
F = SV S QU Q9 S V S |.Then,
w s R R @ P W S R
Ww S R R § W P Q@ R
S v § § Vv § 9 U Q
R S W W S R R Q P

det [ = det(P —W)? det(3R —2W — P) det[(U — V)(P — W) —2(Q — S)?] x
det[2(Q +28)* — (U +2V)(BR + P +2W)].

Proof. Performing row and column operations on the matrix combined with determinant
characteristics results in:
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-P -Q -R R S w 0 0 0
-9 U -Q S 1% S 0 0 0
-R -Q =P w S R 0 0 0
—2R 28 —2W P4+W Q+S 2R 0 0 0
det F =det | —28 -2V -28 Q+S U+V Q+S 0 0 0
—2W 28 2R 2R Q+S8S P+W 0 0 0
0 0 0 0 0 0 P-W Q-S§ 0
0 0 0 0 0 0 Q-8 U-V Q-S
0 0 0 0 0 0 0 Q-8 P-Ww
9%9
= det M = det(M) x det(N)
O
-P -¢ -R R S w
= ae 2R -2 -2W P+W Q+S 2R x ae 0 a_s Pow
=25 -2V 25 Q9+S U+V Q+S 3x3
—2W 28 2R 2R Q+S PHW
6x6
-9 -R-P R4W S WwW-P
U 20 28 vV o §-0
= det(3R —2W — P) det 0 0 0 0 P-W|x
-2V -48 20+28  U+V Q-8
-28§ —2W-2R 2R+P+W Q+S8 P-W
W-P 0 0
det [ Q-8 U-V 20-28
0 o0-§ P-WwW
S-2 w-7p R+W S
_ VU 25-290 28 v
=det (3R —2W — P) det (P — W) det 0 0 20445 U42V X
0 0 3R+P+2W Q+28
4x4
det (W —P) det [(U—V)(P —-W)—-2(Q - S)?

=det (P —W)?det (3R —2W — P) det [(U — V)(P — W) —2(Q — S8)?] x
det 2(Q+28)? — (U +2V)BR+P+2W)]. O

Theorem 13. For any positive integer t, the number of spanning trees of the super subdivision
graph SSD 5 4)[Ce % P3| of the cycle Ce with a P5 chord is given by :
T[SSD 5,4 (Ce % P3)] = 3 17 247,

Proof. The super subdivision graph SSD; ) [Ce * p3] of the cycle Cs witha P5 chord has a

vertex set V[SSDy ;) (Ce % P3)] = {u, u, 1<ke 1,6} U{v, keL2]} U{vi, ke [1,3]}.
The graph SSD, 4)(Cs % P3) has a = 9t + 8 vertices and p = 18t edges.

Using the same approach as in Theorem 12, we have:

1

T(SSD (s (Co % Po)] = g7

det(Dgyg)) X det (¥ (opxor) — AP Agyon) ] (40)
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det (@) = 3 (2t)°(31> + 11t). (41)

From Lemma 9, we have,

det (¥ — A'®1A) = det

INSSTLAIJIOD
HhShuhh<hioK©
SHIAINIVOI
Su3d0VInA
A< LOHhOIVLTO®L
ANSVOIINS
JAOVILAII®S
DI VULTLOSO®N
JOIINLIZI0A

= det (P —W)?det (B3R —2W — P) det [ — V)(P —W) —2(Q — S5)?
x det [2(Q +28)% — (U +2V)(3R + P +2W)]

