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Abstract: Cryptocurrencies are rapidly growing and are increasingly accepted by major commercial
vendors. However, along with their rising popularity, they have also become the go-to currency
for illicit activities driven by the anonymity they provide. Cryptocurrencies such as the one on the
Ethereum blockchain provide a way for entities to hide their real-world identities behind pseudonyms,
also known as addresses. Hence, the purpose of this work is to uncover the level of anonymity in
Ethereum by investigating multiclass classification models for Externally Owned Accounts (EOAs) of
Ethereum. The researchers aim to achieve this by examining patterns of transaction activity associated
with these addresses. Using a labelled Ethereum address dataset from Kaggle and the Ethereum
crypto dataset by Google BigQuery, an address profiles dataset was compiled based on the transaction
history of the addresses. The compiled dataset, consisting of 4371 samples, was used to tune and
evaluate the Random Forest, Gradient Boosting and XGBoost classifier for predicting the category
of the addresses. The best-performing model found for the problem was the XGBoost classifier,
achieving an accuracy of 75.3% with a macro-averaged F1-Score of 0.689. Following closely was the
Random Forest classifier, with an accuracy of 73.7% and a macro-averaged F1-Score of 0.641. Gradient
Boosting came in last with 73% accuracy and a macro-averaged F1-Score of 0.659. Owing to the data
limitations in this study, the overall scores of the best model were weaker in comparison to similar
research, with the exception of precision, which scored slightly higher. Nevertheless, the results
proved that it is possible to predict the category of an Ethereum wallet address such as Phish/Hack,
Scamming, Exchange and ICO wallets based on its transaction behaviour.

Keywords: blockchain; Ethereum; supervised machine learning; classification; hyperparameters;
de-anonymization; XGBoost; multiclass classification; anonymity

1. Introduction

The popularity of cryptocurrency, the most mature form of blockchain technology, is
growing quickly. There have been several new alternative blockchains introduced since
the launch of Bitcoin in 2009. As of 12 March 2023, Ethereum remains the second-most
popular blockchain by market capitalisation, behind Bitcoin [1]. However, like other
cryptocurrency networks, the anonymity provided by Ethereum allows entities to hide
their illicit transactions behind a pseudonym [2]. As Ethereum becomes more widely used,
its popularity among criminals is likely to rise. According to Chainalysis’ 2023 Crypto
Crime Report, illegal transaction volume has been on the rise for three consecutive years,
reaching an all-time high of $20.6 billion [3]. Therefore, a tool to deanonymise Ethereum
blockchain addresses can help increase network trust.
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This work aims to uncover the true level of Ethereum’s anonymity by investigating
suitable multiclass classification models in predicting the category of Ethereum addresses
using patterns in transaction activity. The performance of Random Forest, Gradient Boost-
ing, and XGBoost classifiers are compared and evaluated. This research serves two main
purposes towards achieving the aim and objectives of this work: (1) building a labelled
address profiles dataset and (2) tuning and evaluating the model. In the first part, the
transaction features of each labelled address are extracted and compiled. In the second
part, the focus is on hyperparameter tuning to optimise the performance of each model
and evaluate its suitability towards classifying Ethereum wallet addresses.

One of the motives for this work was to contribute towards aiding due diligence on
transactions to meet Know Your Customer (KYC) requirements. This is often a mandatory
procedure due to legal obligations or reputational risks for parties such as banks, financial
service providers, regulators, law enforcement, and investigative agencies [4,5]. Addition-
ally, another reason for undertaking this work is to fill the gap in the multiclass classification
of Ethereum addresses. Several past research works have demonstrated that it is possible
to deanonymise blockchain entities through various methods. However, most past works
were focused on the binary classification of blockchain entities into either illicit/malicious
or licit/non-malicious groups [4,6–10]. Past works that do perform multiclass classification
of blockchain addresses, on the other hand, were focused on the Bitcoin blockchain [5,11,12].
Nevertheless, these past works served as a motivation and as a guideline for this work.

At the time of writing, to the best of the writer’s knowledge, there have been no
attempts to perform a multiclass classification of Ethereum wallet addresses. Additionally, a
multiclass labelled transaction dataset is compiled and can be used for future related works.

The rest of the paper is organised as follows. Section 2 is dedicated to addressing the
key concepts in this project. Section 3 discusses the related work and the motivation for
this work. Section 4 introduces the materials and methods used in this work. Section 5
presents the results of the models. Section 6 discusses the results and limitations of the
work as well as recommendations for future work.

1.1. Building a Labelled Address Profiles Dataset

A labelled Ethereum addresses dataset consisting of 5774 labelled wallet addresses
was downloaded from a public Kaggle challenge [13]. Duplicate addresses with different
labels were crosschecked with Etherscan.io, an Ethereum blockchain explorer platform, to
verify the labels and determine which records to drop, as further described in Section 4.1.1.
Figure 1 illustrates the category distribution of the address profiles dataset.

Figure 1. Distribution of address profiles dataset.
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Using this list of labelled addresses, 14 features to characterise the differences in user
behaviour were created using the data queried from the Google BigQuery crypto_ethereum
public dataset. The features derived from each address include the ETH balance, the
time difference between the first and last transaction in minutes, the average transaction
sent/received and the total transactions sent/received. The list of labelled wallet addresses
combined with each of their features forms the labelled dataset of address profiles used in
this research to tune and evaluate the models.

1.2. Model Tuning and Evaluation

Three models, Random Forest, Gradient Boosting and XGBoost classifiers, were tuned
using cross-validated Randomised Search to optimise the performance of each model.
Two training sets were used to tune the model: (1) the original training set and (2) the
SMOTE-resampled training set. The original training set is the training set before any
resampling technique is applied to it, and it is imbalanced. Data imbalance can cause the
model to perform poorly. Hence, it is desired to also include a resampled, balanced dataset
to investigate the performance of the multiclass classification models with and without
resampling. Undersampling was not used, as it can lead to the loss of vital information in
an already small dataset. Other than that, to reduce overfitting, SMOTE was preferred over
the random oversampling technique, which balances the dataset by randomly replicating
minority target instances [14].

The performance of the classification models in this research is evaluated using per-
formance indicators that consider the imbalanced nature of the dataset, such as the Macro
Average Precision, Recall and F1-Score. Predictive accuracy, which is a commonly used
performance indicator, is not suitable for this research because even if the minority class
addresses are wrongly identified, a high performance score may still be implied if the
classifier correctly predicts all of the addresses in the majority class [15]. Additionally, the
ROC (receiver operating characteristic) curve and the AUC (area under the ROC curve)
score were also considered when evaluating the models to visualise and measure the ability
of the models to differentiate between the different classes [16].

