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Abstract: The recently introduced version of the density functional theory that employs a set of
spherically symmetric densities instead of the density has a ‘set-representability problem’. It is not
known if a density exists for a given set of the spherically symmetric densities. This problem can
be eliminated if potentials are applied instead of densities as basic variables. Now, the spherical
subspace potential functional theory is established.
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1. Introduction

Density functional theory (DFT) has developed into a very efficient tool to perform
computations, especially in quantum chemistry, solid-state physics and materials science.
Its success is due to the fact that this approach is based on the electron density instead of
the many-electron wave function. The fundamental theorem of Hohenberg and Kohn [1]
states that the ground-state electron density uniquely determines the external potential,
and in principle it contains all information about the system. The Kohn–Sham version of
DFT [2] provides powerful and accurate computation.

Recently, the density functional theory has been reshaped by Theophilou [3] using
a set of the spherically symmetric densities instead of the density. This new version has
been generalized [4,5] applying constrained search [6]. It turned out that there is a new
representability problem, the ‘set-representability problem’ in this spherical theory, in
addition to the usual v-representability problem. A set is representable if there is a density
whose spherical averages around the nuclei yield the given set. Unfortunately, we are
not aware of any easy way to resolve if a given set is representable. It is well-known that
the v-representability problem of DFT can be eliminated using the potential as the basic
variable instead of the density [7]. It has recently been discovered [8] that we can eliminate
the set-representability problem if a set of the spherical potentials is taken instead of the
set of the spherical densities as basic variable. This spherical potential functional theory
(SPFT) has been extended to degenerate states [8].

The importance of using potentials has been known for a long time. The optimized
potential method (OPM) [9,10] and several approximations [11–17] have turned out to be
very useful in DFT calculations. The work of Yang, Ayers and Wu [7] (see also [18–20])
provided a firm foundation in the potential functional theory. These approaches can be
extended to the spherical theory. SPFT gave a rigorous basis for them. Here, SPFT is utilized
for subspaces and the spherical subspace potential functional theory (SSPFT) is established.

This paper is arranged as follows: The spherical subspace potential functional theory
(SSPFT) is summarized in Section 2. The spherical subspace potentials are analyzed in
Section 3. Section 4 is dedicated to the discussion. In the Appendix A, the proofs of the two
main theorems of the theory are presented in case of the Coulomb external potential.

2. Spherical Subspace Potential Functional Theory

The spherical density functional theory and the spherical potential functional theory
can be applied for non-degenerate as well as degenerate ground-states. In the degenerate
case, it is better to use the subspace technique in both theories. This is due to the fact that
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the subspace procedure has the advantage that the subspace density has the symmetry of
the external potential if all degenerate eigenfunctions are taken into account with the same
weight in constructing the subspace. Therefore, in case of degeneracy it is worth using the
density matrix and the subspace density with the definitions

D̂ =
g

∑
γ=1

ηγ|Ψγ〉〈Ψγ| (1)

and

$ =
g

∑
γ=1

ηγ$γ, (2)

where

$γ = N
∫
|Ψγ|2ds1dx2 . . . dxN (3)

are the eigendensities corresponding to the wave functions Ψγ, and g is the degree of
degeneracy. The weighting factors ηγ satisfy the conditions

1 =
g

∑
γ=1

ηγ (4)

and

ηγ ≥ 0 . (5)

This means that $ can be constructed in many ways. In principle, any choice of ηγ

fulfilling Equations (4) and (5) can be used. However, there is a very special case, the one
with equal factors ηγ. This situation provides subspace density having the symmetry of
the external potential.

The spherical average of the subspace density $(r) (Equation (2)) with respect to the
nucleus β takes the form

$̄β(rβ) =
1

4π

∫
Ωβ

$(r)dΩβ =
g

∑
γ=1

ηγ 1
4π

∫
Ωβ

$
γ
β(r)dΩβ =

g

∑
γ=1

ηγ$̄
γ
β , (6)

where rβ = |r−Rβ| and Ωβ stands for the angles. Rβ are the position vectors of the nuclei.
$̄

γ
β(rβ) is the spherical average of $γ(r) with respect to the nucleus β .

