
Citation: Taye, M.M. Theoretical

Understanding of Convolutional

Neural Network: Concepts,

Architectures, Applications, Future

Directions. Computation 2023, 11, 52.

https://doi.org/10.3390/

computation11030052

Academic Editor: Demos T. Tsahalis

Received: 3 February 2023

Revised: 2 March 2023

Accepted: 3 March 2023

Published: 6 March 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Review

Theoretical Understanding of Convolutional Neural Network:
Concepts, Architectures, Applications, Future Directions
Mohammad Mustafa Taye

Data Science and Artificial Intelligence, Philadelphia University, Amman 19392, Jordan;
mtaye@philadelphia.edu.jo

Abstract: Convolutional neural networks (CNNs) are one of the main types of neural networks
used for image recognition and classification. CNNs have several uses, some of which are object
recognition, image processing, computer vision, and face recognition. Input for convolutional neural
networks is provided through images. Convolutional neural networks are used to automatically learn
a hierarchy of features that can then be utilized for classification, as opposed to manually creating
features. In achieving this, a hierarchy of feature maps is constructed by iteratively convolving the
input image with learned filters. Because of the hierarchical method, higher layers can learn more
intricate features that are also distortion and translation invariant. The main goals of this study are to
help academics understand where there are research gaps and to talk in-depth about CNN’s building
blocks, their roles, and other vital issues.

Keywords: artificial intelligence (AI); deep learning (DL); machine learning (ML); convolution neural
network (CNN); deep learning applications; image classification; supervised learning

1. Introduction

There has been a dramatic surge in the usage of machine learning (ML) in recent
years [1–3] for a wide range of purposes, from research to practical applications, including
text mining, spam detection, video recommendation, picture categorization, and multime-
dia idea retrieval [4,5].

Deep learning (DL) is one machine learning (ML) approach that is commonly used
in these contexts [6,7]. The working domain of DL is a subset of that of ML and artificial
intelligence (AI); therefore, it may be seen as a function of AI that mimics the way the
human brain processes information [1]. The traditional neural network from which DL
originated has significantly been surpassed by its superior performance. In addition, DL
uses transformations and graph technologies in tandem to construct multi-layer learning
models [8,9].

A closer examination of the “Learning sub-fields” reveals that deep learning (DL), a
subfield of machine learning (ML), focuses on creating algorithms that simulate how the
human brain thinks and solves problems [5,8,10].

Recent years have seen a surge in interest in machine learning algorithms, which are
now being used in various fields, including image recognition, optical character recognition,
pricing prediction, spam filtering, fraud detection, healthcare, transportation, and many
others [11]. The various machine-learning types and algorithms are depicted in Figure 1.

Over the past few years, deep learning has recently received a lot of attention and has
been applied successfully in addressing a wide range of problems in various application
fields. Diverse deep-learning techniques are applied in several application areas [4].

These application areas include robots, enterprises, cybersecurity, virtual assistants,
image recognition, and healthcare. They also involve sentiment analysis and natural
language processing [8].
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The most established deep learning technique is the convolutional neural network
(CNN), a subtype of an artificial neural network [12]. Since the astounding outcomes of the
ImageNet Large Scale Visual Recognition Competition, an object recognition competition,
in 2012 [13,14], CNN has dominated computer vision tasks.

CNN is useful in medical imaging because it can detect tumors and other irregularities
more accurately in X-ray and MRI images. CNN models can analyze a picture of a human
body component, such as the lungs, and identify potential tumor locations as well as
other abnormalities like fractured bones in X-ray images based on previously processed
comparable images by CNN networks [15–17].

Convolutional neural networks (CNN), which are used to represent spatial informa-
tion, may be used to model images.

Because of their greater capacity to extract features from pictures, such as barriers and
road signs, CNNs are characterized as universal non-linear function approximators.

CNN has been used for biometric user identity authentication by recognizing particu-
lar physical characteristics associated with a person’s face. CNN models may be trained
on photos or videos of individuals to recognize certain features of their faces, such as the
distance between their eyes, the shape of their noses, and the curve of their lips [15–17].

Most of the time, convolutional neural networks have led to ground-breaking discov-
eries in many fields related to pattern recognition, such as voice and image processing.

The number of ANN parameters going down is the most important thing about
CNNs [18,19].
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This success has encouraged researchers and developers to utilize more complex
models to tackle difficult issues that conventional ANNs were unable to address. The most
important presupposition regarding the issues that CNN resolves is that there should be
no spatially dependent characteristics [19].

CNN is to blame for the current popularity of DL. The primary benefit of CNN over
its forerunners is that it does everything automatically and without human supervision,
making it the most popular. Therefore, we have covered a lot of ground with CNN
by outlining its essential parts. The most prevalent CNN architectures, starting with
the AlexNet network and concluding with the high-resolution network, have also been
explored in length (HR.Net) [19,20].

This review’s main objective is to draw attention to the elements of CNN that are most
important, making it simple for researchers and students to comprehend CNN completely
after reading just one review paper. Additionally, in order to encourage CNN research, we
want to let people understand more about current developments in the industry. In view to
provide more precise options to the field, researchers would be allowed to select the best
route of study to follow.

CNNs learn as they are trained on images; therefore, the features they extract from
images are not pre-learned.

Automatic feature extraction is largely responsible for the remarkable success of
deep learning models in computer vision. Complex models are required for deep CNN
architecture. More precision from them calls for larger image databases. For computer
vision tasks like object categorization, detection, tracking, and recognition, CNNs need
access to huge labeled datasets.

Object identification, which has captivated researchers for much of this decade, has
significantly benefited from the application of deep learning techniques. Object identifi-
cation and tracking play a crucial role in video surveillance, making it one of the most
difficult but vital aspects of security systems. It keeps an eye on people in public places to
spot any signs of unusual or suspicious conduct.

The general contribution of this study is summarized as follows:
This review almost provides an in-depth analysis of CNN’s most important features.
This review almost provides an in-depth analysis of CNN’s networks and algorithms.
In this paper, I have compiled all of the current deep learning-based object detection

methods that can be found in the most recent academic literature.
To help pick the best object detection method for a given application or dataset, I

reviewed and compared several popular options.
This article focuses on CNN’s models and processes.
We put together a list of CNN to help developers and academics learn more about

how to use CNN.
We explain CNN in-depth, the most well-known deep learning algorithm, by outlining

the ideas, theories, and cutting-edge architectures.