2. Literature Review
2.1. Blockchain

Blockchain is the technology behind cryptocurrencies such as Bitcoin, Ether and Tether.
It is essentially a distributed database of records that enables transactions or digital events
to take place in a decentralised manner [17,18], thereby removing the need to rely on
third parties or intermediaries such as commercial banks when making transactions. The
potential of blockchain technology lies in its many characteristics, including, but not limited
to, disintermediation and being traceable, transparent and tamper-resistant [19]. Hence,
it can benefit many industries, such as healthcare, energy, voting, insurance and identity
management [20,21].

The tamper-proof characteristic of blockchain technology stems from its structure as
illustrated in Figure 2. Blockchain, as the name suggests, records transactions on a chain of
blocks. Each block holds a set of transactions created, a timestamp, a link to the block before
it, and a hash value to identify it. Since successive blocks are connected by cryptographic
hash functions to create a chain of blocks, changing the transaction data in block Bi would
affect the hash that is present in block Bi+1, modifying the contents of Bi+1 as a result,
and so on [22]. Furthermore, the blockchain is replicated and constantly updated across a
network of computers (nodes). Any blockchain network’s foundation relies on consensus
algorithms to ensure that each new block added to the chain is recognised as the only
version of the truth by all parties involved [23]. Thus, if a majority of CPU power is owned
by nodes that are not working together to attack the network, the blockchain is effectively
an immutable and irrefutable ledger or at least one that will be very difficult to tamper
with [24].
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Figure 2. Blockchain structure [21].

Ethereum

Ethereum is an open-source blockchain introduced by Buterin [25] to address several
limitations of Bitcoin’s scripting language. It represents a blockchain with an integrated
Turing-complete programming language, allowing smart contracts that allow anyone to
design their own ownership rules, transaction formats and state transition mechanisms [26].
Unlike Bitcoin, which uses the Unspent Transaction Output (UTXO) model, Ethereum uses
the account model. As opposed to maintaining the state, such as in the UTXOs, account
balances are directly updated by transactions, allowing the transfer of values, messages
and data between the accounts that may result in state transitions [27].

There are two types of accounts on the Ethereum blockchain, which are Externally
Owned Accounts (EOAs) and contract accounts. EOAs are owned and controlled by people,
and similarly to Bitcoin, each person has their own private key, which they can use to
make transactions in the Ethereum blockchain. On the other hand, contract accounts are
controlled by their smart contract code, which can be triggered by transactions from EAOs
or other contracts. Ether is the cryptocurrency used on the Ethereum blockchain, is used to
pay transaction fees and can be sent from address to address.

A transaction is a single cryptographically signed instruction and is described as a
signed data package sent by an EOA [26]. Each transaction consists of several fields, namely
the transaction recipient (address), the signature to identify the sender, the Ether amount (in
Wei, which is the smallest denomination of ether, 1 ETH = 1018 Wei) to be sent, an optional
data field, and the STARTGAS and GASPRICE value [25,27]. Transactions are prioritised
by network miners depending on the GasPrice field. Numerous relevant details of Ether
transactions are saved as data packages [28].

In this project, the dataset used to train the model consists of labelled EOAs and their
extracted features. Several details from transactions were used when extracting the features
to form the dataset, specifically, the sender (From) and recipient (To) address, the amount
of Ether to be sent (Value), and the Timestamp.

2.2. Supervised Learning

Supervised learning is a subfield of ML where predictive models are built by learning
from a large number of labelled data consisting of a set of training examples, each of which
contains a label indicating its ground-truth output [29]. Hence, the main characteristic
that sets it apart from other ML types is that it uses labelled datasets to train the model.
Supervised learning can be divided into two major categories, classification and regression.
The difference between classification and regression is that the former is used to predict
discrete class labels while the latter is used to predict continuous values [30].

Classification can be further divided into binary, multiclass and multi-labelled clas-
sification tasks [31]. Binary classification refers to classification tasks that have only two
distinct categories, such as ‘true and false’ or ‘licit and illicit’, while multiclass classification
refers to classification tasks that have more than two categories [31,32]. Multi-label classifi-
cation is a generalisation of multiclass classification where each example is associated with
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several classes or labels [33]. In this project, the Random Forests, gradient boosting and
XGBoost classifiers are trained to perform multiclass classification.

2.2.1. Random Forest

In prior work on character recognition, Amit and Geman defined a huge number
of geometric features and searched across a random subset of these for the best split
at each node [34]. This work served as inspiration for Leo Breiman, who developed
Random Forests [35]. It was created as a rival to boosting and builds on Breiman’s bagging
approach [36]. The fact that Random Forests may be used to solve a variety of prediction
problems, are straightforward, are widely acknowledged for their accuracy, and have the
ability to handle small sample sizes and high-dimensional feature spaces has substantially
contributed to their popularity [37].

A Random Forest (RF), as its name suggests, is an ensemble of trees where each tree
depends on a set of random factors [38]. A subset of training samples (bootstrapped dataset)
is drawn through replacement to generate several decision trees (a bagging approach),
which means some samples can be selected multiple times while some may not be selected
at all. Each decision tree is grown independently without any pruning, with the modifi-
cation that at each node, the best split from among a user-defined number of randomly
selected features is chosen instead of choosing the best split from among all features [39].
A RF produces trees with high variance and low bias by expanding the forest up to a
user-defined number of trees. The probabilities for each class assigned by each created
tree are averaged using the arithmetic mean to arrive at the final classification decision. To
obtain an estimate of the error rate, the samples that were not selected to build the tree, also
known as the out-of-bag samples, are utilised in an internal cross-validation method [35].
At each bootstrap iteration, each tree votes for class membership, and majority votes will
decide the predicted class. The out-of-bag error can then be computed from the correctly
and incorrectly classified predictions.

2.2.2. Gradient Boosting

Gradient boosting (GB) fuses the gradient descent algorithm and boosting method [40].
Boosting algorithms iteratively combine weak learners, such as those somewhat better
than random, into strong learners [41]. Although decision trees are poor models on their
own, as an ensemble, they significantly increase in accuracy. As a result, the ensembles are
constructed progressively and incrementally so that each ensemble fixes the flaw in the
previous ensemble [42].