In case of a Coulomb external potential

v(r) = −
M

∑
β=1

Zβ

rβ
, (7)

where M and Zβ are the number and the atomic numbers of the nuclei, it can be proved that the
set of the spherically symmetric subspace densities {$̄}, (e.g., $̄β(rβ), β = 1, . . . , M) uniquely
determines the external potential if the external potential has the form of Equation (7) [3,5].
The proof is summarized in Appendix A.

This assertion is true for an even more general external potential

v(r) =
M

∑
β=1

vβ(rβ), (8)
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where each term vβ in the sum depends only on the distance from the nucleus β [4,5]. This
theorem can be proved by the constrained search defining the functional

Q[{$̄}] = min
D→{$̄}

tr
{

D̂(T̂ + V̂ee)
}

, (9)

where T̂ and V̂ee stand for the kinetic energy and the electron–electron energy operators.
The Euler equations

vβ(rβ) = −
δQ
δ$̄β

; β = 1, . . . , M (10)

can be obtained up to a constant, if Q is functionally differentiable.
The potential functional approach is dual to the density functional formulation and

yields a solution of the v-representability problem of the original DFT [7]. In the spherical
density functional theory we have a set-representability problem in addition to the usual
v-representability problem. It has recently been noted that this set-representability problem
can also be avoided in the spherical potential functional theory [8].

In the subspace spherical potential functional theory (SSPFT), the set of the spherical
potentials is the basic variable, not the set of the spherical densities. To stress it, the notation
E is used to denote the energy functional instead of E utilized in the subspace spherical
density functional theory. Apparently,

E{v}[{w}] = tr
{

Ĥ{v}D̂{w}
}
= E{v}[{$̄}{w}], (11)

where

Ĥ{v} = Ĥv = T̂ + V̂ee +
N

∑
i=1

v(ri) (12)

is the Hamiltonian with the set of the external potential {v}. D̂{w} is the ground-state
density matrix in the external potential {w} with the form of Equation (8). {w} denotes the
set w1, w2, . . . , wM. Obviously, the functionals E{v} and E{v} should take the same value at
the true ground-state.

The great advantage of the SSPFT is that there is no ‘set-representability problem’; that
is, there exists a potential for any set of the spherically symmetric potentials and for any
potential there is a set of the spherically symmetric potentials provided that the potential
is the form of Equation (8). The proof of this assertion is very simple for the Coulomb
external potential and can be found in Appendix A. The more general case of Equation (8)
is detailed in Ref. [8].

According to the variational principle, the ground-state energy is given by the minimum

E{v} = min
{w}
E{v}[{w}] (13)

at the sole stationary point {w} = {v} + {c}, where {c} stands for a set of arbitrary
constants (see proof in [8].) The functional derivatives of E{w} yield the subspace spheri-
cal densities

δE{w}
δwβ(rβ)

= $̄β(rβ). (14)

It is worth creating a non-interacting Kohn–Sham (KS) system in which computation
can be realized. The non-interacting kinetic energy is given by

K[{$̄}] = min
D̂0→{$̄}

tr
{

D̂0T̂
}

. (15)
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The search is for all non-interacting density matrices D̂0 which yield the given set {$̄}.
The Kohn–Sham equations have the form[

−1
2
∇2 + vs(r)

]
φi = εiφi, (16)

where the subspace density is

$ =
m

∑
i=1

λi|φi|2. (17)

The occupation numbers λi can be fractional and the sum applies for all orbitals with
a non-zero occupation number.