where
10862 + 294t —85 3612 +30t — 85 ... . 3612 + 30t — 85
3612 +30f —85 1082 4294t —85 3... . 3612+ 30f — 85
1 _ .
P = Ger+ 12y : g - : ,
3612 + 30t — 85 . ... 10824294t —85 362+ 30t — 85
361 + 30t — 85 ... 362+430t—85 108t2+294t—85/, ,
3t2+4t—3 36t + 60t + 25
= [aji|txt, inwhich a;; = —————, R = [b;i]ixt, inwhich b;; = ———————,5 =
Q = [aij]ixt ij 23g+1u [bijlext g %g2+Lnt
6t + 11t +5 36t 448t — 19
Cji ,in which ¢;; = ———u——, W = [d;; ,whered;; = ——————,V =
leiflext if L, 6t [ijlext if 3612 + 132t
3tc+6t+3
e;:|txt, Where ¢;; = —————, and
[ 1]]t><t ij 3t2+11t
92 4+25t—8 3t2+3t—8 3t2+3t—8 ... . 3t2+3t—8
32 +3t—8 92 4+25t—8 324+3t—8 ... . 312 +3t—8
1 , i :
U= (3t2+11t)t . . . .
3t24+3t—8 3t24+3t—8 .. s 924+ 25t—8 324+3t-8
3t24+3t—8 3t +3t—8 - ... 3243t—-8 92 +25t-8/, ,
1—4t 1 1 .. 1
. 1 1-4 1 .. 1
det (P —-W) = (%)tdet : : =322, (42)
1 1—4 1
1 1 1—4t
Ext
—4t+3 3 e 3
1 3 —4t+3 ... .. 3
det (3R —2W —P) = (E)tdet , o , = (—1)f22 (43)
3 3 443 )
4 0 0
1 0 4 0 ... 0
det (U-V)(P-W)=2(Q—-8)? = —det | . . =222 )
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-1
det2(Q +28)* — (U +2V)(P +3R+2W)] = (———— )t x
2(Q+28) - U +2V)( )= G o)
10512 +208t —24 812 +120t—24 ... ... 812 4+120t—24 812 +120t—24
8112 + 120t —24 1052 +208t —24 ... ... 812 +120t—24 812+ 120t —24
det : : :
8112 +120t —24 812 +120t—24 ... ... 1052 +208f—24 812+ 120t —24
8112+ 120t —24 8124120t —24 ... ... 812 4+120t—24 10524208t —24/, ,
2412 + 88t 0 0
-1 (9t+8)2 0 242+ 88t 0 ... 0
= (= ) det
612 +22t° (24t + 88) : : o :
0 ... 0 2412+ 88t

B (_1>t 221‘73 (9t +8>2
N 3t+11 ’ (45)

From substituting Equations (41)—(45) into Equation (40), we obtain the result. O

5. Complexity of the Super Subdivision of a Complete Graph

Lemma 10. Suppose P, Q and ‘R are t x t block matrices and ¢ = det

AV
QLOILIL
OIOILO
DO VO IO
O IVOIOWO
VOOLLOA

Then, det o =det(P —R)3 det(P+ R —2Q)? det(P + R +49Q).

Proof. Using the properties of determinants and matrix row and column operations yields:

P P-0Q 0 0 0 P-R
Q Q-P P-Q P-R P-Q 0
_ Q 0 Q-P 0 Q-R 0
det @ = det 0 Q-R R-Q R-P R-Q 0
Q 0 O-R 0 Q-P 0
P+R P+R-2Q 0 0 0 0 o6
Q Q-P P-Q P-R P-Q
Q 0 9Q—-P 0 Q-R
= — det(P—R) 20 20-P-R P+R-20 0 P+R-2Q
Q 0 O—-R 0 Q—-P
P+R P+R-29 0 0 0 x5
Q 0 Q-P 9-R
_ o2 20 20-P-R P+R-2Q P+R-2Q
P+R P+R-2Q 0 0 s
Q Q-P R-P
= det(P—R)?det(P+R—-2Q) | P+R+2Q P+R-2Q 0
20 20-R-P 0 33

= det(P —R)? det(P + R —2Q) det(R — P) (7)+R+2Q 73+R—2Q>
2x2

P+R+4Q 0

=det(P —R)3det(P+R —2Q)?det(P+R+4Q). O
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Complexity of the Super Subdivision Graph SSD 5 1y [K4]

Theorem 14. For any positive integer t > 1, the number of spanning trees of the super subdivision
graph SSD 5 ) [Ky] of the complete graph Ky is given by : T[SSD(py(Ky)] = #2261,

Proof. Let K, be a complete graph with vertex set {uy, 1 < k < 4}. The super subdi-
vision graph SSD, ) [Ky] of the complete graph Kj has a vertex set V[SSD(, ;) (Kq)] =
{ur, v, 1 <k<4,1<j<t} Thus, the graph V[SSD(,; (Ky)] hasa = 2(3t+2)
vertices and = 12t edges, see Figure 6.

Figure 6. Super subdivision SSD, ) (Ky) of the complete graph Ky.