In the issue of function estimation, one has a system that consists of a set of random
‘input’ or ‘explanatory’ variables x = {x1, . . . , xn} and a random ‘output’ or ‘response’
variable y. Given a training sample

{
xi, yi

}N
1 of known (x, y) values, the goal of gradient

boosting is to find an approximation of the function F∗(x) that maps the instances x to
their target values y, such that over the joint distribution of all (x, y) values, the expected
value of some specified loss function L(y, F(x)) is minimised. Gradient boosting creates a
weighted sum of functions that additively approximates F∗(x) [37]:

Fm(x) = Fm−1(x) + ρmhm(x), (1)

where ρm represents the weight of the mth function, hm(x), which is the model of the
ensemble such as decision trees. The approximation is built up gradually. First, a constant
approximation representation of F∗(x) is found as expressed in Equation (2),

F0(x) = argmin
α

∑N
i=1 L(yi, α). (2)

Following that, the subsequent models are expected to minimise

(ρm, hm(x)) = argmin
ρ,h

∑N
i=1 L(yi, Fm−1(xi) + ρh(xi)). (3)
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But as opposed to directly solving the optimisation issue, each hm can be thought
of as a greedy step in a gradient descent optimisation for F∗. To do so, each model, hm,
is trained on a fresh dataset, {xi, rmi}N

i=1, where the pseudo-residuals, rmi, are calculated
using Equation (4).

rmi =

[
∂L(y, F(x))

∂F(x)

]
F(x)=Fm−1(x)

. (4)

Then, the value of ρm is calculated by resolving a line-search optimisation issue.

2.2.3. XGBoost

XGBoost, which stands for eXtreme Gradient Boosting, is another decision tree en-
semble and is a scalable and efficient implementation of gradient boosting [43]. Through
the continuous iteration of the model, the XGBoost classifier aggregates hundreds of tree
models with lesser classification accuracy to produce one that is very accurate and low in
false positives [44].

XGBoost constructs an additive expansion of the objective function by minimising a
loss function, much like gradient boosting. Given that XGBoost only uses decision trees
as base classifiers, the complexity of the trees is managed using a variation of the loss
function [37]

Lxgb = ∑N
i=1 L(yi, F(xi)) + ∑M

m=1 Ω(hm), (5)

where Ω(hm) can be computed with Equation 6,

Ω(h) = γT +
1
2

λ‖w‖2, (6)

where T denotes the number of leaves of the tree and w represents the output scores of the
leaves. The split criterion of decision trees can incorporate this loss function, creating a
prepruning approach. The minimum loss reduction gain required to separate an internal
node is controlled by the value of γ. Trees with higher γ values are simpler.

3. Related Work and Motivation

Several researchers have attempted to deanonymise blockchain entities based on
their transaction behaviour and have explored the limits of the anonymity provided by
blockchain addresses. Both unsupervised and supervised approaches were explored in
these various similar works, from identifying addresses belonging to the same owner with
address-clustering heuristics to using classification models such as XGBoost and Random
Forests to predict the category of an address.

In [45], the author proposed several address-clustering heuristics to identify addresses
that likely belong to the same entity in the Ethereum network. They exploited patterns
related to deposit addresses, airdrop multi-participation, and ERC20 token-authorisation
mechanisms, successfully clustering 17.8% of active EOA addresses on the Ethereum
blockchain. The author of [46] performed a characteristic analysis of the Ethereum transac-
tion space and was able to infer behavioural attributes in both supervised and unsupervised
environments. In an unsupervised context, they inferred behavioural traits of the ten clus-
ters formed by inducing them into radar plots and characteristically analysing them based
on feature contributions. In a supervised context, they inferred characteristics in the trans-
actions by performing characteristic analysis on malicious and non-malicious transactions
using histogram plots. These research works served as the foundation and inspiration for
the current study, providing initial ideas and features to be extracted.

The authors in [4] found that using ten-fold cross-validation, XGBoost proved to have
positive results in the detection of illicit accounts over the Ethereum blockchain. They
also identified the top three features that significantly affected the final model output:
the time difference in minutes between the first and last transaction, the account’s total
ether balance, and the minimum Ether it ever received. In Ref. [47], the authors used
XGBoost and Random Forest to predict if an incoming transaction is fraudulent or not on
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the Bitcoin blockchain. They also used SMOTE to deal with their dataset imbalance and
obtain better results. The XGBoost classifier aggregates a large number of tree models with
poor performance to produce a highly accurate classification model, making it effective for
detecting illicit accounts over the Ethereum blockchain.

Other than that, numerous researchers explored the application of supervised learning
methods for Anti-Money Laundering (AML) and fraud detection in the Bitcoin blockchain.
Some papers found the Random Forest (RF) method to be the most effective after comparing
it with other methods such as Logistic Regression (LR), Support Vector Machine (SVM),
Artificial Neural Networks, and Graph Convolutional Networks [8,10,48]. The authors
of [6] found RF to be superior to GBC. On the other hand, Ref. [5] found the Gradient
Boosting Classifier (GBC) provided the best results compared to RF, Bagging Classifiers, and
a few other methods in predicting the category of a new cluster on the Bitcoin blockchain
given a set of previously identified clusters as training data.

The authors of [28] conducted a survey analysing existing machine learning models
proposed to detect fraudulent activities on the blockchain. They outlined some common fea-
tures that may prove useful in predicting frauds such as the transaction history of addresses,
the transaction amount, and the transaction sender and receiver address. These common
features were referenced when deciding the features to be used for this study, such as the
total ETH sent or received and the average time taken in minutes between transactions.

Results from past works have proven that it is possible to classify blockchain ad-
dresses based on their transaction history or activity (see Table 1). However, most of the
works were focused on the binary classification of blockchain entities into groups of either
illicit/malicious or licit/non-malicious [4,6–10]. Past works that do perform multiclass
classification of blockchain addresses, on the other hand, were focused on the Bitcoin
blockchain [5,11,12]. Hence, this work aims to fill that gap by investigating the application
of machine learning on the multiclass classification of Ethereum wallet addresses. Mul-
ticlass classification of Ethereum addresses can be valuable for organisations in various
ways. Not only can it enable the identification and avoidance of suspicious accounts,
such as scams, but it also offers the opportunity to gain insights into the behaviour of
specific account owners, such as distinguishing miners from exchanges, thereby enabling
organisations to customise their services accordingly.

Table 1. Overview of related works.

Past Work Aims Methods Conclusion Evaluation

[4]

To identify illicit
addresses based on their
transaction history on the
Ethereum blockchain.

XGBoost Classifier. Concluded that the XGBoost
classification model, which is
trained on data from previous
transactions and account
attributes, may efficiently and
effectively detect illicit activity
on the Ethereum network at
the ‘account level’.

XGBoost achieved an
average accuracy of 0.963
and an average AUC
of 0.994.

[5]

To determine if one can
use a set of previously
identified clusters as
training data to predict
the category of a new
cluster on the Bitcoin
blockchain.

k-Nearest Neighbours,
Random Forests, Extra
Trees, AdaBoost,
Decision Trees, Bagging
Classifier and Gradient
Boosting.

Showed that it is possible to
limit the number of probable
Bitcoin address owners to
some extent and that the
expected degree of anonymity
of the Bitcoin Blockchain is not
as high as often believed.

Gradient Boosting
Classifier performs the best
(accuracy of 77% and
F1-score of 0.75), followed
by Bagging (0.74% and
0.72) and Random Forest
(0.73 and 0.67).