Survey Methodology

I have analyzed the key research articles published in the field between 2017 and 2022,
with a focus on those from 2017, 2018, and 2019, along with a few from 2021 and 2022. The
primary emphasis was on publications from the most prestigious publishers, including
IEEE, Elsevier, MDPI, ACM, and Springer. Several papers from ArXiv have been chosen.
I have examined over 60 papers on a variety of DL-related topics. There are 14 papers
from 2017, 12 papers from 2018, 19 papers from 2019, and 15 papers from all other years
(2020–2022). This shows that the focus of this review was on the most recent publications in
DL and CNN. The selected publications were analyzed and evaluated in order to perform
the following:

(1) List and describe the DL and CNN techniques and network types;
(2) Present the problems of CNN and provide alternative solutions;
(3) List and explain CNN architectures;
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(4) Evaluate the applications of CNN.

“Deep Learning”, “Machine Learning”, “Convolution Neural Network”, “Convolution
Neural Network” and “Architectures”, “Convolution Neural Network” and “detection” or
“classification” or “segmentation” and “Convolution Neural Network” and “Overfitting”
are the most common search terms for this review.

2. Convolutional Neural Network (CNN or ConvNet)

Convolutional neural networks (CNNs) are artificial intelligence systems based on
multi-layer neural networks that can identify, recognize, and classify objects as well as
detect and segment objects in images. In fact, CNN or ConvNet is a popular discriminative
deep learning architecture that could be learned directly from the input object without the
obligation for human feature extraction [15–17].

This network is frequently used in visual identification, medical image analysis,
image segmentation, NLP, and many other applications since it is specifically designed
to deal with a range of 2D shapes [15–17]. It is more effective than a regular network
since it can automatically identify key elements from the input without the need for
human participation.

2.1. CNN Fundamentals

Understanding the various CNN components and their applications is critical to com-
prehending the advancements in CNN architecture. Figure 2 displays several CNN parts.

Computation 2023, 11, x FOR PEER REVIEW 5 of 25 
 

 

 

Figure 2. The CNN Components. 

2.1.2. Convolutional Layer 

The convolutional layer is a crucial part of CNN’s overall structure. It is a set of fil-

ters—or kernels—applied to the data before it is used. Each kernel’s width, height, and 

weight are used to extract characteristics from the input data. Weights in the kernel are 

first assigned at random but gradually become more informed by the training data. 

In other words, the feature map is made by combining the input image (which is 

shown by N-dimensional metrics) with these filters [15–17]. 

A kernel is a set of discrete values or integers.  

For each number, the kernel weight is given as a reference. The initial kernel weights 

for a CNN are a set of integers picked at random. Additionally, the weights are initialized 

in various ways. In turn, the kernel learns to extract meaningful features because these 

weights are tweaked during the training process. 

The kernel enables them to perform the operation in a high-dimensional, implicit 

feature space without calculating the coordinates of the data in that space. Instead, they 

compute the inner product of the pictures of all data pairings in feature space. By applying 

the kernel trick to a linear model, it can be transformed into a non-linear model. 

The CNN input format is first provided before the convolutional process begins. The 

classic neural network takes in data in a vector format, whereas the CNN takes in a multi-

channeled image. While an RGB image contains three color “channels,” a grayscale image 

has just one. 

Examine this 4 × 4 grayscale image with a 2 × 2 random weight-initialized kernel to 

learn about convolutions in action. The kernel will first pan horizontally and vertically 

over the full picture. The dot product between the input picture and the kernel is also 

computed in parallel; this is accomplished by multiplying the corresponding values and 

Figure 2. The CNN Components.

CNN Layers
A CNN is typically composed of four types of layers

• Convolutional;
• Pooling;
• Function of Activation;
• Fully Connected.
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2.1.1. Input Image

The building blocks of a computer image are called pixels. They are the binary of
the visual data representation. From 0–255 pixels are sequentially organized in a matrix-
like arrangement in the digital image’s layout. The brightness and hue of each pixel are
specified by its pixel value [15–17].

When viewing an image first, humans’ brains assimilate a tremendous amount of
information.

The CNN layers are trained to first recognize more basic patterns, such as lines and
curves, before moving on to more intricate patterns, such as faces and objects. As a result,
it is possible to assert that using a CNN could provide computers with vision [15–17].

2.1.2. Convolutional Layer

The convolutional layer is a crucial part of CNN’s overall structure. It is a set of
filters—or kernels—applied to the data before it is used. Each kernel’s width, height, and
weight are used to extract characteristics from the input data. Weights in the kernel are first
assigned at random but gradually become more informed by the training data.

In other words, the feature map is made by combining the input image (which is
shown by N-dimensional metrics) with these filters [15–17].

A kernel is a set of discrete values or integers.
For each number, the kernel weight is given as a reference. The initial kernel weights

for a CNN are a set of integers picked at random. Additionally, the weights are initialized
in various ways. In turn, the kernel learns to extract meaningful features because these
weights are tweaked during the training process.

The kernel enables them to perform the operation in a high-dimensional, implicit
feature space without calculating the coordinates of the data in that space. Instead, they
compute the inner product of the pictures of all data pairings in feature space. By applying
the kernel trick to a linear model, it can be transformed into a non-linear model.

The CNN input format is first provided before the convolutional process begins. The
classic neural network takes in data in a vector format, whereas the CNN takes in a multi-
channeled image. While an RGB image contains three color “channels,” a grayscale image
has just one.

Examine this 4 × 4 grayscale image with a 2 × 2 random weight-initialized kernel
to learn about convolutions in action. The kernel will first pan horizontally and vertically
over the full picture. The dot product between the input picture and the kernel is also
computed in parallel; this is accomplished by multiplying the corresponding values and
adding the results to get a single scalar value. Thereafter, the procedure is repeated until no
more sliding is feasible [15–17].