The Kohn–Sham potential is given by

vs(r) =
M

∑
β=1

vs,β(rβ), (18)

where

vs,β(rβ) = vβ(rβ) + vHxc,β(rβ); β = 1, . . . , M. (19)

The Hartree plus exchange-correlation potential terms vHxc,β(rβ) are defined as

vHxc,β(rβ) =
δEHxc

δ$̄β
; β = 1, . . . , M. (20)

The Hartree and exchange-correlation functional EHxc[{$̄}] is defined as

EHxc[{$̄}] = Q[{$̄}]− K[{$̄}]. (21)

In some special cases it may be advantageous to utilize the partition

EHxc[{$̄}] = H[{$̄}] + Ex[{$̄}] + Ec[{$̄}], (22)

that is, employing the sum of the Hartree (or classical Coulomb), the exchange and the
correlation terms, respectively. The functional derivative provides the potential

vHxc = vH + vx + vc (23)

as a sum of the Hartree (or classical Coulomb), the exchange and the correlation potentials.
In the KS version of SSPFT, the true interacting energy is taken as a functional of the

non-interacting potential

Ẽ{v}[{ws}] = E{v}[{$̄}{ws}], (24)

where the tilde on E shows that this functional is different from E{v}[{w}]. (Of course, they
should take the same value at the true ground-state).

The variational principle yields the true ground-state energy

E{vs} = inf
{ws}
Ẽ{v}[{ws}]. (25)

Its stationary point corresponds to the solution of the KS equations.
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3. Spherical Subspace Potentials

In the potential functional theory (PFT), the KS potential minimizes the total energy
functional at the true ground-state. This procedure was known well before Yang, Ayers
and Wu [7] developed the PFT and gave a firm foundation to it. The minimizing potential
is generally referred to as the optimized effective potential (OEP). It was initiated by Sharp
and Horton [9] using the Hartree–Fock method. For further generalizations see [10,21–25].
There exist several good approximations to OEP that proved to be more convenient for
computation. The localized Hartree–Fock method (LHF) [11–13] has the favorable proper-
ties that it is invariant with respect to the unitary transformations of the orbitals, it is free
of the self-interaction, and consequently, the potential has the correct long-range behavior.
Another approximation to the OEP is the KLI (Krieger, Li and Iafrate) method [14–16]. The
KLI approach is much simpler than the OEP and is more stable if a finite-basis-set is applied
but it shows no invariance with respect to the unitary transformations of the orbitals.

Here, in SSPFT the total energy functional Ẽ{v}[{ws}] is minimized

δẼ{v}[{ws}]
δws

= 0 (26)

at the true ground-state and the minimizing set {ws} provides the minimizing KS potential (18).
This potential can be obtained using the OEP method as it can be used in the PFT theory.
Approximations to the OEP approach, such as the LHF or the KLI procedures can also
be applied. These methods can be employed if the energy is known as a functional of
the orbitals. All these approaches can also include correlation. Now, the KLI technique is
extended to the subspace potential functional theory. It is formalized so that it can contain
correlation as well. An alternative derivation of the KLI potential presented earlier [17] is
now refined. The idea is very simple. It is now summarized as follows. The KS equations
can be written as [

−1
2
∇2 + w + wH + wxc

]
φi = εiφi, (27)

where the Hartree plus exchange-correlation part of ws is the sum of the Hartree wH (the
classical Coulomb) potential and the exchange-correlation wxc terms: wHxc = wH + wxc.
As the energy is known or approximated as a functional of the orbitals, the functional
derivative of the energy with respect to the orbitals leads to Hartree–Fock-like equations:[

−1
2
∇2 + w + wH + w̃i

xc

]
ψi = εiψi, (28)

where

w̃i
xc =

δExc

ψiδψ∗i
(29)

is an orbital-dependent exchange-correlation potential. It is an operator; it is different for
the different orbitals just like the Hartree–Fock exchange potential. If no correlation is
taken into account, w̃i

xc reduces to an orbital-dependent exchange potential w̃i
x similar to

the Hartree–Fock exchange potential.
After multiplying Equations (27) and (28) with φ∗i and ψ∗i , the sum for the occupied