[7]

To detect malicious
addresses through
anomaly detection in the
transactional behaviour
of the accounts on the
Ethereum blockchain.

Random Forest,
XGBoost,
Decision Tree and
k-NN.

All models work to a
reasonable extent.

XGBoost classifier
performed the best for both
EOA analysis and smart
contract analysis achieving
an accuracy of 96.54% and
96.82%, respectively.



Computation 2023, 11, 156 8 of 21

Table 1. Cont.

Past Work Aims Methods Conclusion Evaluation

[9]

To develop automatic
analytic tools that can
detect the public
addresses of entities
linked to malicious
activity on the Ethereum
blockchain.

Logistic Regression,
Support Vector
Machine, Random
Forest, Stacking
Classifier and
AdaBoost.

Concluded that, taking into
account the transaction
histories of the Ethereum
entities, illicit behaviour on the
network may be detected.

Stacking Classifier and
AdaBoost both performed
the best (accuracy of 99.8%
and F1-score of 0.998),
followed by Random
Forest (99.5% and 0.995).

[10]

To reconcile the cause of
safety with that of
financial inclusion.

Logistic Regression,
Random Forest,
Multilayer Perceptrons,
and Graph
Convolutional
Networks.

Presented Bitcoin and
cryptocurrency forensics as a
unique ecosystem for
crowdsourcing the creation of
innovative techniques to
combat illegal activities.

Random Forest performed
the best.

4. Materials and Methods

This work can be divided into two main phases: (1) the data preparation phase and (2)
the data analysis phase (see Figure 3).

Figure 3. System framework.
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The main steps in the data preparation phase are feature extraction and data pre-
processing, which produces and transforms the dataset to be readable by the machine
learning algorithms. The Google BigQuery public Ethereum dataset was used to extract
the features described in Table 2. These features were chosen by referencing the common
features across various similar works [4,46,49,50]. From this phase, two training sets are
produced to be applied subsequently in the data-analysis phase, one that is imbalanced
and one that is resampled with SMOTE.

Table 2. Dataset columns.

# Column Description Data Type Type of Feature

1 category Address category (see Table 3) object –

2 eth_balance ETH Balance float64
Miscellaneous

3 time_diff_btween_first_and_last_in_mins Time difference between first and last
transaction in minutes float64

4 txns_sent Total number of transactions sent int64

Outgoing

5 total_eth_sent Total Ether sent float64
6 avg_eth_sent Average value in Ether ever sent float64
7 min_eth_sent Minimum value in Ether ever sent float64
8 max_eth_sent Maximum value in Ether ever sent float64

9 avg_min_between_txn_sent Average time difference between
transactions sent in minutes float64

10 txns_recv Total number of transactions received int64

Incoming

11 total_eth_ recv Total Ether received float64
12 avg_eth_ recv Average value in Ether ever received float64
13 min_eth_ recv Minimum value in Ether ever received float64
14 max_eth_ recv Maximum value in Ether ever received float64

15 avg_min_between_txn_ recv Average time difference between
transactions received in minutes float64

Table 3. Number of samples per category after feature extraction and pre-processing.

Category Count

Phish/Hack 1610
Scamming 1260
Upbit Hack 795
Exchange 217

Others (Legit) 183
Gitcoin Grants 169

ICO Wallets 62
Mining 52

Others (Dodgy) 23

The data-analysis phase consists of steps to tune each model with both the training sets
and to evaluate each tuned model. Multiple tests are conducted to improve the performance
of the model through hyperparameter tuning, which is further discussed in Section 5. Each
tuned model is then evaluated with a classification report that details the macro-average
precision, recall and F1-Score. The models are also evaluated using the ROC curve plot and
the AUC score.

4.1. Dataset Description

The dataset that is compiled after the feature extraction and pre-processing phase
contains 4371 rows of data. Each row consists of the data described in Table 2.

In total, there are nine categories to be classified: Phish/Hack, Scamming, Upbit Hack,
Exchange, Gitcoin Grants, ICO Wallets, Mining, Others (Legit) and Others (Dodgy). The
number of samples per category is reported in Table 3.
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The ‘Others (Legit)’ category includes entities that have fewer than 50 samples each
and are labelled as legitimate (see Table 4). The ‘Others (Dodgy)’ category includes entities
that have fewer than 50 samples each and are labelled as dodgy (see Table 4).

Table 4. Groups categorised as ‘Others (Legit)’ and ‘Others (Dodgy)’.

Category Count

Others (Legit)

Donate, Authereum, Liqui.io, AtomSolutions, MEDIKEY, Pundi X, Wallet
App, Scroll Network, Hot Wallet, ENS, CoinMarketFeed, Cold Wallet,
MESG, Loans, Trading, CACHE Gold, QuadrigaCX, Resfinex, ShapeShift,
Swipe.io, 0xUniverse, Gambling, Airdrop/Distributor, Fiat Gateway,
Payment, BitcoinSoV, Gnosis Safe, Matic Network, Silverway Platform,
White Hat Group, Band, Basic Attention Token, Brave Frontier Heroes,
Bitstamp, Blockchain Cuties, Coinone, OTC, E-Commerce, Real Estate,
Bugs, Bridge, Loopring, My Crypto Heroes, Melon, Marketplace, OpenSea,
Origo, Advertising, Switcheo, Tokenlon, Closure.

Others (Dodgy)
Heist, Compromised, Cryptopia Hack, Fake ICO, bZx Exploit, Website
Down, Lendf.Me Hack, EtherDelta Hack, Plus Token Scam,
Scam, Suspicious.

4.1.1. Data Collection and Feature Extraction

To form the described dataset, a list of known Ethereum addresses is first obtained
from a public Kaggle challenge [13]. This dataset has been used in previous similar work
uncovering the anonymity of Ethereum addresses [2]. This dataset was created using
data from Etherscan and cryptoscam.db. In total, the dataset contains 5774 labelled wallet
addresses related to exchanges, ICO wallets, mining, scamming, Phish/Hack, Upbit Hack,
and other categories (see Tables 3 and 4).

Before moving on to extracting the features, the dataset was checked for duplicates
based on the address. Seven duplicate addresses were identified, with two of them having
contradicting categories, where one is labelled as a legitimate entity and the other as dodgy.
Etherscan.io was used to verify the current labels. The more prominent and general label
was kept for this study as specified in Table 5. For example, the Compromised label was
kept instead of Exchange considering the priority. The Heist label was kept instead of
Cryptopia Hack or Plus Token Scam because the two latter refer to more specific events.

Table 5. Duplicate Addresses.