The main image (K), the filter (L).
The output matrix is based on the equation

(K − L + 1), (1)

4 − 2 + 1 = 3, so the output then 3 × 3
In fact, the values of the dot product indicate the feature map of the output. Figure 3

visually represents the primary calculations performed at each stage. In this diagram, the
smaller square (2 × 2) represents the kernel, while the larger square (4 × 4) represents the
input picture. A product is then presented as a number after multiplying by both, and this
sum provides an input value for the output feature map [15–17].
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However, in the preceding example, the kernel is given a stride of 1 (designating
the desired step size total for vertical or horizontal locations), but the input image is not
padded. Indeed, you are free to substitute a different stride value if you so choose. An
additional benefit of increasing the stride value is a decrease in the dimensionality of the
resulting feature map [15–17].

The border size of the supplied picture, however, is greatly influenced by padding.
In contrast, the characteristics of the border side change dramatically over time.
Padding makes the input picture bigger, which also makes the size of the feature

map bigger.
Each filter could represent a feature. The filter does not activate when it moves over

an image and does not discover a match. CNN employs this method to discover the most
effective object–description filters.

Figure 4 demonstrates how the matrix may be configured to find picture edges. Due
to the fact that they behave like the conventional filters used in image processing methods,
these matrices are also known as filters.



Computation 2023, 11, 52 7 of 23

Computation 2023, 11, x FOR PEER REVIEW 7 of 25 
 

 

additional benefit of increasing the stride value is a decrease in the dimensionality of the 

resulting feature map [15–17]. 

The border size of the supplied picture, however, is greatly influenced by padding. 

In contrast, the characteristics of the border side change dramatically over time. 

Padding makes the input picture bigger, which also makes the size of the feature map 

bigger. 

Each filter could represent a feature. The filter does not activate when it moves over 

an image and does not discover a match. CNN employs this method to discover the most 

effective object–description filters. 

Figure 4 demonstrates how the matrix may be configured to find picture edges. Due 

to the fact that they behave like the conventional filters used in image processing methods, 

these matrices are also known as filters. 

 

Figure 4. Effects of different convolution matrices [21]. 

In CNN, however, these filters are started before the form filters used in the training 

process, which are better suited to the job at hand. 

Weight Sharing: Since the entire set of weights in a CNN act on each and every pixel 

of the input matrix, there are no assigned weights between any two neurons in nearby 

layers. Learning a single group of weights for the entire input will significantly reduce the 

necessary training time and various costs because additional weights for each neuron do 

not need to be learned. 

Stride: In fact, CNN offers additional options that provide several opportunities to 

further narrow the settings while also reducing some of the undesirable impacts. One of 

these options is called stride. In the aforementioned scenario, the next-layer node is as-

sumed to have numerous overlaps with its neighbors based only on an examination of the 

areas. We may modify the overlap by changing the stride. A unique 6 × 6 image is shown 

in Figure 5. Since the filter can only be moved in one-node increments, the maximum out-

put size we can achieve is 4 × 4. As can be seen in Figure 5, there is an overlap between 

the output of the three left matrices (and the three middle ones together and the three 

Figure 4. Effects of different convolution matrices [21].

In CNN, however, these filters are started before the form filters used in the training
process, which are better suited to the job at hand.

Weight Sharing: Since the entire set of weights in a CNN act on each and every pixel
of the input matrix, there are no assigned weights between any two neurons in nearby
layers. Learning a single group of weights for the entire input will significantly reduce the
necessary training time and various costs because additional weights for each neuron do
not need to be learned.

Stride: In fact, CNN offers additional options that provide several opportunities to
further narrow the settings while also reducing some of the undesirable impacts. One
of these options is called stride. In the aforementioned scenario, the next-layer node is
assumed to have numerous overlaps with its neighbors based only on an examination of the
areas. We may modify the overlap by changing the stride. A unique 6 × 6 image is shown
in Figure 5. Since the filter can only be moved in one-node increments, the maximum
output size we can achieve is 4 × 4. As can be seen in Figure 5, there is an overlap between
the output of the three left matrices (and the three middle ones together and the three right
ones also). However, if we walk, counting each step as 2, the total will be 3 times 3. In other
words, the total output size and total overlap will be reduced [5,12,16].
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Equation (2) formalizes this, resulting in the output size O as shown in Figure 6, given
the image’s NXN dimension and FXF filter size.

O = 1 + (N − F)/S (2)

where N is the input size, F is the filter size, and S is the stride size.
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Figure 6. The effect of stride in the output.

Padding: One disadvantage of the convolution step is the possible loss of detail at the
image’s edges. They are only captured when the filter is moved, so they are never actually
seen. One easy and practical solution is to use zero padding. You may also manage the
output size with the aid of zero padding.

In Figure 6, for instance, the output will be 4 × 4 (which decreases from a 6 × 6 input)
with N = 6, F = 3, and stride 1.

However, by including one zero-padding, the result will be 6 × 6, which is identical
to the initial input (the calculation for actual N now being 9). The formula is a modified
formula with zero padding (3).

O = 1 +
N + 2P − F

S
(3)

where P is the number of the layers of the zero-padding (e.g., P = 1 in Figure 7), We can
avoid network output size from decreasing with depth by using this padding concept.
Consequently, any number of deep convolutional networks is feasible [21].



Computation 2023, 11, 52 9 of 23

Computation 2023, 11, x FOR PEER REVIEW 9 of 25 
 

 

𝑂 = 1 +
𝑁 + 2𝑃 − 𝐹

𝑆
    (3) 

where P is the number of the layers of the zero-padding (e.g., P = 1 in Figure 7), We can 

avoid network output size from decreasing with depth by using this padding concept. 

Consequently, any number of deep convolutional networks is feasible [21]. 

 

Figure 7. Zero-padding. 

Feature of CNNs: Due to the aforementioned weight distribution, the model is also 

invariant under translational changes. The learn function may be filtered to help in any 

environment. If beginning with random values for the filters improves performance, then 

the filters will learn to detect the edge (as in Figure 3). It is crucial to note that a shared 

weight is a bad idea when evaluating an input’s spatial significance. 

2.1.3. Pooling 

The pooling layer, also known as the down-sampling layer, is used to decrease the 

feature maps’ dimensionality while retaining the most important data. A filter applies the 

pooling operation to the input data by sliding over it in the pooling layer (max, min, avg). 

In the literature, maximum pooling is most frequently utilized. 