orbitals provides

m

∑
i=1

λiφ
∗
i

[
−1

2
∇2 + w + wH + wxc

]
φi =

m

∑
i=1

λiεi|φi|2 (30)
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and

m

∑
i=1

λiψ
∗
i

[
−1

2
∇2 + w + wH + ŵi

xc

]
ψi =

m

∑
i=1

λiεi|ψi|2, (31)

respectively. Using the approximation ψi ≈ φi the difference of Equations (30) and (31)
yields the exchange-correlation potential

wxc = wS
xc + vr

xc, (32)

where

wS
xc =

1
$

m

∑
i=1

λiφ
∗
i ŵi

xcφi (33)

is the Slater potential, and the remaining term is

wr
xc =

1
$

m

∑
i=1

λi(εi − εi)|φi|2. (34)

Equation (32) provides a KLI-like exchange-correlation potential and gives back the
original KLI exchange potential if correlation is neglected. The detailed derivation can be
found in Ref. [17].

While the subspace Σ0 spanned by the non-interacting eigenfunctions Φγ (γ = 1, . . . , g0)
is unique, the non-interacting density matrix

D̂0 =
g0

∑
γ=1

η
γ
0 |Φ

γ〉〈Φγ| (35)

depends on the weighting factors η
γ
0 satisfying relations

1 =
g0

∑
γ=1

η
γ
0 (36)

and

η
γ
0 ≥ 0 . (37)

g0 can be different from g, that is, the degree of the degeneracy in the non-interacting and
the interacting systems might be different. However, of course, the densities and the sets of
the spherically symmetric densities are the same in the real and the KS systems.

Any set of the weighting factors satisfying Equations (4), (5), (36) and (37) can be
chosen. Certainly, the densities and the sets of the spherically symmetric densities depend
on the selection of these factors. In principle, any of them is appropriate to build the
theory. However, there exists an exceptional choice of the set. If all factors η

γ
0 are equal,

the subspace density has the symmetry of the external potential [3]. This case is especially
convenient for computation. To illustrate it, consider an atom with degenerate ground-state.
Then the eigenfunctions are in most cases not spherically symmetric. Therefore, $γ are not
spherically symmetric either. Nevertheless, in several calculations the density is considered
approximately spherically symmetric. If we use subspace density with equal weighting
factors, this subspace density is exactly spherically symmetric. That is, the spherically
symmetric approach is not an approximation, it is exact. Moreover, radial Kohn–Sham
equations should be solved to produce this subspace density. This obviously means an
immense gain in computation. For atoms, an earlier approach to treat multiplets with
subspaces [26,27] is refined.
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The radial subspace Kohn–Sham equations can be written as [5]

−1
2

P′′j +
lj(lj + 1)

2r2 Pj + wsPj = ε jPj , (38)

where Pj = rRj(r) are the radial wave functions and ′′ stands for the second derivative.
The subspace density takes the form

σ(r) = 4πr2$̄(r) =
m

∑
j=1

λj(Pj)
2, (39)

where λj are the occupation numbers corresponding to the given configuration (see details
of the derivation in Refs. [26,27]).

The exchange energy can be written as a functional of the orbitals. In a non-degenerate
case it is the well-known Hartree–Fock expression as the non-interacting wave function is a
single determinant. On the other hand, in cases of degeneracy, the KS wave functions are
not single determinants. Still, the exchange energy is a functional of the Pi (see e.g., [27,28])

Ex = Ex[Pi] = Eav
x + ∑

k
CkBk[Pi] . (40)

Eav
x is the average exchange energy of the different multiplets associated with the configu-

ration considered.
The B, C, N, O and F atoms are taken for illustration. In the cases of the B and F

atoms, the electron configurations are 1s22s22p and 1s22s22p5, respectively. Both have the
2P ground-state. The average exchange energy is taken as follows: Ex = Eav

x . Though the
exact wave function is not spherically symmetric, the subspace density has this symmetry.