# Address
Categories

Discarded Kept

1 0x2984581ece53a4390d1f568673cf693139c97049 Exchange Compromised
2 0x5baeac0a0417a05733884852aa068b706967e790 Exchange Compromised
3 0x745daa146934b27e3f0b6bff1a6e36b9b90fb131 Dex Dex
4 0x9007a0421145b06a0345d55a8c0f0327f62a2224 Cryptopia Hack Heist
5 0xaa923cd02364bb8a4c3d6f894178d2e12231655c Cryptopia Hack Heist
6 0xc8b759860149542a98a3eb57c14aadf59d6d89b9 Cryptopia Hack Heist
7 0xf4a2eff88a408ff4c4550148151c33c93442619e Plus Token Scam Heist

Moving on to feature extraction, the crypto_ethereum dataset from Google BigQuery
is used to retrieve the Ethereum wallet address transaction data [51]. The dataset is updated
daily with the Ethereum blockchain data, making it a good choice to gather the relevant data
required for this study. It is chosen instead of other methods for its simplicity and strong
Online Analytical Processing (OLAP) capabilities. BigQuery supports data aggregation
and time series analysis, which is particularly helpful for extracting features such as the
average ETH sent by an address or the time difference between the first and last transaction
in minutes. Large and complex queries can be executed quickly to retrieve Ethereum wallet
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transaction data [52]. The 14 features that were extracted for each of the labelled address
are described in Table 2.

4.1.2. Data Pre-Processing

The rows with null values are then removed, leaving 4371 samples remaining. The
categories with fewer than 50 samples each are merged into the categories ‘Others (Legit)’
and ‘Others (Dodgy)’, respectively, based on the label column (see Table 4).

The first pre-processing step carried out was to drop columns that were irrelevant to
the model training process. This is followed by typecasting the columns accordingly. This
is because some feature columns do not have the right data type set correctly in accordance
with the value it holds. Next, as all the features that retrieve the value of the transactions
were retrieved in Wei, these columns are divided by 1018 to convert those values to ETH
representation. Following that, the columns with values that had many decimal places
were rounded up to two decimal places.

4.1.3. Data Preparation

The dataset is highly imbalanced, with more than 60% of the samples belonging
to the categories Phish/Hack and Scamming. While the models are trained with the
original dataset, it is desired to also have a balanced dataset to improve the performance
of the classification model. There are mainly two resampling methods, which are the
undersampling and oversampling techniques. To compensate for the class imbalance in
the dataset, SMOTE (Synthetic Minority Over-sampling Technique) is used to oversample
the under-represented classes. The SMOTE approach constructs synthetic samples along
the line segments joining all the minority class’s nearest neighbours. The use of SMOTE to
increase a classifier’s sensitivity to the under-represented class has been shown to improve
the performance of the prediction model in other similar works [5].

Other than the resampling techniques discussed above, cross-validation is also ap-
plied to prevent overfitting, as the training instances are independent of the validation
instances [53]. It is used instead of other validation techniques to estimate the model’s
performance due to this research’s limited data samples. More specifically, stratified k-fold
cross-validation is used to make sure that sampling is performed in such a way that the
class ratios reflect the training set [54], thus avoiding a biased evaluation [55].

4.2. Supervised Machine Learning Algorithms

This study applied and compared the supervised machine learning algorithms, which
are popular choices for analysing cryptocurrency transaction data [4–7,10]. Specifically, the
Random Forests, Gradient Boosting and XGBoost were applied, as they were found to be
top performers in similar problems from past works.

4.3. Hyperparameter Tuning

Randomised Search was used because, given the same number of data, it is both
theoretically and empirically more effective when compared to Grid Search at exploring
a wider range of values for each parameter and less likely to waste time on pointless
hyper-parameters [56]. Furthermore, the runtime can be controlled. Unlike Grid Search,
Randomised Search does not try out all possible combinations of the parameter values
defined in the parameter grid. Instead, the number of parameter combinations, or iterations,
can be set.

As explained in previous chapters, the models are tuned with two separate training
sets. The first set, which is the original train set, contains 3496 samples and is imbal-
anced. The second set, which is resampled with SMOTE to balance the train set, contains
11,583 samples. The models were trained with both sets to investigate if resampling the
dataset to balance it can improve the performance for this problem. A potential trade-off
is the higher time consumption required to tune the model with a larger dataset due to
oversampling. The models are tuned in multiple rounds with a search space with varying
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parameters and setups, as further described in Section 5. The macro-averaged F1-Score was
used to determine if an estimator is refitted using the optimal parameters found.

4.4. Model Evaluation

The test set that is used to evaluate the models consists of 875 samples. The perfor-
mance of the classification models is evaluated using the macro average precision, recall,
and F1-Score. These evaluation metrics were chosen as they consider the imbalanced
nature of the dataset. In addition to these evaluation metrics, the ROC curve is also plotted
and the AUC score is noted. These metrics were chosen because they have been used as
performance indicators in several related works which used an imbalanced dataset to train
their models [5,9].

Precision measures how much the model can be trusted when predicting an individual
as Positive, while Recall gauges how well a model can identify all Positive cases in a
dataset [57]. Following that, the F1-Score is the harmonic mean of the Precision and Recall
values, which help determine the ideal trade-off between the two quantities [58]. The ROC
curve maps the sensitivity (true positive rate) by 1 minus specificity (false positive rate),
showing the trade-off between the two [59]. Curves that are closer to the top-left corner
indicate better performance. The AUC score reflects how well the model is at distinguishing
between the different classes [16]. An AUC of 0.5 typically indicates no discrimination,
while values between 0.7 and 0.8 are regarded as acceptable, values between 0.8 and 0.9 are
regarded as excellent, and values above 0.9 are regarded as outstanding [60].

Macro-averaging was chosen as it treats all classes equally and is insensitive to the
imbalance in a dataset, whereas micro-averaging, which is essentially the accuracy score,
favours larger classes [31]. Thus, the commonly used predictive accuracy was not given
much importance as it was considered to be unsuitable for this research due to the dataset
imbalance. A high performance score can be incorrectly implied if the classifier successfully
predicts all the addresses in the majority class even if the minority class addresses are not
correctly classified [15].

5. Results

The test ID provides some insight as to what model was tuned and with what setup.
The first part of the ID denotes the model tuned. ‘RF’ represents Random Forest, ‘GB’ stands
for Gradient Boosting and ‘XGB’ represents XGBoost. The second part of the ID indicates
the type of train set used. ‘O’ represents using the original train set, and ‘S’ represents
using the resampled (SMOTE) train set to tune the model. The number at the end of the
test ID represents the round in which it was tested. Tests in the same round, for the same
model, use the same parameter search space. For example, the test ID ‘RF-O-1′ refers to a
Random Forest model tuned using the original dataset with the first round hyperparameter
search space.

5.1. Random Forest Classifier Results

For the Random Forest classifier, the parameters that were tuned are the number of
estimators, the max depth, the max features, and the max samples. The first round of
parameter search space is as described in Table 6. The evaluation results and the best
parameters that were found for the Random Forest classifier on each test are reported in
Tables 7 and 8, respectively.

