
Citation: Wang, Z.; Xu, H.; Zhou, P.;

Xiao, G. An Improved Multilabel

k‑Nearest Neighbor Algorithm Based

on Value and Weight. Computation

2023, 11, 32. https://doi.org/10.3390/

computation11020032

Academic Editor: Gennady Bocharov

Received: 28 December 2022

Revised: 7 February 2023

Accepted: 10 February 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

An Improved Multilabel k‑Nearest Neighbor Algorithm Based
on Value and Weight
Zhe Wang 1,2, Hao Xu 2, Pan Zhou 2,* and Gang Xiao 1

1 College of Information Engineering, Zhejiang University of Technology, Hangzhou 323000, China
2 College of Engineering, Lishui University, Lishui 323000, China
* Correspondence: zpan@lsu.edu.cn; Tel.: +86‑181‑5781‑5887

Abstract: Multilabel data share important features, including label imbalance, which has a significant
influence on the performance of classifiers. Because of this problem, a widely used multilabel clas‑
sification algorithm, the multilabel k‑nearest neighbor (ML‑kNN) algorithm, has poor performance
on imbalanced multilabel data. To address this problem, this study proposes an improvedML‑kNN
algorithm based on value and weight. In this improved algorithm, labels are divided into minority
and majority, and different strategies are adopted for different labels. By considering the label of la‑
tent information carried by the nearest neighbors, a value calculation method is proposed and used
to directly classify majority labels. Additionally, to address the misclassification problem caused by
a lack of nearest neighbor information for minority labels, weight calculation is proposed. The pro‑
posed weight calculation converts distance information with and without label sets in the nearest
neighbors into weights. The experimental results on multilabel datasets from different benchmarks
demonstrate the performance of the algorithm, especially for datasets with high imbalance. Differ‑
ent evaluation metrics show that the results are improved by approximately 2–10%. The verified
algorithm could be applied to a multilabel classification of various fields involving label imbalance,
such as drug molecule identification, building identification, and text categorization.

Keywords: label imbalance; multilabel classification; ML‑kNN

1. Introduction
The task of classification is of great interest in machine learning research. Conven‑

tional classification is dominated by binary and multiclass classifications wherein each in‑
stance is associated with one class in its label set. With the advent of the big data era, an
increasing number of multilabel tasks emerge, and multilabel classification has gained in‑
creasing attention in recent years [1–7]. Conventional binary and multiclass classifications
are fundamentally different from multilabel classifications because, in the latter, each in‑
stance is associated with a group of labels. For instance, in the case of drug target pre‑
diction, targets can correspond to multiple drug molecules as each drug molecule can
correspond to multiple targets [8]. However, a multilabel classification problem exists in
the fields of text categorization [9,10], disease diagnosis [11], and image recognition [12],
among others [13]. Generally, multilabel data impair the classification performance com‑
pared with the data of multiclass classification [14,15].

Multilabel classification can be divided into two approaches according to different
processing strategies [16]. These approaches are the problem transformation algorithm
(represented by label power (LP) [17] and binary relevance (BR) [18]) and the algorithm
adaptive method (represented by ranking support vector machine [19] and multilabel k‑
nearest neighbor (ML‑kNN) algorithm [20]). The problem transformation algorithm aims
to convert multilabel classification into single‑label classification through stacking clas‑
sifiers, and the classification result depends on the classifier’s design. However, in the
problem transformation algorithm, the size of the classifier dramatically increases, but
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the classifier performance decreases when classifiers process the increasing amount and
complexity of data. The algorithm adaptive method adjusts existing multiclass classifica‑
tion algorithms to address the multilabel classification problem and can flexibly perform
multilabel classification [21]. Thus, the algorithm adaptive method has recently received
considerable attention.

In multilabel problems, a class with a larger number of instances could be defined as
a majority class, corresponding to the majority label. In contrast, a class with a smaller
number of instances could be defined as a minority class, corresponding to the minority
label [22]. Inmultilabel data, an imbalance often occurs between theminority andmajority
labels. Therefore, multilabel classification algorithms face a challenge in that existingmeth‑
ods cannot be directly used as a solution to address an imbalanced problem in multilabel
classification. When classifying a test instance with a minority label, most of its nearest
neighbors may be unlabeled, and the classification will give the test instance a negative
bias. Hence, the overall performance of the classification is affected. As a widely used
algorithm, ML‑kNN has many improved algorithms. However, existing ML‑kNN‑based
algorithms have poor classification performance when classifying imbalanced multilabel
datasets, and the results tend to become a majority label in multilabel classification. There‑
fore, the classifier should be redesigned to be able to classify imbalanced data.