For the other atoms considered, there is only one term in the sum in Equation (40):
B1[Pi] = F2(pp). The exchange energies for the 1s22s22p2 (in the C atom) and the 1s22s22p4

(in the O atom) in electron configurations are

Ex(
3P) = Eav

x −
3
25

F2(pp) , (41)

Ex(
1D) = Eav

x +
3

25
F2(pp) , (42)

Ex(
1S) = Eav

x +
12
25

F2(pp) . (43)

That is, C1 is equal to −3/25, 3/25 and 12/25 for 3P, 1D and 1S, respectively. The
exchange energies for the 1s22s22p3 electron configuration (N atom) are

Ex(
4S) = Eav

x −
9

25
F2(pp) , (44)

Ex(
2D) = Eav

x , (45)

and

Ex(
2P) = Eav

x +
6
25

F2(pp) , (46)

i.e., C1 is equal to −9/25, 0 and 6/25 for 4S, 2D and 2P, respectively. F2(pp) is the Slater
integral

F2(pp) =
∫ ∫

R2
2p(r1)R2

2p(r2)
r2
<

r3
>

dr1dr2 , (47)
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where R2p is the radial wave function of the 2p electrons (P = rR). r< stands for r1 if it is
smaller than r2 and r2 if it is smaller than r1.

The subspace KLI method with Equation (40) for exchange and the local Wigner
approximation [29]

ELW
c [n] =

∫ a$̄

b + rs
dr , (48)

for correlation with the parameters a = −0.02728 and b = 0.21882 [30] are applied. rs is the
Wigner–Seitz radius:

rs =

(
3

4π$̄

)1/3
. (49)

Figures 1 and 2 present the subspace Hartree plus exchange-correlation potentials wHxc for
the N atom. Observe that the radial subspace KS equations (38) should be self-consistently
solved for each multiplet. The subspace density σ and radial wave functions Pj are different
for 4S, 2D and 2P. The difference, however, is small. As the curves are very close, the part
of Figure 1 where the differences are the biggest is enlarged and shown in Figure 2.

 2
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 12

 0  1  2  3  4  5  6

w
H

x
c
(r

)

r

2
P

2
D

4
S

Figure 1. Subspace Hartree plus exchange-correlation potential for 4S, 2D and 2P of the N atom in
atomic units (colored lines).
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Figure 2. Subspace Hartree plus exchange-correlation potential for 4S, 2D and 2P of the N atom in
atomic units (colored lines). The part of Figure 1, where the differences are the biggest, is enlarged.
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Figures 3–7 present the subspace exchange-correlation potentials wxc for the B, C,
N, O and F atoms. wxc has the same shape in all cases; wxc has a potential bump (or
cusp). The OEP and KLI exchange potentials display the bump, in contrast to the local
density approximations (LDA). The subspace KLI exchange potentials for 3P, 1D and 1S
of the C atom have been presented in Ref. [5]. These curves also showed a potential
bump. The present KLI-like plus local Wigner approach preserves this non-local character
as the exchange dominates the correlation. All subspace exchange-correlation potentials
presented exhibit the correct asymptotic behavior.
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-2

-1.5

-1

-0.5

 0

 0  1  2  3  4  5  6

w
x
c
(r
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Figure 3. Subspace exchange-correlation potential of the B atom in atomic units.
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Figure 4. Subspace exchange-correlation potential for 3P, 1D and 1S of the C atom in atomic units.
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Figure 5. Subspace exchange-correlation potential for 4S, 2D and 2P of the N atom in atomic units.
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Figure 6. Subspace exchange-correlation potential for 3P, 1D and 1S of the O atom in atomic units.
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Figure 7. Subspace exchange-correlation potential of the F atom in atomic units.