The essential part of pooling, which is utilized to reduce the complexity of upper 

layers, is down-sampling. In terms of image processing, it may be comparable to reducing 

the resolution. Filter count is unaffected by pooling. Max-pooling is one of the most often 

Figure 7. Zero-padding.

Feature of CNNs: Due to the aforementioned weight distribution, the model is also
invariant under translational changes. The learn function may be filtered to help in any
environment. If beginning with random values for the filters improves performance, then
the filters will learn to detect the edge (as in Figure 3). It is crucial to note that a shared
weight is a bad idea when evaluating an input’s spatial significance.

2.1.3. Pooling

The pooling layer, also known as the down-sampling layer, is used to decrease the
feature maps’ dimensionality while retaining the most important data. A filter applies the
pooling operation to the input data by sliding over it in the pooling layer (max, min, avg).
In the literature, maximum pooling is most frequently utilized.

The essential part of pooling, which is utilized to reduce the complexity of upper
layers, is down-sampling. In terms of image processing, it may be comparable to reducing
the resolution. Filter count is unaffected by pooling. Max-pooling is one of the most often
used pooling methods. The picture is divided into rectangular subregions, and only the
greatest value discovered inside each subregion is returned. One of the most prevalent
max-pooling sizes is 2 × 2.

As shown in Figure 8, when pooling is used on the 2-by-2 blocks in the top-left corner,
attention is diverted to the top-right corner, and two steps are moved. As a result, stride 2 is
used for pooling. It is possible to use stride 1, which is unusual, to prevent downsampling.
Keep in mind that downsampling does not preserve the position of the data.
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At various pooling levels, various pooling techniques may be applied. Global average
pooling (GAP), global max pooling, average pooling, min pooling, and gated pooling are
some of these methods. Figure 8 depicts each of these three pooling techniques [22,23].

The primary problem with the pooling layer is that it does not aid CNN in determining
whether or not a feature is present in an input image but rather just where that feature is
located. Therefore, there are times when CNN’s total ratings take a dip. However, the CNN
model leaves out the necessary information.

2.1.4. Non-Linearity (Function of Activation)

The layer of non-linearity follows convolution. Non-linearity allows the generated
output to be changed or terminated. This layer is used to restrict or oversaturate the output.

Every type of activation function in every type of neural network serves the essential
function of mapping input to output. The input value is calculated by calculating the
weighted sum of the neuron input and its bias (if present). This indicates that the activation
function determines whether or not to fire a neuron in response to a certain input by
generating the matching output.

In the CNN architecture, non-linear activation layers are used after all layers with
weights (also known as learnable layers, such as FC layers and convolutional layers).

The mapping of input to output will be non-linear because of the activation layers’
non-linear performance, and these layers also enable the CNN to learn extremely complex
things [22–24].

Additionally, the capacity to differentiate is a crucial requirement for the activation
function since it enables the use of error backpropagation to train the network.

The most popular activation functions in CNNs and other deep neural networks are
the ones listed below:

Sigmoid: This activation function only allows output values between 0 and 1 and
accepts real numbers as input [25–28].

Tanh: It is comparable to the sigmoid function in that it accepts real numbers as input,
but its output range is only between one and one.

ReLU is the most popular function in the CNN context. All of the input values are
converted to the positive range. ReLU’s primary benefit over other algorithms is the time
and resources it saves when used.

For a long time, the Tanh and sigmoid non-linearities were the most prevalent. Non-
linearities come in many forms, and they are shown in Figure 9. For these reasons, however,
the rectified linear unit (ReLU) has seen a surge in popularity in recent years.
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Function and gradient definitions using ReLU are simpler.
Saturated functions, such as the sigmoid and the tanh, have issues with backpropa-

gation. This phenomenon, known as the “vanishing gradient,” occurs when the gradient
signal gradually decreases as the depth of the neural network architecture grows. This
happens because the gradient of these functions is essentially zero on all sides of the center.
Nonetheless, the ReLU has a constant gradient for the positive input. While the function
cannot be distinguished, it can be ignored during implementation.

Third, the ReLU generates a sparser representation because a complete zero is pro-
duced by a gradient zero. For sigmoid and tanh, the gradient outcomes are never zero,
which may be counterproductive during training [22,23,26–29].

When using ReLU, a few significant problems may occasionally arise.
Consider a method for error backpropagation with a greater gradient flowing through

it, for instance.
The weights will be updated by passing this gradient through the ReLU function in a

way that ensures that the neuron will not be stimulated again.
This problem is known as “Dying ReLU”.
In order to address these problems, there are some ReLU substitutes.
These are some of them, as discussed below.
Leaky ReLU: This activation function makes sure that the negative inputs are never

disregarded, as opposed to the negative inputs being downscaled by ReLU. It is used to
address the Dying ReLU issue.

2.1.5. Fully Connected Layer

Neurons are organized into groups in the fully-connected layer that are reminiscent of
those seen in traditional neural networks. As shown in Figure 10, any node in a layer that is
entirely linked is, therefore, directly connected to every node in the layer above and below
it. Figure 10 shows that every node in the pooling layer’s most recent frames is connected
as a vector from the fully-connected layer to the top layer. These are the most often utilized
CNN parameters within these layers; however, they need a lot of training time [22–24].

The biggest drawback of a fully connected layer is the large number of parameters that
necessitate laborious calculation in training samples. Consequently, we try to minimize the
number of connections and nodes. The eliminated nodes and connections can be satisfied
using the dropout approach. LeNet and AlexNet, for example, developed a vast and deep
network while preserving a constant computational complexity [22,23].
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The convolution, which is the core element of the CNN network, is exposed when the
non-linearity and pooling layer is added. The three that are most commonly utilized in
architecture are as follows:

– To rephrase, in a completely connected layer, all of the neurons communicate with
their counterparts in the layer below. It is a classifier used by CNN.

– Being a feed-forward ANN, it performs similarly to a regular multi-layer perceptron
network. Input to the FC layer comes from the last pooling or convolutional layer.

– This is a vector input created by increasing the thickness of the feature maps [24].

Figure 10 displays that the FC layer’s output is consistent with the final CNN output.
The preceding part discussed the various types of layers used in the CNN design; this

section will focus on loss functions.
Furthermore, the final classification is achieved by employing the output layer, the

very last layer of the CNN architecture. A few loss functions are used in the CNN model’s
output layer to compute the predicted error across the training data. As a result of this
mistake, the disparity between actual and predicted output is highlighted. Then, it will be
improved using the CNN learning approach.