In this paper, an improved ML‑kNN algorithm is proposed on the basis of value and
weight (hereafter called VWML‑kNN) to address the imbalanced multilabel problem. The
proposed algorithm divides labels into majority and minority labels and uses different
classification strategies for different labels. Unlike conventional ML‑kNN‑based methods,
the value of an instance in VWML‑kNN is obtained by comprehensively considering the
label distribution of nearest neighbors and the classification of majority labels by comput‑
ing a new maximum a posteriori (MAP) from the obtained values. Then, VWML‑kNN
calculates the distances between labeled and unlabeled nearest neighbors and converts
these distances into different weights. Finally, the weight and new MAP are combined
to classify minority labels. The experimental results on multilabel datasets from different
benchmarks show that their performances are improved by the VWML‑kNN, especially
for datasets with high imbalance.

2. Related Work
This section outlines the development of multilabel classification methods, especially

ML‑kNN‑based methods.
Godbole et al. [17] proposed a problem transformation algorithm called LP. Specifi‑

cally, LP converts amultilabel dataset into a newmulticlass dataset, regarding each distinct
label combination (or label set) as a class. It can improve classification accuracy butmay ex‑
acerbate the label imbalance problem, resulting in overfitting. An effective multilabel clas‑
sification method, called ML‑kNN, was proposed by Zhang et al. [20]. ML‑kNN assumes
that the final classification results of the data with similar characteristics are also related
to the label of instances with similar characteristics. It is the first lazy learning method
based on a conventional kNNmethod that considers the label selection information of the
k‑nearest neighbors (kNN) of one instance. It also uses the highest MAP to adaptively
adjust the decision boundary for each new instance. However, most multilabel classifiers
perform poorly in minority‑class classification problems in imbalanced datasets. Younes
et al. [23] proposed a generalization of an ML‑kNN algorithm called DML‑kNN. Unlike
ML‑kNN,DML‑kNNconsiders the dependencies between labels and accounts for all labels
in the neighborhood rather than the assigned nearest neighbor label to calculate the MAP.
Cheng et al. [24] proposed a multilabel classification method called instance‑based learn‑
ing and logistic regression (IBLR) based on label correlation and dependency. Moreover,
in IBLR, interdependencies between labels can be captured, and model‑ and similarity‑
based inferences for multilabel classification can be combined. An MLCWkNN algorithm
is proposed in [25] based on the Bayesian theorem. The linear weighted sum of the kNN is
calculated using the least squares error to determine the approximate query instance. The
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weight is adaptively determined by quadratic programming. IMLLA, proposed by Zhang
et al. [26], is a new multilabel lazy learning approach. It first identifies neighbor instances
in each possible label in the training set for each test data. Finally, the classifier classifies
a label counting vector, which is generated from neighboring instances. Reyes et al. [27]
proposed a filter‑based feature weighting lazy algorithm to enhance the performance of
multilabel classification. In this algorithm, weights can be optimized by heuristic learning.
Zeng et al. [28] proposed an improvedML‑kNN algorithm by fusing nearest neighbor clas‑
sification. On the basis of theML‑kNN algorithm, the influence of nearest and k neighbors
of unclassified instances is considered in this algorithm. Vluymans et al. [29] proposed a
new nearest neighbor‑based multilabel method. A fuzzy rough set theory is adopted to
construct a new nearest neighbor label set, which summarizes the information included in
the label sets of neighbors. Wang et al. [30] proposed a locally adaptive ML‑kNN (LAML‑
kNN) method to address the local difference of instances. LAML‑kNN considers local
differences to modify a posterior probability expression to adjust the decision boundary.

Multi‑label data are generally imbalanced. However, the above algorithms do not
consider the impact of this imbalancewhen classifying data, resulting in poor classification
performance on the multilabel data.

3. Methods
This section introduces the measurement indicators for evaluating the degree of mul‑

tilabel imbalanced data and explains the proposed VWML‑kNN algorithm. Then, the eval‑
uation metrics and datasets of the experiments are discussed.

3.1. Related Definitions
In the area of multilabel imbalanced problems, the imbalance ratio per label (IR) and

mean imbalance ratio (MeanIR) are regarded as measurement indicators to distinguish
whether a label is a majority or a minority [31].