Table 6. Random Forest first round hyperparameter search space.

Hyperparameter Range

n_estimators np.arange (50, 200, 15)
max_depth np.arange (2, 10)

max_features [‘sqrt’, ‘log2′, None]
max_samples [0.3, 0.5, 0.8]
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Table 7. Random Forest classifier results of the best estimator found for each test.

Test ID
Test Scores

Accuracy Precision Recall F1-Score

RF-O-1 0.726 0.624 0.572 0.591
RF-S-1 0.683 0.598 0.625 0.596

RF-O-2 0.729 0.629 0.578 0.595
RF-S-2 0.720 0.630 0.635 0.625

RF-O-3 0.937 0.941 0.904 0.921
RF-S-3 0.898 0.882 0.897 0.882

RF-O-4 0.737 0.658 0.630 0.641
RF-S-4 0.723 0.681 0.690 0.679

Table 8. Random Forest classifier number of folds and iterations used and best parameters found for
each test.

# of Folds # of
Iterations Test ID # of

Estimators
Max

Depth
Max

Features
Max

Samples

3 25
RF-O-1 185 9 sqrt 0.8
RF-S-1 185 9 sqrt 0.8

3 25
RF-O-2 260 16 sqrt 0.95
RF-S-2 290 18 sqrt 0.85

100 25
RF-O-3 185 19 sqrt 0.8
RF-S-3 260 16 sqrt 0.95

5 100
RF-O-4 215 14 sqrt 0.9
RF-S-4 185 19 sqrt 0.9

The initial parameters are set based on values that are commonly applied (see Table 6).
The second-round parameter search space was adjusted based on the best parameters
found. If the best parameters found in the first round were near the edge of the range
specified in the search space, a larger range is defined for the next round. The reason for
expanding the range is that the actual optimum value may lie beyond the range initial set.
As shown in Table 7, the second round of tests indeed showed better results compared to
the first.

However, the model’s performance was still not very accurate. Hence, another round
of tests with 100-fold cross-validation was carried out. In theory, a higher value of k
would decrease the bias and result in lower prediction error as the model is trained on
more data [61]. The results showed significant improvements. However, the impact of
the bias–variance trade-off for this work has not yet been explored [62,63]. Therefore,
the high-performance result may be a misrepresentation of the actual skill of the model.
Another round of hyperparameter tuning as carried out with five-fold cross-validation,
which is a commonly applied k value, and the number iterations was increased to 100 to
explore more parameters.

5.2. Gradient Boosting Classifier Results

For the Gradient Boosting classifier, the parameters that were tuned are the number of
estimators, the max depth, the max features, and the learning rate. The first round hyper-
parameter search space for Gradient Boosting is as described in Table 9. The evaluation
results and the best parameters that were found for the Gradient Boosting classifier on each
test are reported in Tables 10 and 11, respectively. The Gradient Boosting classifier tests
were carried out with the same steps as for the Random Forest classifier tests.
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Table 9. Gradient Boosting first round hyperparameter search space.

Hyperparameter Range

n_estimators np.arange (50, 200, 15)
max_depth np.arange (2, 10)

max_features [‘sqrt’, ‘log2′, None]
learning_rate [0.05, 0.1, 0.15, 0.2]

Table 10. Gradient Boosting classifier results of best estimator found for each test.

Test ID
Test Scores

Accuracy Precision Recall F1-Score

GB-O-1 0.717 0.610 0.604 0.604
GB-S-1 0.729 0.629 0.578 0.595

GB-O-2 0.739 0.689 0.588 0.626
GB-S-2 0.736 0.683 0.666 0.664

GB-O-3 0.917 0.950 0.914 0.931
GB-S-3 0.950 0.929 0.930 0.929

GB-O-4 0.730 0.755 0.635 0.659
GB-S-4 0.719 0.708 0.692 0.691

Table 11. Gradient Boosting classifier, number of folds and iterations used, and best parameters
found for each test.

# of Folds # of
Iterations Test ID # of

Estimators
Max

Depth
Max

Features
Learning

Rate

3 25
GB-O-1 110 5 sqrt 0.05
GB-S-1 185 7 log2 0.1

3 25
GB-O-2 275 6 log2 0.05
GB-S-2 215 8 log2 0.05

100 25
GB-O-3 275 4 sqrt 0.05
GB-S-3 215 7 log2 0.1

5 100
GB-O-4 260 4 sqrt 0.1
GB-S-4 200 7 sqrt 0.1

As shown in Table 10, the Gradient Boosting classifier performs better than the Random
Forest classifier at classifying the Ethereum wallet addresses in general.

5.3. XGBoost Classifier Results

For the XGBoost classifier, the parameters that were tuned are the number of estimators,
the max depth, the learning rate and the gamma value. The first round hyperparameter
search space for XGBoost is as described in Table 12. The evaluation results and the
best parameters that were found for the XGBoost classifier on each test are reported in
Tables 13 and 14, respectively. The XGBoost classifier tests were carried out with similar
steps as for the previous two classifier tests. The second round of tests was omitted as the
evaluation results were worse than in the first round.

Table 12. XGBoost first round hyperparameter search space.

Hyperparameter Range

n_estimators np.arange (100, 300, 15)
max_depth [3, 4, 5, 7]

learning_rate [0.05, 0.1, 0.15, 0.2]
gamma [0, 0.25, 1]
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Table 13. XGBoost classifier results of best estimator found for each test.

Test ID
Test Scores

Accuracy Precision Recall F1-Score

XGB-O-1 0.711 0.656 0.621 0.634
XGB-S-1 0.698 0.646 0.638 0.638

XGB-O-2 0.931 0.942 0.904 0.922
XGB-S-2 0.944 0.937 0.937 0.937

XGB-O-3 0.753 0.779 0.673 0.689
XGB-S-3 0.728 0.666 0.682 0.667

Table 14. XGBoost classifier, number of folds and iterations used, and best parameters found for
each test.

# of Folds # of
Iterations Test ID # of

Estimators
Max

Depth
Learning

Rate Gamma

3 25
XGB-O-1 100 5 0.05 1
XGB-S-1 175 7 0.05 0.25

100 25
XGB-O-2 115 7 0.1 0.25
XGB-S-2 190 10 0.1 0.25

5 100
XGB-O-3 145 7 0.05 0.25
XGB-S-3 220 8 0.1 0

As shown in Table 13, the XGBoost performs better than the Random Forest classifier
in general and performs better than the Gradient Boosting classifier in some cases.