4. Discussion

It should be emphasized that the functional E{v}[{w}] is different from the functional
defined by Yang, Ayers and Wu [7], because the variables are different; that is, their
functional depends on the potential, while E{v}[{w}] is a functional of the set {w}. However,
of course, both functionals take the same value at the true ground-state. The same assertion
is valid for the functional Ẽ{v}[{ws}]. Therefore, the total energy E and other important
global quantities, such as the electronegativity or the hardness should also be the same as
in the traditional DFT. This assertion is true for the local quantities such as local softness, as
the present theory should yield the same density as the original DFT.

It is well-known that the density is almost spherically symmetric close to a nucleus
and shares similarities with an atomic density. On the other hand, the density is spherically
symmetric very far from the nuclei. It has been shown that each member of the set obeys
a spherically symmetric Schrödinger-like Equation [31] which is equivalent to the Euler
equation of this spherically symmetric density. The effective potential of this equation has
been expressed in terms of wave function expectation values.

The asymptotic behavior of the density has been studied by several authors [32–35].
In Ref. [35], a differential Schrödinger inequality was derived and applied to determine the
decay of the density and the spherically averaged density. The asymptotic decay of any
member of the set of the spherically symmetric densities is given by [32–35]

lim
rβ→∞

∂$̄β(rβ)

∂rβ
= −

√
8(EN−1

0 − EN
0 ) , (50)

where the difference EN−1
0 − EN

0 is the vertical ionization energy. EN
0 and EN−1

0 are the
ground-state energies of the N- and N − 1-electron systems. That is, every member of the
set decays in the same way.

The set of spherical densities bears some resemblance to the concept of ‘atoms in
molecules’ (AIM) [31]. According to the most well-known AIM concept of Bader and
coworkers [36], the molecule is divided into non-overlapping regions with one nucleus
inside in each of them. The boundary of an atomic region is chosen so that the normal
component of the density gradient is zero. In contrast to the free atom, ‘an atom in a
molecule’ is ‘closed’ in an atomic region. The density averaged spherically around a
nucleus, on the other hand, is not limited to an atomic region, it continues to infinity,
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decaying as the ionization energy governs (Equation (50)). The integral of a spherically
symmetric density

N = 4π
∫

$̄β(rβ)r2
βdrβ (51)

is the total number of the electrons of the molecule for all β, that is, for any member of the
set. Obviously, it deviates from the number of electrons in an atomic region. Nevertheless,
close to a nucleus the density is roughly spherically symmetric, therefore each spherically
symmetric density shares similarities with an atomic density. Hence, a member of the set
possesses some features of an atom, while other properties bear resemblance to a molecule.
Consequently, though the present approach shows some similarity to AIM, it manifests a
rather different concept.

Though traditional DFT is an exact theory, the exchange-correlation functional is not
exactly known. Therefore, we have to employ approximations in computations. This
assertion is true for the spherical theory, too. In SSPFT we have functionals of the set of the
spherical potentials. Based on the success of the OEP-like methods, we can expect that the
approximations making use of the spherical potentials will be valuable. Here, a KLI-like
approximation is proposed as an illustration. Hopefully, using a more accurate correlation
functional would improve this approach.

The spherical potentials have been relevant in the band structure calculations for a
long time [37–39]. The muffin-tin approximation proposed by Slater [37] made use of the
fact that the density is almost spherically symmetric in the vicinity of the nuclei. The Exact
Muffin-Tin Orbitals (EMTO) Method is a powerful tool of calculations in solid-state physics
and materials science (see details in the book by Vitos [40]).

Employing the spherically symmetric subspace potentials can yield even more efficient
and powerful approaches. Therefore, SSPFT is expected to be powerful for computation.
An effective potential having the form of (18) has already been proposed by Theophilou
and Glushkov [41]. They introduced it as a direct mapping of the external potential. Their
expression is

VTG = −
M

∑
β=1

[
Zβ

rβ
+ Cβ

1− eαβrβ

rβ

]
, (52)

where the parameters Cβ and αβ were determined by minimizing the Hartree–Fock energy.
This intuitive expression gave reasonably good results for atoms and molecules [42,43].