The loss function, however, takes advantage of two inputs to pinpoint the source of
the mistake. For CNN, the first parameter is the forecast or estimated output. The second
input is the desired output or label. There are many different kinds of loss functions used
for different sorts of problems [25].

Below is a basic explanation of the many kinds of loss functions:
Training: A training dataset made up of a collection of images and labels (classes,

bounding boxes, and masks) is used to train a CNN model.
Backpropagation is a CNN training procedure that measures an error value using the

output value of the previous layer. Each neuron’s weight in that layer is updated using the
error value [26].

In order to measure an incorrect value and revise the old weights, fresh weights are
employed, as shown in Figure 11.
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Until it reaches the first layer, the algorithm repeats the procedure.
All inputs, including the bias unit, are summarized by the activation unit; then, use the

activation function to compute the result. The network will then calculate the cost function
and send the error back to update the weights until the cost is minimized.

3. Regularization of CNN

When trying to create well-behaved generalizations for CNN models, over-fitting is
the key obstacle. Over-fitting describes a situation in which a model does well on training
data but poorly on test data (data it has never seen before), as will be shown in the next
section. When the model does not pick up enough information from the training data, it is
said to be under-fitted [26–28].

A model is considered to be “just fit” if it produces satisfactory results on both the
training and testing data. These three types are shown in Figure 12.
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Figure 12. Regularization to CNN.

Multiple intuitive conceptions are used to facilitate regularization and prevent over-
fitting; more details on over-fitting and under-fitting are provided below.

Using a dropout as a generalization strategy is popular. Neurons are removed at
random throughout each training session. As an added bonus to coercively training
the model to acquire several features, this method also makes feature selection equally
weighted across the whole neural network.
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A dropped neuron will not take part in either backward or forward propagation
during training. Testing makes use of the full-scale network to make predictions [29,30].

The drop-weight method is quite similar to the dropout strategy. Drop-weight training
differs from dropout in that only the weights (connections) between neurons are eliminated
after each training iteration.

Data augmentation may easily prevent over-fitting when the model is trained using
an enormous amount of data. In order to do this, data augmentation is needed. There are
a few methods that may be utilized to increase the size of the training dataset artificially.
Finally, data augmentation methods are discussed in further depth.

Through batch normalization, the efficacy of the final activations may be ensured [31,32].
The one-unit Gaussian distribution describes this execution well. When normaliz-

ing the output at each layer, we will first remove the mean and then divide it by the
standard deviation.

Despite being conceptualized as a pre-processing activity at each tier of the network,
this may be differentiated and integrated with other networks.

It is also employed to reduce “internal covariance shift” in the activation layers. The
activation distribution’s variability defines the change in internal covariance at each layer.

The continual update of weights during training, which might occur if training data
samples come from a wide range of sources, amplifies this change (for example, day and
night images). However, the training period will lengthen since the model needs more
time for convergence. For this reason, we add a layer to the CNN design that mimics batch
normalization to help us deal with this issue [33–35].

The following are some benefits of using batch normalization:

• It stops the disappearing gradient issue before it starts.
• It has the ability to effectively manage bad weight initialization.
• It significantly reduces the amount of time needed for network convergence (which

will be very helpful for large datasets).
• It has difficulty reducing training dependence on various hyperparameters.
• Over-fitting is less likely because it only slightly affects regularization [35].

4. Popular CNN Architecture

R-CNN [36–38] was the first ground-breaking model to use convolution neural net-
works (CNN). For each image that needs to be classified, the model creates 2000 region
proposals and resizes them to 227 × 227. R-CNN employs a region-of-interest (RoI) clas-
sifier based on a deep convolutional neural network (DCN) to perform region-specific
classification of input pictures. In addition, a convolutional neural network (CNN) is em-
ployed for feature extraction and model training, and then a support vector machine (SVM)
classifier is used for object categorization. This model moves at a snail’s pace. Eventually,
in 2015, Fast R-CNN was offered as a solution to the accuracy and speed issues [37,38]. RoI
extraction from feature maps is the focus of SPPNet and Fast R-CNN, an enhanced form of
R-CNN. It was discovered that this method outpaced the standard R-CNN framework by a
significant margin.

Faster R-CNN continues the trend by proposing region proposal networks for feature
extraction and to eliminate storage costs [37,38]. Faster R-CNN, an enhanced variant of Fast
R-CNN achieved using RPN-based fully-contained end-to-end training (region proposal
network). Regression-based region-of-interest (RoI) networks (RPNs) are a type of network
used in the process of producing RoIs.

Compared to earlier models, this one performs well in terms of accuracy and speed;
however, the ground truth and predicted bounding boxes are not aligned. To deal with
the issue of inaccuracy generated by the quantization process in the region of interest (RoI)
pooling layer, the authors introduce Mask R-CNN.

Mask R-CNN builds on top of the Faster R-CNN by including a mask prediction
branch; this allows it to detect objects and predict their masks simultaneously. R-FCN
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swaps out the fully connected layers with position-aware score maps, which results in
improved object detection.

Several CNN Architectures

CNN has many architectures, such as VGG, AlexNet, Xception, Inception, and
ResNet [37–49], which can be used in different application domains depending on how
well they can learn.

The convolutional neural network (CNN) is the most emblematic deep learning model.
It comprises the input, convolution, pooling, and full connection layers [37–49]. The
majority of existing networks are based on a series of CNN enhancements. LeCun first
presented the LeNet network for handwritten digit identification in 1998 and extended
CNN to the field of picture recognition. LeNet is an early neural network with only three
complete connection layers, two convolution layers, and two pooling layers. Due to the tiny
size of the model, it is unable to adequately fit other data, which hinders the advancement
of computer vision areas.

In 2012, Krizhevsky proposed the AlexNet, resulting in a significant learning spike
in computer vision. AlexNet has five convolutional layers and two fully linked layers for
learning features are present in AlexNet. After the first, second, and fifth convolutional
layers, it has max-pooling. It has 630M connections, 60M parameters, and 650K neurons
altogether. The AlexNet was the first to demonstrate the use of deep learning for computer
vision applications [44].