5.4. Interpretation of Results and Experimental Conclusions

In some cases, the performance of the model improved using the training set that
has SMOTE applied to compensate for the class imbalance. This can be seen in 8 out of
the 11 tests that used the resampled training set. The improvement may, however, be a
result of overfitting, even though the overall findings with over-sampling are somewhat
better than the results with the original dataset. The SMOTE algorithm still has certain
drawbacks despite its ability to somewhat prevent overfitting as compared to random
oversampling. New samples that are generated from a small sample generation area could
still lead to overfitting. Furthermore, the synthetic generation of new samples may blur the
boundaries of the majority and minority classes, thus making the data-classification task
more difficult [64]. Hence, the slightly improved results that were achieved by applying
SMOTE should be taken with caution. For comparing the performance between the models,
the SMOTE-based results are not considered.

As shown in Figures 4 and 5, the small sample size resulted in the jagged lines
visualised in the ROC curve. ROC curves are usually smoother, like the micro and macro
average ROC curves in the same Figure. The ROC curves also illustrate that the models
have difficulties when predicting the ‘Others (Dodgy)’ category, which may be attributed
to the significantly smaller sample size. In addition, the classification report (see Table 15)
shows that the model also has difficulty predicting observations from both the ‘Others’
categories, which can be explained by the fact that both the ‘Others’ categories encompass
a wide range of categories, as noted in Table 4.
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Figure 4. ROC curves for 100 folds, 25 iterations. The first row shows results using the original train
set, and the second row shows results using SMOTE train set. (a) ROC curves for Random Forest
Classifier; (b) ROC curves for Gradient Boosting Classifier; (c) ROC curves for XGBoost Classifier.

Figure 5. ROC curves for 5 folds, 100 iterations. The first row shows results using the original train
set, and the second row shows results using SMOTE train set. (a) ROC curves for Random Forest
Classifier; (b) ROC curves for Gradient Boosting Classifier; (c) ROC curves for XGBoost Classifier.
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Table 15. Classification report for XGBoost (XGB-O-3 test ID).

Category Precision Recall F1-Score

Exchange 0.791 0.791 0.791
Gitcoin Grants 0.704 0.528 0.603

ICO Wallets 0.846 1.000 0.917
Mining 0.769 0.769 0.769

Others (Dodgy) 1.000 0.167 0.286
Others (Legit) 0.519 0.359 0.424
Phish/Hack 0.723 0.743 0.733
Scamming 0.672 0.709 0.690
Upbit Hack 0.987 0.993 0.990

Macro Average 0.779 0.673 0.689

Overall, XGBoost achieved the best performance compared to the Random Forest
classifier and the Gradient Boosting classifier. With five-fold cross-validation and 100 itera-
tions, the tuned XGBoost model had an accuracy of 75.3%, a precision of 77.9%, a recall of
67.3% and an F1-Score of 68.9%. Additionally, the ROC curve shows the micro and macro
average AUC scores of 0.97 and 0.94, respectively. Except for precision, the overall scores
were lower compared to other similar past work. Therefore, there is a need for further
improvements, particularly addressing the data limitations of this study.

6. Discussion

In this work, a multiclass classification of Ethereum wallet addresses was conducted.
The Random Forest classifier, Gradient Boosting classifier and XGBoost classifier were
tuned to achieve the best performance and evaluated. The aim was to investigate the
performance of different supervised learning models in identifying user groups using
patterns in the transaction activity of Ethereum addresses. The results show that XGBoost
performed the best in predicting the category of the addresses. By utilising addresses that
have already been labelled, the XGBoost model was able to achieve an accuracy of 75.3%,
a precision of 0.779, a recall of 0.673 and an F1-Score of 0.689. In addition, it was able to
achieve micro and macro average AUC scores of 0.97 and 0.94, respectively. The outcome
of this work demonstrates that it is possible to narrow down and identify the potential
owner of an Ethereum wallet address to a certain degree based on its transaction behaviour.
The accuracy score is to be taken with caution as it does not consider the imbalanced
nature of the dataset. The precision indicates that about 77.9% of the addresses predicted
by the model belonging to a particular category were indeed correctly classified. The
recall shows that approximately 67.3% of the actual addresses of a specific category were
correctly identified by the model. The 0.689 F1-score shows the balance between precision
and recall, indicating that the model is able to classify the various categories to a certain
degree. A micro average AUC of 0.97 and a macro average AUC of 0.94 indicate high
overall discriminatory power and performance of the model in differentiating between
multiple categories.

Nevertheless, the dataset was limited in size and was highly imbalanced. The two
largest classes consisted of about 65% of the total samples, while the two smallest classes
consisted of only about 1.7%. Therefore, although some methods were implemented to
compensate for the imbalance, this research was still limited in terms of the data used to
train the models. Hence, moving forward, increasing the low sample size of the labelled
addresses as a larger sample size can potentially improve the performance of the classifier.
Class weights can also be assigned to prevent the classifier from being biased towards the
majority class. In addition, modified versions of XGBoost, such as cost-sensitive XGBoost
(CS-XGB), can also be explored to tackle the data-imbalance problem.

Furthermore, other potential features can be extracted from additional data that were
not considered, such as ERC20 token transfers, especially those involving Stablecoins such
as USDT or DAI. Incorporating these Stablecoin features could significantly enhance the
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prediction performance. Stablecoins can be particularly valuable in understanding address
behaviour, since they are typically backed by external assets such as gold or fiat currencies,
giving them real value. Additional features may also extend towards internal transactions
that are carried out through a smart contract.

Additionally, the pre-processing step could be improved by further understanding the
characteristics of different categories and handling missing values accordingly. Rather than
merely removing instances with missing data, a more effective approach could involve
imputing the missing values with ‘0’. This is because the absence of data is likely due to
the address having no transactions associated with it.

Another possibility for future work is exploring the combination of clustering to
identify entities that are likely in control of multiple addresses and the classification of
addresses on the groups identified towards the goal of forming risk profiles of addresses
on the Ethereum blockchain. This can help law enforcement and investigative agencies to
efficiently trace the flow of funds or flag any suspicious groups of addresses that would
prompt further investigation.

7. Conclusions

This work focuses on conducting a multiclass classification of Ethereum wallet ad-
dresses to uncover Ethereum’s anonymity level. The study evaluates the performance
of three classifiers—Random Forest, Gradient Boosting, and XGBoost—in predicting the
category of Ethereum addresses based on transaction activity patterns. XGBoost yielded
the best results with 75.3% accuracy, 0.779 precision, 0.673 recall, and 0.689 F1-Score. The
study demonstrates the possibility of identifying the potential label of an Ethereum wallet
address to a certain degree. For future work, it will be beneficial to increase the labelled
address sample size and explore additional features that can help differentiate between
the categories.
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37. Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A Comparative Analysis of Gradient Boosting Algorithms. Artif. Intell. Rev. 2021,

54, 1937–1967. [CrossRef]
38. Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm.