The spherical density functional theory can be combined with a previous method to
construct an orbital-free density functional theory [44]. It is possible to establish auxiliary
spherical non-interacting (Kohn–Sham-like) systems. The set of the spherically symmetric
densities can be extended to the generating spherical functions having two extra variables
besides the radial distance from the centers. These generating functions can be used to
calculate the Pauli potentials and then solve the Euler equations.

In summary, the recently initiated form of DFT using a set of the spherically symmetric
densities has a ‘set-representability problem’. We cannot be sure that there exists a density
for a given set of the spherically symmetric densities. This ‘set-representability problem’
disappears if potentials are applied instead of densities as basic variables. In the case of
degeneracy, spherically symmetric subspace potentials are proposed. These potentials
are favorable because the subspace densities have the symmetry of the external potential
if equal weighting factors are applied in the construction of the subspace. In atom, for
example, the subspace density is exactly spherically symmetric. This version of the theory
might offer more effective computation.
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Appendix A

For the readers’ convenience, the proofs of the two main theorems of the subspace
theory are presented in case of Coulomb external potential. First, the proof of Theophilou’s
theorem based on Kato’s theorem is summarized.

Theorem A1 (Theophilou’s theorem). The set of the spherically symmetric subspace densities
$̄β(rβ) (β = 1, . . . , M) determines uniquely the external potential if the external potential has the
form of Equation (7).

Proof of Theophilou’s theorem utilizing Kato’s theorem. Kato’s theorem for the eigen-
densities of the Hamiltonian (7) [45–47] has the following form:

∂$̄
γ
β(rβ)

∂rβ

∣∣∣∣∣
rβ=0

= −2Zβ$
γ
β(r = Rβ) . (A1)

It has been shown that [48] $
γ
β(r = Rβ) = $̄

γ
β(rβ = 0). Therefore,

∂$̄
γ
β(rβ)

∂rβ

∣∣∣∣∣
rβ=0

= −2Zβ$
γ
β(rβ = 0) . (A2)

Using Equation (2), we can obtain Kato’s theorem for the subspace density

Zβ = −1
2

1
$̄β(rβ = 0)

∂$̄β(rβ)

∂rβ

∣∣∣∣∣
rβ=0

. (A3)

If the set of the spherically symmetric subspace densities is known, Equation (A3)
yields the atomic numbers. The cusps of the members of the set provide the positions of
the nuclei. The integral of any spherically symmetric subspace density offers the number
of electrons. Therefore, all parameters of the external potential are known. That is, the set
of the spherically symmetric subspace densities $̄β(rβ) (β = 1, . . . , M) uniquely determines
the external potential if the external potential has the form of Equation (7).

In the spherical density functional theory (SDFT), there exists a ‘set-representability
problem’; that is, it is not certain that we can always find a density for a given set of the
spherically symmetric densities. In the spherical potential functional theory (PDFT), on the
other hand, there is no ‘set-representability problem’.

Theorem A2 (Set theorem in SSPFT). There exists a one-to-one map between the ground-state
potential w and the set of the spherically symmetric potentials {w} if it is known that w has the
form of Equation (7):

w(r) =
M

∑
β=1

wβ(rβ), (A4)

where

wβ(rβ) = −
Zβ

rβ
. (A5)
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Proof of the set theorem in SSPFT in the case of Coulomb potential. The proof of the set
theorem is very simple in the case of Coulomb potential. The proof that the set {w} deter-
mines the potential w is trivial, as Equation (A4) yields w if the set {w} is known. The proof
that the potential w determines the set {w} is also simple if we have Coulomb potential.
(The proof for the general case of the form of Equation (7) is more complicated and can be
found in Ref. [8].) We know that w has the form of Equations (A4) and (A5), therefore w
determines the positions of the nuclei; these are in the points Rβ, where w tends to minus
infinity. The atomic numbers are given by the limits

Zβ = − lim
r→Rβ

(|r−Rβ|)w(r−Rβ). (A6)

That is, Equation (A5) provides the members of the set {w}.
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