Let multilabel dataset D = {(Xi, Li) | 0 ≤ i ≤ n, Li ∈ Y}, where Xi and Li represent the
i‑th instance of the dataset and the label set ofXi, respectively. Here, Y represents the label
set of the dataset:

h(y, Li) =

{
1, y ∈ Li
0, y /∈ Li

(1)

Then, the IR can be defined as

IR(y) =
argmax

Y|Y|
y=Y1

(∑
|D|
i=1 h(y, Li))

∑
|D|
i=1 h(y, Li)

(2)

The average level of the imbalance in the dataset is defined as MeanIR, which also
represents the mean of all labels’ IR and can be calculated as

MeanIR =
1
|Y|

Y|Y|

∑
y=Y1

(IR(y)) (3)

According to IR and MeanIR, majority and minority labels can be defined as follows:
when the IR of y is lower than the MeanIR, y is defined as a majority label; otherwise, it is
defined as a minority label.

3.2. Proposed Algorithm
The VWML‑kNN algorithm can be divided into two phases: value calculation and

weight conversion.
Let a multilabel dataset D = {(x1, Y1), (x2, Y2), . . . , (xm, Yq)}, where D can be divided

into instance set X and label set Y. For instance xi, Yi is the label set of xi, yij ∈ Yi, yij ∈ {1,
0}. If the value of Yij is 1, it implies that xi contains label j and the kNNs of xi are N(xi).
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Therefore, the number of the nearest neighbors of xi with or without label j can be counted
in advance, as expressed in Equation (4).

Cj(x) = ∑xi∈N(x) (yj(xi)) (4)

where the value of yj(x) can be 1 or 0.
The prior probability in Equations (5) and (6) can be evaluated from the training data:

P(yj= 1) =
s + ∑m

i=1 yj(xj)

s ∗ 2 + m
(5)

P
(
Cj(xi)

|yj= 0) =
s + κ′ j[r]

s × (K + 1) +
K
∑

r=0
κ′ j[r]

(6)

where s is the smoothing factor and is generally regarded as 1.
In ML‑kNN, the calculation formulas of the MAP are expressed in Equations (7) and (8):

P
(
Cj(xi)

|yj = 1) =
s + κj[r]

s × (K + 1) +
K
∑

r=0
κj[r]

(7)

P
(
Cj(xi)

|yi= 0) =
s + κ′ j[r]

s × (K + 1) +
K
∑

r=0
κ′ j[r]

(8)

In Equation (9), kj[r] calculates the number of training data with label j and r nearest
neighbors with yi. In Equation (10), k′j[r] calculates the number of training data without
label j and r nearest neighbors with yi. The initial value of kj[r] and k′j[r] is 0, and the
maximum value of kj[r] and k′j[r] is K:

κj[r] =
m

∑
i=1

yi ∈ Yi·Cj(x) = r(0 ≤ r ≤ k) (9)

κ′ j[r] =
m

∑
i=1

yi /∈ Yi ·Cj(x) = r(0 ≤ r ≤ k) (10)

In practical applications, due to the imbalanced characteristics of data, few nearest
neighbors exist with minority label y of the test instance with minority label y, which may
lead to misclassification. Therefore, this paper proposes a value calculation that uses a
value to calculate the MAP so that the classifier can focus on minority labels, improving its
performance.

Value calculation: hj[z] calculates the value of training data with label j and z nearest
neighbors with j. In the training datasets, if a training instance has label j and z nearest
neighbors with j, then hj[z] = hj[z] + 1 and h’j[z] = h’j[z] −1. If a training instance does not
have label j and has z nearest neighbors with j, then h’j[z] = h’j[z] + 1 and hj[z] = hj[z] − 1.
The initial values of both hj[z] and h’j[z] are 0. When the calculated value of hj[z] or h’j[z]
is less than 0, the value of hj[z] or h′j[z] is set to 0. Therefore, we use hj[z] and h′j[z], rather
than kj[r] and k′j[r], to calculate the MAP, as expressed in Equation (8).

P
(
Cj(xi)

|yj = 1) =
s + hj[z]

s × (K + 1) +
K
∑

r=0
hj[z]

(11)
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P
(
Cj(xi)

|yj= 0) =
s + h′ j[z]

s × (K + 1) +
K
∑

r=0
h′ j[z]

(12)

The majority of labels have enough prior information about whether the test instance
contains label y can be directly determined by the new MAP. The minority labels require
additional information to classify the test instance because of insufficient prior information.
During the classification, we adopt different strategies formajority andminority labels. For
each nearest neighbor instance of the test instances, the closer the distance of the neighbor
instance, the greater the similarity. We proposed a weight conversion strategy based on
this theory.