LeNet and AlexNet used a single convolutional layer with big kernels of size 7 × 7
and 11 × 11, while the VGG-16 was built with stacks of convolutional layers with smaller
kernels of size 3 × 3.

By adding more non-linear rectification layers, a stack of convolutional layers with
tiny filter sizes creates a more discriminatory decision function [39,44].

ZFNet [44] made modest modifications to the AlexNet network in 2013, mainly offer-
ing a new visualization technique. In the past, CNN was a black box; no theory or method-
ology was used to explain the network’s optimization and improvement process. Using
deconvolution, ZFNet visualizes the intermediate layer of features [44]. Simonyan [40]
introduced the VGG model in 2014, which investigates the effect of network depth on
accuracy. Unlike AlexNet, VGG uses many convolution layers of size 3 × 3 to replace
large-scale filters. The framework of the model is simple and effective, and it can be easily
ported to other networks; nevertheless, the parameters are too large and simple to adjust.
Researchers have effectively utilized VGG in numerous domains [31–33]. GoogLeNet [44]
is a network that not only investigates the impact of depth but also considers the breadth
of the network. The network eliminates the final full connection layer and intelligently
implements the 1 × 1 convolution operation in order to lower the dimension and prevent
the over-fitting issue caused by excessively large network parameters. The year 2015 saw
the proposal of the ResNet residual network and residual connection by He et al. [44]. As
a result, the depth of the network can reach 152 layers. The network employs a small
number of pooling layers and a high number of downsampling, which increases the for-
ward propagation efficiency of the network and obtains the greatest picture recognition
effect at that time, demonstrating the viability of residual connection [46,47]. Liu et al.
proposed DenseNet [39,44,45] in 2017. Using the ResNet network’s strategy for increasing
the depth and width of the network can also guarantee the model’s precision. DenseNet
created a network for typing. All information layers are concatenated (dimensionally
coupled) with one another. DenseNet may efficiently minimize the number of parameters
and increase the reusability of features across many convolutional layers [40–44]. Table 1.
is shown a comparison between different popular CNNs Architecture. In 2018, boosting
deep convolutional neural networks (BoostCNN). Use a deep learning architecture with a
least-squares-based objective function and add boosting weights to learn this model. This
model uses various network architectures within the proposed boosting framework, with
BoostCNN choosing the most effective network architecture after each iteration.
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Table 1. A comparison between different popular CNNs Architecture.

Architecture
Name Layers Main Contribution Highlights Strength Gaps

LeNet
LeNet-5
[1998]

7 (5 Convolution +
2 FC)

First popular CNN
architecture

Rapidly deployable and
effective at resolving

small-scale image
recognition issues

• Utilized spatial correlation to
decrease computation and
parameter count

• Automated discovery of
feature hierarchy structures

Inadequate scaling to
varied image classes; Filter

sizes that are too large;
Weak feature extraction

AlexNet [2012]
8

(5 Convolution + 3
Fully Connected)

More depth and breadth
than the

LeNet-Employs Relu,
dropout, and overlap
Pooling-NVIDIA GTX

580 GPUs
Makes use of Dropout

and ReLU

AlexNet is
comparable to

LeNet-5, except it is
more complex, has

more filters per layer
and employs stacked
convolutional layers.

• Low, middle, and high-level
feature extraction utilizing
large and tiny size filters on
the early (5 × 5 and 11 × 11)
and final (5 × 5 and 11 × 11)
layers (3 × 3)

• Implemented regularization
in CNN

• Commenced parallel usage of
GPUs as an accelerator to
address difficult architectures

Neurons in the first and
second layers that are
dormant

• Aliasing artifacts in
learned feature
maps as a result of a
large filter size

ZfNet [2014] 8 Conceptualization of
middle levels

• Illustrated parameter
tweaking by displaying the
output of intermediary
layers.

• Diminished the filter size and
stride in the initial two layers
of AlexNe

Further processing of
information is necessary

for visualization.

VGG [2014] 16–19 (13–16
convolution + 3 FC

-Homogeneous
structure—Small kernel

size.
-Enhanced depth,
reduced filter size

The accuracy of a model
is improved by

employing small
convolutional filters

with dimensions of 3 3
in each layer.

• Introduced the concept of an
effective receptive field

• Presented the concept of a
simple and homogeneous
topology

Implementation of
computationally costly

fully linked layers

GoogLeNet
[2015]

22 Convolution
layers, 9 Inception

modules

-Presented the block
concept-Separated the
transform and merge

notions
Increased depth, the

block concept, a
different filter size, and

the concatenation
concept

A deeper and broader
architecture with

various receptive field
sizes and a number of

extremely small
convolutions.

• Introduced the concept of
applying mutiscale filters to
layers

• Introduced the concept of
divide, transform, and merge

• Reduced the number of
parameters by the use of
bottleneck layer, global
average-pooling at the final
layer, and sparse connections

• Use of auxiliary classifiers to
enhance convergence rate

Due to diverse topologies,
parameter modification is
arduous and
time-consuming.

• The useful
information may be
lost due to a
representational
bottleneck

Inception-V3
[2015]

42 Convolution
layers, 10 Inception

modules
48

-Resolves the
representational

bottleneck
issue—Change

large-size filters to
tiny-size filters

-Employs a tiny filter
size and improved

feature representation

Enhances the efficiency
of a network.

The application of Batch
Normalization

expedites the training
process.

Inception-building
elements are employed
effectively to go deeper.

Utilized asymmetric filters and
bottleneck layer to decrease the

computational expense of
deep designs

• Complexity of the
architectural design

• Absence of
uniformity

ResNet [2016]

50 in ResNet-50,
101 in ResNet-101,

152 in
ResNet-152

-Identity mapping
based on

links—Long-term
retention of knowledge.

Overfitting-resistant
due to symmetry

mapping-based skip
connections

A unique design that
features “skip

connections” and
extensive batch
normalization.

Reduces the error rate of deeper
networks; introduces the concept of

residual learning; mitigates the
vanishing gradient problem

• A slightly intricate
structure

• Degrades
information of
feature-map in feed
forwarding

• Excessive
adaptation of
hyperparameters
for a specific task as
a result of stacking
identical modules
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Table 1. Cont.