Remote Sens. 2016, 114, 24–31. [CrossRef]
39. Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22.
40. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
41. Freund, Y.; Schapire, R.E. A Short Introduction to Boosting. J. Jpn. Soc. Artif. Intell. 1999, 14, 771–780.
42. Chakrabarty, N.; Kundu, T.; Dandapat, S.; Sarkar, A.; Kole, D.K. Flight Arrival Delay Prediction Using Gradient Boosting

Classifier. In Proceedings of the Emerging Technologies in Data Mining and Information Security; Abraham, A., Dutta, P., Mandal, J.K.,
Bhattacharya, A., Dutta, S., Eds.; Springer: Singapore, 2019; pp. 651–659.

43. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; Association for Computing
Machinery: New York, NY, USA, 2016; pp. 785–794.

44. Chen, Z.; Jiang, F.; Cheng, Y.; Gu, X.; Liu, W.; Peng, J. XGBoost Classifier for DDoS Attack Detection and Analysis in SDN-Based
Cloud. In Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), Shanghai, China,
15–17 January 2018; pp. 251–256.

45. Victor, F. Address Clustering Heuristics for Ethereum. In Financial Cryptography and Data Security; Bonneau, J., Heninger, N., Eds.;
Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 12059, pp. 617–633,
ISBN 978-3-030-51279-8.

46. Bhargavi, M.S.; Katti, S.M.; Shilpa, M.; Kulkarni, V.P.; Prasad, S. Transactional Data Analytics for Inferring Behavioural Traits in
Ethereum Blockchain Network. In Proceedings of the 2020 IEEE 16th International Conference on Intelligent Computer Communica-
tion and Processing (ICCP), Cluj-Napoca, Romania, 3–5 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 485–490.

47. Ashfaq, T.; Khalid, R.; Yahaya, A.S.; Aslam, S.; Azar, A.T.; Alsafari, S.; Hameed, I.A. A Machine Learning and Blockchain Based
Efficient Fraud Detection Mechanism. Sensors 2022, 22, 7162. [CrossRef]

48. Raiter, O. Applying Supervised Machine Learning Algorithms for Fraud Detection in Anti-Money Laundering. J. Mod. Issues Bus.
Res. 2021, 1, 14–26. [CrossRef]

49. Krishnan, L.P.; Vakilinia, I.; Reddivari, S.; Ahuja, S. Scams and Solutions in Cryptocurrencies—A Survey Analyzing Existing
Machine Learning Models. Information 2023, 14, 171. [CrossRef]

50. Payette, J.; Schwager, S.; Murphy, J. Characterizing the Ethereum Address Space. Available online: http://cs229.stanford.edu/
proj2017/final-reports/5244232.pdf (accessed on 24 July 2023).

51. Day, A.; Medvedev, E.; Risdal, M.; Katesit, T. Ethereum in BigQuery: A Public Dataset for Smart Contract Analytics. Available
online: https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
(accessed on 26 July 2023).

52. Johnson, N. Ethereum Analytics with BigQuery. Available online: https://mirror.xyz/nick.eth/INhEmxgxoyoa8kPZ3
rjYNZXoyfGsReLgx42MdDvn4SM (accessed on 9 March 2023).

53. Arlot, S.; Celisse, A. A Survey of Cross-Validation Procedures for Model Selection. Statist. Surv. 2010, 4, 40–79. [CrossRef]
54. Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-Validation. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer: Boston,

MA, USA, 2009; pp. 532–538, ISBN 978-0-387-35544-3.
55. Berrar, D. Cross-Validation. In Encyclopedia of Bioinformatics and Computational Biology; Elsevier: Amsterdam, The Netherlands,

2019; pp. 542–545, ISBN 978-0-12-811432-2.
56. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
57. Dalianis, H. Evaluation Metrics and Evaluation. In Clinical Text Mining; Springer International Publishing: Cham, Switzerland,

2018; pp. 45–53, ISBN 978-3-319-78502-8.
58. Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756.
59. Cook, N.R. Use and Misuse of the Receiver Operating Characteristic Curve in Risk Prediction. Circulation 2007, 115, 928–935.

[CrossRef]
60. Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013;

ISBN 978-0-470-58247-3.
61. Kovalerchuk, B. Enhancement of Cross Validation Using Hybrid Visual and Analytical Means with Shannon Function. In Beyond

Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications; Kosheleva, O., Shary, S.P.,
Xiang, G., Zapatrin, R., Eds.; Studies in Computational Intelligence; Springer International Publishing: Cham, Switzerland, 2020;
Volume 835, pp. 517–543, ISBN 978-3-030-31040-0.

https://doi.org/10.1007/s42979-021-00592-x
https://www.ncbi.nlm.nih.gov/pubmed/33778771
https://doi.org/10.1162/neco.1997.9.7.1545
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10462-020-09896-5
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.3390/s22197162
https://doi.org/10.17613/2g0z-0814
https://doi.org/10.3390/info14030171
http://cs229.stanford.edu/proj2017/final-reports/5244232.pdf
http://cs229.stanford.edu/proj2017/final-reports/5244232.pdf
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://mirror.xyz/nick.eth/INhEmxgxoyoa8kPZ3rjYNZXoyfGsReLgx42MdDvn4SM
https://mirror.xyz/nick.eth/INhEmxgxoyoa8kPZ3rjYNZXoyfGsReLgx42MdDvn4SM
https://doi.org/10.1214/09-SS054
https://doi.org/10.1161/CIRCULATIONAHA.106.672402


Computation 2023, 11, 156 21 of 21

62. Bengio, Y.; Grandvalet, Y. No Unbiased Estimator of the Variance of K-Fold Cross-Validation. J. Mach. Learn. Res. 2004, 5,
1089–1105.

63. Zhang, Y.; Yang, Y. Cross-Validation for Selecting a Model Selection Procedure. J. Econom. 2015, 187, 95–112. [CrossRef]
64. Liang, X.W.; Jiang, A.P.; Li, T.; Xue, Y.Y.; Wang, G.T. LR-SMOTE—An Improved Unbalanced Data Set Oversampling Based on

K-Means and SVM. Knowl.-Based Syst. 2020, 196, 105845. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jeconom.2015.02.006
https://doi.org/10.1016/j.knosys.2020.105845

	Introduction 
	Building a Labelled Address Profiles Dataset 
	Model Tuning and Evaluation 

	Literature Review 
	Blockchain 
	Supervised Learning 
	Random Forest 
	Gradient Boosting 
	XGBoost 


	Related Work and Motivation 
	Materials and Methods 
	Dataset Description 
	Data Collection and Feature Extraction 
	Data Pre-Processing 
	Data Preparation 

	Supervised Machine Learning Algorithms 
	Hyperparameter Tuning 
	Model Evaluation 

	Results 
	Random Forest Classifier Results 
	Gradient Boosting Classifier Results 
	XGBoost Classifier Results 
	Interpretation of Results and Experimental Conclusions 

	Discussion 
	Conclusions 
	References