Weight transform: first, the nearest neighbors of the test instance are divided into Con‑
Set andNconSet whether they have label y or not. Specifically, ConSet contains the nearest
neighbors that have the label y, whereas NconSet contains the nearest neighbors without
the label y. Furthermore, the distance between the set and test instance is calculated. To
convert the distance into a weight, an appropriate function should be selected. Through
experiments, the Gaussian function was found to be a suitable weight transform function.
In the Gaussian function, the change rate of the weight is gradual. During the conversion,
the weight will not become that large when the distance is quite small, while the weight
will not become 0 when the distance is large. The Gaussian function is defined as follows:

w = a × e
− (s,d′)2

2b2 (13)

where (s, d′) defines the distance between the set and the test instance, b represents the
standard deviation, and a is generally regarded as 1.

Therefore, the decision function of the minority label can be obtained, as expressed in
Equation (14):

yj(x) = argmaxj∈{0,1}(
t
K
× w + (1 − t

K
)P(yj)P(Cj(xi)

|yj)) (14)

If j = 1, this implies that the test instance contains minority label j. Otherwise, the test
instance does not contain minority label j. Here, w represents the weight after distance
conversion and t represents the proportion of weight in the decision function.

Substituting the weights into Equation (14) yields Equation (15):

yj(x) = argmaxj∈{0,1}(
t
K
× a × e

(s,d′)
2b2 + (1 − t

K
)P(yj)P(Cj(x)|yj)) (15)

The pseudocode of Algorithm 1 of VWML‑kNN is presented as follows.
As shown in the pseudocode, from step 1 to step 10, prior informationwithin the train‑

ing dataset is calculated. In steps 12–14, the value of each unknown instance is obtained
by calculating the label distribution of the nearest neighbors. In steps 16–17, when classify‑
ing the minority label, the weights between the unknown instance and different label sets
of nearest neighbors are calculated. Finally, the test instance is classified using the new
decision function.
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Algorithm 1: VWML‑kNN

Input: A multi‑label dataset D, test instance x

1. For i = 1 to m do:

2. Identify k nearest neighbors N(xi) of xi
3. end for

4. For j = 1 to q do:

5. Calculate the IR and MeanIR according to Equations (1) and (3)

6. Estimate the prior probabilities P(yj= 1) and P(yj= 0) according to Equations (5) and (6)

7. If the label j of xi is 1 (yij = 1) and xi has z nearest neighbors containing label j

8. hj[z] = hj[z] + 1 and hj[z] = hj[z]−1

9. Else h’j[z] = h′ j[z] + 1 and hj[z] = hj[z]−1

10.end for

11.Identify k nearest neighbors N(x) of x

12.For j = 1 to q do:

13.Calculate Cj(x) according to Equation (4)

14.Calculate the hj[z] and h’j[z] of x according to step 7 to step 9

15.If j = = majority label, return y according to Equations (11) and (12)

16.If j = = minority label, calculate the distance (s, d′) between NconSet and x.

17.Convert distance to weight according to Equation (13)

18.Return y according to Equation (15)

19.end for

20.end

3.3. Evaluation Metrics
Generally, the evaluationmethod of the performance ofmultilabel classifiers has three

forms: example‑, label‑, and ranking‑basedmethods [32]. Among them, the ranking‑based
evaluation method is the most suitable for evaluating the performance of different algo‑
rithms because it could better reflect the correct classification of majority and minority
labels. Therefore, Hamming loss, ranking loss, and one error are selected as evaluation
metrics to achieve an effective evaluation [33].

Hamming loss is the most popular multilabel evaluation metric and evaluates the
number of times instances are misclassified. The smaller the metric value, the better the
classification performance and the smaller the difference between the predicted results and
the real label:

Hamming loss =
1
m

m

∑
i=1

|Yi∆Zi|
|Y| (16)

In Equation (9), m denotes the number of instances, Yi represents the predicted label
set of unknown instance x, Zi represents the true label set of x, Y is the number of labels,
and ∆ represents the symmetric difference.