Applying Lemma 1, we obtain:

1 = = 1 Dyxa)  Daxet)
T[SSD(Z,t) (K4)] = m det [ (6t+4)1 D +A] = m det ( At IIJ(6t><6t)
_ 1  Atay—1
= G aplde(®) x det (¥~ a'e7lA)) (46)
341 1 1 1
det (@) =det | U L1 | = (3)3GBt+4). (47)
1 1 1 3t+1

From Lemma 10, we have,

P Q Q@ Q Q@ R
Q P Q R Q Q
det (¥ — A'®1A) = det @ QP QRQ
Q R Q@ P Q Q
Q Q R Q@ P Q
R Q@ Q@ Q@ Q P
= det (P —R)%det (P+R —2Q)*det (P+R+4Q),
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where
272430t —4 92 +6t—4 92 4+6t—4 ... 912 + 6t —4
92 +6t—4 272430t —4 92 +6t—4 ... 91> + 6t —4
1 . . .
P = (9t2+12t)t . T . .
92 +6t—4 9P +6t—4 L. 272 430t—4 9246t —4
92+ 6t—4 924 6t—4 ce. 924 6t—4 272 430t—4
) . 3t+3 . . 92 + 12t + 4
Q = [ajj]txt, in which a;; = ETY and R = [bjj]¢xt, in which b;; = o 12
1— 3t 1 1 ... 1
Y 1 1-3t 1 ... 1 St
det (P—R)=(—=—)det : : g : = —
(P-R)= () S .
1 1 cee ... 13t 1
1 1 1 1—3t Ext
2 0 ... 0
0 2 0 ...0 ;
det(P + R —2Q) = det o . =20
0 ... ... 0 2
24t+26 18418 ... ... 18t+18 18t+18
18t+18 24t+26 ... ... 18t+18 18t+18
— 1 t . . . .
det(P+R+4Q)*(m)d3t : : L : :
18t+18 18t+18 ... ... 24t+26 18t+18
18t+18 18t+18 ... ... 18t+18 24t+26 /, ,
6t+8 0 ... ... 0
0 6t4+8 0 ... 0
_ 2622 | N . Lo 2t Bt+2)?
~ (3t+4)i(6t+8 1 e 1  (Bt+4
(3t +4)"(6t + 8) ) 6t+8 0 (3t+4)
0 oo ... 0 6t+8

From substituting Equations (47)—(50) into Equation (46), we obtain the result.

6. Diagrammatic Comparison of the Obtained Graphs Complexities

txt

(49)

. (50)

O

This section includes an overview of graphical visualisations and a comparison of the
values of network complexity listed in this paper. Figure 7a displays the distinct geometric
shapes of the values of the complexity of the graphs generated by the super subdivision of
a cycle C;;, where n = 3,4,5,6. When comparing the relative complexity of these graphs,
we determined that the green layer is the dominant one. Similarly, Figure 7b—d displays
the distinct geometric shapes of the values of the complexity of the graphs generated
by the super subdivision of a prism I1,, the graph (C, % P%) and the complete graph

Ky, respectively.
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B =0,
I 50,1

SSDy, 4 (Cy)
IS0, (€. 1032
- SSD(E q(cs) 5
- SSD(z‘u(CB)

(a) SSD(3,4)(Cn) (b) SSDp 4 (I1y)

-SSD(QJ)(C::* Py
I SSD,; ((Cq* Py)

(c) SSD(Z,t) (Cn * P%) (d) SSD(Z,t) (Kn)
Figure 7. Variations in the enumerated complexities of the super subdivision graphs.

7. Conclusions

One important algebraic invariant in networks (graphs) nowadays is complexity. This
invariant informs us of the total number of acyclic networks in the initial network, which
ultimately ensures the accuracy and dependability underlying the network. The super
subdivision operation produces a more complex network. In the above work, by using the
characteristics of the block matrix, we discovered straightforward and explicit formulas for
determining the complexity of the super subdivision of the following graphs: the cycle C,,
where n = 3,4, 5, 6; the dumbbell graph Dby, ,; the dragon graph P, (C,); the prism graph
I1,, where n = 3,4; a cycle C,, with a P% -chord, where n = 4, 6; and the complete graph Ky .
Finally, the outcomes of our investigation were presented using 3D graphics.
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