Architecture
Name Layers Main Contribution Highlights Strength Gaps

DenseNet
DenseNet-121

[2017]

117 Convolution
layers, 3 Transition

layers, and 1
Classification layer

-Information
transmission between

layers
Blocks of layers; layers
that are interconnected.

All layers are intimately
connected to one

another in a
feed-forward fashion. It
mitigates the problem of
vanishing gradients and

requires few
parameters.

• Added depth or cross-layer
dimension

• Ensures maximum data flow
across network layers

• Prevents relearning
redundant feature-maps

• Both low-level and high-level
features are available to
decision layers

Significant rise in
parameters as a result of

an increase in the number
of feature-maps per layer

The compound coefficient method was used by EfficientNet in 2019 to efficiently and
effectively scale up models. Compound scaling uses a uniform set of scaling coefficients to
increase an image’s width, depth, or resolution rather than randomly selecting one of these
values. The authors of the paper efficiently used the scaling method and AutoML to create
seven models of varying dimensions that both outperformed and were more efficient than
the state-of-the-art convolutional neural networks.

CNNs have an advantage over other classification algorithms like SVM, K-NN, Ran-
dom Forest, and others because they learn the most important features to represent the
objects in an image.

5. Different Types of CNN Architectures
5.1. Classification

Image classification is crucial to the processing of multimedia information in the
Internet of Things (IoT). In order to identify whether or not the illness is present, the
image classification procedure uses the input images to provide an output classification.
Image classification and recognition technology have found widespread usage in artificial
intelligence applications, particularly in the areas of picture information retrieval, real-time
target tracking, and medical image analysis. Recent years have seen a rise in interest in
deep learning [50,51].

Popular CNN for classification tasks such as VGG-16, ResNets, and Inception [44].

5.2. Detection

The difficult computer vision task of object detection involves anticipating both the
location of the objects in the image and the kind of objects that were found. Beginners may
find it difficult to differentiate between various related computer vision tasks.

For instance, the distinctions between object localization and object detection might be
difficult to understand, even though all three tasks may be collectively referred to as object
recognition. Image categorization, by contrast, is straightforward.

Image classification involves assigning a category label to an image, whereas ob-
ject localization involves drawing a bounding box around one or more objects in an
image [52–54].

The more challenging object detection challenge involves doing both of these things
at once, drawing bounding boxes around each object of interest in the image and then
labeling each object with its class.

Together, we call these problems in the real world “object recognition”.
The process of object detection can be broken down into two distinct phases, as shown

in Figure 13:
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One-step object detectors.
The use of two-stage object detectors.
Object detectors that are built on two-stage deep learning pipelines have two dis-

tinct phases: (1) proposing regions and then (2) classifying the objects within those
regions [37,38,43,44,55]. The object detector’s region proposal stage entails proposing a
number of Regions of Interest (ROIs) in an input image that has a high possibility of having
items of interest. The second phase involves selecting promising ROIs (while discarding
less promising ones) and classifying items contained within them [53]. RCNN, Fast R-CNN,
and Faster R-CNN are all well-liked examples of two-stage detectors. On the other hand,
single-stage object detectors build bounding boxes and classify objects all in the same stage
using a single feed-forward neural network. Although these detectors are quicker than
their two-stage counterparts, they are often less precise. YOLO, SSD, EfficientNet, and
RetinaNet are just a few of the most well-known examples of single-stage detectors. The
distinction between these two object detectors is seen in Figure 13.

As one of the earliest deep learning-based object detectors, R-CNN implemented a
two-stage detection process that included a highly effective selective search method for
ROI proposals. A few issues with the R-CNN model were addressed with the introduction
of fast RCNN, including slow inference speed and inaccurate predictions. The Fast R-CNN
model uses a convolutional neural network (CNN) to process an image’s data and produce
a feature map and ROI projection. Using ROI pooling, these regions of interest are mapped
to the feature map for prediction. Rapid R-CNN is an alternative to R-CNN that bypasses
the region of interest (ROI) as input to the CNN layers and instead processes the entire
image to create feature maps for object detection [37,38]. While both Fast and Faster R-
CNN use a similar strategy, Faster R-CNN uses a separate network to feed the ROI to the
ROI pooling layer and the feature map, which are subsequently reshaped and used for
prediction [37].

Due to their ability to make predictions about an input with just one pass, single-
stage object detectors like YOLO (You only look once) are quicker than their two-stage
counterparts. The first YOLO variation, YOLOv1, discovered how to quickly detect ob-
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jects by learning generalizable representations of them [16]. While YOLOv1 used a fully
connected layer to generate bounding boxes, YOLOv2 introduced batch normalization
and a high-resolution classifier in 2016 [43,45]. YOLOv3 was proposed in 2018 [43,45]
using a 53-layer backbone-based network that predicted overlapping bounding boxes and
smaller objects using an independent logistic classifier and binary cross-entropy loss. In
contrast to YOLO models, which produce feature maps by constructing grids within an
image, SSD models were offered as a superior choice to execute inference on videos and
real-time applications since they share features between the classification and localization
task on the complete picture. Although YOLO models are quicker to run, they are not as
accurate as SSD models [45]. While YOLO and SSD models offer fast inference speeds, they
struggle with class imbalance when identifying tiny objects. The RetinaNet detector [20]
overcame this problem by using a dedicated network for classification and bounding box
regression during training and a focal loss function. Better methods for data augmentation
and regularization during training (‘bag of freebies’) and a post-processing module that
enables better mAP and faster inference (‘bag of specials’) were introduced in YOLOv4 [45].
YOLOv5 was proposed, which would further improve data augmentation and loss calcula-
tion. It also used self-learning bounding box anchors to tailor itself to a specific dataset. A
second form, termed YOLOR (You only learn one representation), was presented to forecast
the output in 2021. It employed a single network that encoded both implicit and explicit
knowledge. With just a single model, YOLOR is capable of multitasking learning in areas
including object identification, multilabel picture classification, and feature embedding.
Similarly, the YOLOX model was introduced in 2021; it employs a decoupled head method
that eliminates the need for anchors and permits the network to process classification and
regression independently. When compared to YOLOv4 and YOLOv5 models, YOLOX has
fewer parameters and faster inference [45].