The ranking loss measures the average fraction of label pairs, which are reversely
ordered for the instance. The lower the ranking loss, the better the performance of the
classifiers:

Ranking Loss =
1
m

m

∑
i=1

1∣∣Yi
∣∣ ∣∣Yi

∣∣
∣∣∣∣∣{(y1, y2)

∣∣rank(xi, y1) ≤ rank(xi, y2), (y1, y2) ∈ Yi × Yi
}
| (17)

where Yi denotes the complementary set of Yi.
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Finally, one error indicates the number of times a top‑ranked label is not in the true
label set:

One error ( f ) =
1
m

m

∑
i=1

g((argmax f (xi, y) /∈ Yi) (18)

g(x) =
{

0, y ∈ Yi
1, y /∈ Yi

(19)

3.4. Datasets
In Table 1, three benchmark multilabel datasets of varying sizes and fields were se‑

lected as experimental datasets: Enron, Corel5k, and yeast [34]. Enron is a dataset based
on rebels, including 500,000 real‑world emails from 150 employees of Enron. This dataset
has no labeling information but can be used for internal threat detection based on text and
social network analysis. Corel5k contains a total of 5000 pictures collected by Corel, cov‑
ering multiple themes such as dinosaurs, cars, beaches, etc. Yeast consists of micro‑array
expression data, as well as phylogenetic profiles of yeast.

Table 1. Description of the three benchmarking datasets.

Dataset Instances Labels Dens Card MeanIR TCS

Enron 1702 53 0.064 3.378 73.953 17.503
Corel5k 5000 374 0.009 3.522 189.568 20.200
Yeast 2417 14 0.303 4.240 7.200 12.560

The performance of the classifier is related to not only the number of labels but also the
characteristics of the dataset [35]. To show the different characteristics of the dataset, Card,
TCS [36], and Dens are introduced as the measurement of the datasets. Card indicates the
mean number of labels for each instance and is defined in Equation (20); Dens measures
the density of labels, defined in Equation (21); and TCS evaluates the complexity of the
dataset and is defined in Equation (22). A larger value implies a higher complexity of the
dataset, which increases the difficulty of the prediction of the correct classification result
for the classifier:

Card(D) =
1
m

m

∑
i=1

|Yi|, (20)

Dens(D) =
1
q

1
m

m

∑
i=1

|Yi|, (21)

TCS(D) = log( f × q × ls), (22)

where m and f represent the numbers of instances and input features, respectively. Fur‑
thermore, q and ls represent the numbers of labels and different label sets, respectively.

4. Results and Discussion
This section first investigates the optimal parameters of the VWML‑kNN. Then, dif‑

ferent multilabel classification algorithms are compared to demonstrate the effectiveness
of VWML‑kNN.

4.1. Optimal Values of k and t
Parameters k and t of VWML‑kNN directly influence the performance of classifiers.

Thus, the optimal values of k and t should be explored. Specifically, k is the number of
neighbors, and t is the proportion of weights in the decision function. When the value of
k is high, the classification performance is affected by imbalanced data. When the value
of k is low, the presence of outliers can lead to poor classification performance. When t
is high, the influence of the MAP of the nearest instances is ignored. When t is lower,
minority label instances at the decision boundary have poor classification performance.
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By changing the values of k and t, we explored the better parameters of VWML‑kNN and
analyzed the influence of different parameters. In our experiments, twas set to 1, 3, 5, and
7, and k was set to 5, 7, and 10 in each dataset. Other parameters in the algorithm were
selected as default parameters. A 10‑fold cross‑validation was used in this experiment. A
total of 10 experiments were performed on each dataset, and the results were averaged.

Figures 1–4 present the change in each evaluationmetric with different parameter val‑
ues of k and t on different datasets. Among the experimental results, an overall superior
performance is achievedwhen k = 10 and t = 3 because of its lowest value of evaluationmet‑
rics on these datasets. Unlike k = 10, the experimental results are influenced to a greater
extent by the imbalanced characteristic of the data. Intuitively, when t = 1 or t = 7, the clas‑
sification result is not good enough. This is due to the existence of two types of extreme
instances in the dataset. We found that instances in the dataset that are quite close or far
away both lead to the large weight difference between instances that contain labels and
those that do not contain labels. If the instances are quite close, when t = 7, latent infor‑
mation such as the label distribution cannot be acquired, resulting in poor classification
accuracy. If they are quite far from each other, when t = 1, the MAP accounts for a large
proportion of the decision function, resulting again in poor classification accuracy.

4.2. Experiments and Analysis
To demonstrate the effectiveness of VWML‑kNN in multilabel classification learning,

its performance was compared with that of four representative multilabel classification
algorithms—LAML‑kNN [30], DML‑kNN [23], ML‑kNN [20], and BR [18] discussed in the
related work. The k value of each algorithm was set to 10, and all other parameters were
set to their defaults. In VWML‑kNN, twas set to 3. A 10‑fold cross‑validation method was
adopted in this study, and 10 sets of experiments were conducted on each dataset, with
the results averaged.

Tables 2–4 present the experimental results assessed with the Hamming loss, ranking
loss, and one‑error metrics, respectively (the optimal results are set in bold typeface). As
shown in Table 2, the two metrics of VWML‑kNN are better than those of the other al‑
gorithms on the Enron dataset. Although the performance of VWML‑kNN ranks second
in the one‑error metric on the Enron dataset, it only differs by 0.004 from the best per‑
forming algorithm, LAML‑kNN (0.013 higher than the third‑ranked ML‑kNN algorithm).
Generally, VWML‑kNNhas better classification performance on the Enron dataset. As pre‑
sented in Table 3, VWML‑kNN performs better than the other algorithms in all evaluation
metrics on the yeast dataset. Particularly, in the one‑error metric, VWML‑kNN performs
much better than other algorithms, scoring 0.015 higher than the second‑ranked LAML‑
kNN algorithm. VWML‑kNN also has the best performance in both Hamming loss and
ranking loss for the yeast dataset, but it has the second best performance in the one‑error
metric, scoring 0.002 lower than ML‑kNN. Overall, the experimental results clearly indi‑
cate that VWML‑kNN achieved the optimal results for most of the datasets and is more
stable than the other algorithms. Moreover, it is found that the VWML‑kNN algorithm
has better performance on the datasets with higher MeanIR and TCS values. This implies
that VWML‑kNN is more suitable for datasets with higher imbalance.
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Figure 1. Hamming loss for different values of k and t in different datasets. Different colors represent
different values of t.
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Figure 2. One‑error for different values of k and t in different datasets. Different colors represent
different values of t.
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Figure 3. Ranking loss for different values of k and t in different datasets. Different colors represent
different values of t.
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Figure 4. The results of different evaluation metrics in different datasets when t = 3. Figure 4. The results of different evaluation metrics in different datasets when t = 3.
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Table 2. Experimental results from different multilabel classification methods on the Enron dataset.

Algorithm Hloss Rloss O‑e

BR 0.056 0.168 0.453
LAML‑kNN 0.052 0.092 0.264
DML‑kNN 0.053 0.093 0.285
ML‑kNN 0.053 0.093 0.281

VWML‑kNN 0.051 0.091 0.268

Table 3. Experimental results fromdifferentmultilabel classificationmethods on theCorel5k dataset.

Algorithm Hloss Rloss O‑e

BR 0.011 0.146 0.742
LAML‑kNN 0.010 0.129 0.706
DML‑kNN 0.010 0.132 0.732
ML‑kNN 0.009 0.134 0.727

VWML‑kNN 0.009 0.128 0.691

Table 4. Experimental results from different multilabel classification methods on the yeast dataset.

Algorithm Hloss Rloss O‑e

BR 0.203 0.205 0.240
LAML‑kNN 0.201 0.170 0.241
DML‑kNN 0.203 0.172 0.242
ML‑kNN 0.201 0.170 0.235

VWML‑kNN 0.199 0.170 0.237

Therefore, the experimental results demonstrate that VWML‑kNNcan effectively clas‑
sify imbalanced multilabel data and has the best performance among the selected multil‑
abel classification algorithms.

5. Conclusions
This paper established an algorithm for the classification of imbalanced multilabel

data. Labels were divided into minority and majority labels, and different strategies for
different labels were adopted. A value calculation was proposed to determine the value of
labels to calculate the value of the MAP. In the classification of minority labels, the nearest
neighbors of the test instance were divided into sets with and without labels. Because of
a lack of prior information on minority labels, the algorithm calculated the distances be‑
tween the test instance and different nearest neighbor sets and converted these distances
into weights of nearest neighbor instances with and without labels. Finally, the MAPs of
the value calculation andweights were combined to classify theminority label. The results
of a series of experiments conducted on different datasets demonstrate the ability of the
established algorithm to classify imbalanced multilabel data. The results indicate that our
proposed VWML‑kNN achieves outstanding results on datasets with high TCS and high
MeanIR. Therefore, the proposed algorithm can be applied to the multilabel classification
of various fields that involve label imbalance, such as drug molecule identification, build‑
ing identification, and text categorization. The VWML‑kNN also has some limitations. For
example, the calculation method of the distance could be improved from the ordinary Eu‑
clidean metric. Moreover, the features are not sufficiently fused in the VWML‑kNN. In
the future, the authors will plan in‑depth studies on multilabel imbalanced classification,
especially on the relationships within labels.
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