5.3. Segmentation

As the name implies, this is the process of segmenting an image into various parts.
Each pixel in the image is given an object type throughout this process. Semantic segmenta-
tion and instance segmentation are the two main categories of image segmentation [55,56].

In instance segmentation, related items receive their own unique labels, whereas, in
semantic segmentation, all objects of the same type are tagged using a single class name.

Semantic segmentation has come a long way in the last decade thanks to the develop-
ment of deep learning-based models, particularly fully convolutional networks (FCNs) [37]
and variants [38]. To learn stable and secure features, FCNs leverage pre-existing deep
neural networks. By replacing the fully connected layers with convolutional ones, an FCN
converts popular classification models like VGG (16-layer net) [31] and ResNet [44] into
fully convolutional ones that produce spatial maps rather than classification scores. To gen-
erate dense per-pixel labeled outputs, I upsampled those maps using fractionally-strided
convolutions. U-Net is another model used for rapid and accurate image segmentation
based on convolutional network architecture. The University of Freiburg’s Computer Sci-
ence Department developed it [44]. The ISBI challenge for segmenting neuronal structures
in electron microscopic stacks has outperformed the previous best method (a sliding-
window convolutional network). The main drawback of the U-Net architecture is that it
can slow down the training speed in the middle layers of deeper neural networks, increas-
ing the risk of skipping over them. The main cause of this phenomenon is the fact that
gradients weaken as the network moves away from the output layer, where the training
loss is calculated. Table 2. is shown a comparison between different Types of CNN.
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Table 2. A comparison between different Types of CNN.

Models Types of CNN Advantages Limitations

Fast R-CNN
[2015]

Object detection
Two-stage framework

The properties of CNN are
calculated in a single loop,

making the detection of objects
25 times faster than the RCNN
approach (an average of 20 s is

required to study a picture).

Using an external candidate region
generator slows down the

detection procedure.

Faster R-CNN
[2015]

Object detection
Two-stage framework

The RPN approach enables
near-real-time object detection,

around 0.12 s per image.

Despite the algorithm’s effectiveness,
it is too slow to be used in

applications requiring real-time, such
as driverless vehicles.

Mask R-CNN
[2017]

Object detection
Two-stage framework

When segmenting the objects in
an image, the location of the
objects becomes more exact.

Its execution time is longer than that
of the Faster-RCNN approach; hence,

it cannot be implemented in
real-time applications.

YOLO
[2015]

Object detection
One-stage framework

The efficiency of object
localization enables its usage in

real-time applications.

The technique has trouble accurately
detecting little items.

SSD
[2016]

Object detection
One-stage framework

YOLO and Faster R-CNN
advantages are balanced with
high detection speed and high

object detection rate.

Compared to the Fast-RCNN and
Faster-RCNN algorithms, the object

detection accuracy is less precise.

FCN
[2014] Semantic segmentation

Obtaining a complete
convolutional layer (without

connected layer).

Poor precision of feature maps and
significant GPU utilization.

UNet
[2015] Semantic segmentation

The structure has fewer
parameters and is basically like

the letter U. Appropriate for
object detection in limited
medical image samples.

It is difficult to acquire uniform
sub-sampling and

up-sampling standards.

5.4. Popular Applications

Biometric Detection: Verifying identity via unique biological characteristics. Individu-
als can be uniquely identified through their biometric features, which include things like
hand geometry, retina, iris patterns, and even DNA. The object detection method uses a
matching template to make its determinations [57,58].

CCTV cameras and other surveillance equipment are used to monitor the area and
record any suspicious activity. Keeping tabs on potential criminals is the job of object detection.

Research with autonomous robots is the central problem in the field at the moment.
The most widely used system approach currently is the human–robotic system. Computa-
tional behavior forms the basis of the trusted system’s vision.

Medical imaging for object recognition includes such applications as tumor detection
in MRI scans and skin cancer screening.

6. Future Directions

Indeed, the performance of classification in terms of accuracy, misclassification rate,
precision, and recall is heavily influenced by the combination of convolutional layers,
the number of pooling layers, the number of filters, the filter size, the stride rate, and
the location of the pooling layer when designing a convolutional neural network. CNN
training necessitates the use of powerful and impressive hardware resources, such as GPUs.
Training and testing various combinations of parameters repeatedly requires a great deal of
time and high computing resources like GPUs in order to obtain a satisfactory result [59,60].
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The choice of hyper-parameters has a substantial impact on CNN’s performance.
The overall CNN performance is sensitive to even a modest shift in the hyper-parameter
settings. As a result, it is crucial to take into account the importance of appropriate
parameter selection while designing optimization schemes.

The number of layers in a CNN has been increased from a few (AlexNet) to hundreds,
making it smaller and more effective (ResNet, ResNext, DenseNet). These networks have
billions of parameters, so training them takes a lot of data and powerful GPUs. Therefore,
scientists should take an interest in developing lightweight and compact networks in order
to reduce network redundancy further.

Selecting the best detection network for a given application and embedded hardware
strikes a balance between speed, memory usage, and accuracy. It is preferable to teach
compact models with few parameters, even if this results in a decrease in detection accuracy;
this could be remedied through the use of hint learning, knowledge distillation, and
improved pre-training schemes.

As a result of these enhancements, CNNs are better able to learn from data at varying
depths and with varying structural modifications. Modern research has shown that the
performance of CNN could be greatly improved if blocks were used instead of layers.

7. Conclusions

I have provided an organized and thorough overview of deep learning technology
in this paper, which is regarded as a fundamental component of both data science and
artificial intelligence.

It begins with a history of artificial neural networks before moving on to more modern
deep learning methods and innovations in several fields.

The main techniques in this field are then examined, along with deep neural network
modeling in multiple dimensions.

For this, I have also provided a taxonomy that takes into account the various deep-
learning tasks and their many applications.

In this comprehensive research, I took into account both supervised learning using
deep networks and unsupervised learning using generative learning using deep networks.
I have also thought of hybrid learning, which may be used in a variety of real-world
contexts depending on the specifics of the problem at hand.

Finally, I summarize several important problems with convolutional neural networks
(CNNs) and describe how each parameter affects the network’s performance. The convolu-
tion layer is the heart of a CNN and is responsible for the vast majority of processing time.
A network’s performance can be affected by the number of layers it contains. In contrast,
training and testing the network takes more time as the number of layers grows.
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