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Abstract: Range value at risk (RVaR) is a quantile-based risk measure with two parameters. As special
examples, the value at risk (VaR) and the expected shortfall (ES), two well-known but competing
regulatory risk measures, are both members of the RVaR family. The estimation of RVaR is a critical
issue in the financial sector. Several nonparametric RVaR estimators are described here. We examine
these estimators’ accuracy in various scenarios using Monte Carlo simulations. Our simulations shed
light on how changing p and q with respect to n affects the effectiveness of RVaR estimators that are
nonparametric, with n representing the total number of samples. Finally, we perform a backtesting
exercise of RVaR based on Acerbi and Szekely’s test.
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1. Introduction

There has been a lot of interest in risk management in financial institutions across the
globe. Risk management, when seen qualitatively, is putting in place appropriate laws and
monitoring systems and using appropriate disclosure channels. The use of suitable risk
measures is a significant challenge from a quantitative standpoint. In finance, a risk measure
is a function that gives real numbers to the various possible outcomes of a random financial
item, such as portfolio market risk or insurance claim risk. Changes in the level or volatility
of market prices are the source of market risk (see [1]). The necessity of appropriately
estimating an investment’s exposure to market risk was made clear by the financial crisis
of 2007–2008. The two most widely used risk measures are VaR and ES; both are used in
modern financial and insurance regulations (see [2]). The relative merits of VaR and ES have
been extensively discussed during the past few years. For comprehensive discussions, see
Embrechts et al. [3] and Emmer et al. [4], and for contributions from banking and insurance
regulators, see Basel Committee on Banking Supervision and International Association of
Insurance Supervisors. VaR and ES, two families of risk measures with a single parameter,
are combined to form the RVaR, a family of risk measures that is more inclusive and consists
of two parameters. Cont et al. [5] introduced the RVaR family in the context of risk measure
robustness properties, and the authors demonstrated that a risk measure could not be
both robust and coherent. For levels p and q where 0 < p < q < 1, RVaR can be defined
as the conditional expectation when the loss is between two VaR values. More crucially,
RVaR can be viewed as a link between the two most common but methodologically quite
distinct regulatory risk measures, VaR and ES. For specific choices of p and q, RVaR equals
the VaR or the ES. This incorporation of VaR and ES into RVaR allows us to better grasp
the former risk measures’ numerous features and comparative advantages. In addition,
the risk measure known as the modified expected shortfall proposed by Jadhav et. al. [6],
has similar properties as the RVaR.

RVaR has gained popularity in the risk management literature (see [2,7]) for extensive
studies, as well as in econometrics (see [8]), where sometimes RVaR is referred to as
interquantile expectation. RVaR is also related to the trimmed mean, and it constitutes an
alternative to an interpolation of the mean and the median as centrality measures (see [9]).
The RVaR was used by Embrechts et al. [2] to address the issue of risk sharing among
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agents, while Fissler and Ziegel [10] talked about the RVaR’s elicitability. It has been
established that RVaR is not elicitable, just like ES. With two VaR components at various
levels, the author illustrates the elicitability of a triplet of RVaR. Furthermore, Fissler and
Ziegel [10] have mentioned a few regression-based approaches for the estimation of RVaR.

The practical importance and theoretical properties of RVaR as a risk measure are
well established. However, in practice, we have to estimate the RVaR measure based on
observed data. From the literature, we observe that though a risk measure’s interpretation
might be straightforward estimating the risk measure is not (see [11]) because simplifying
assumptions about the loss distribution is required. We find a huge literature proposing
different estimators of VaR and ES and some estimators have proven to be superior to others;
see McNeil and Frey [12]; Abad et al. [13]; Dutta and Biswas [14]; Nadarajah et. al. [15];
and Dutta and Biswas [16] for exemplary contributions. We also find papers in which
the authors discuss how the choice of different VaR estimators affects critical investment
decisions (see [11]). This is where there is a research gap, with the only available RVaR
methods being those of Fissler and Ziegel [10], based on regression. The first contribution
of the paper is to propose seven nonparametric estimators of RVaR. The benefit of the
nonparametric approach is that since the data generation process does not need to be
precisely specified, it is resistant to incorrect marginal distribution specification. The second
contribution is to investigate the finite sample performance of the proposed estimators
using extensive simulations and backtesting for fixed p and q and varying n, as well as
varying p and q and fixed n. The third contribution is in identifying the estimators that
perform best in terms of the mean squared error (MSE) in different scenarios. From our
simulation study, we observe that the RVaR estimator proposed using the filtered historical
method is the best choice in most cases except for heavy-tailed distributions like GPD.
This will be useful for practitioners to select the estimation method that is best suited to
their situation.

There are five sections in the paper. We outline seven nonparametric RVaR estimators
in Section 2. Section 3 compares the MSE of the nonparametric RVaR estimators for five
different models using Monte Carlo simulations and reports the results. RVaR backtesting
is conducted in Section 4. Findings and implications are discussed in Section 5.

Definitions

Let the random variable X be the loss of some portfolio and F be its distribution
function. Then Qp(X) = inf{x : F(x) ≥ p}, 0 < p < 1 is the quantile function. When
0 < p < q < 1, the three risk measures known as VaR, ES, and RVaR are defined as follows

VaRp = inf{x ∈ R : F(x) ≥ p},

ESp =
1

1− p

∫ 1

p
VaRudu, (1)

and
RVaRp,q =

1
q− p

∫ q

p
VaRudu. (2)

It is important to note that by combining Equations (1) and (2), we obtain

RVaRp,q =
(1− p)ESp − (1− q)ESq

q− p
. (3)

2. Nonparametric RVaR Estimators

Here, we provide definitions for seven nonparametric estimators of RVaR. We know
that by using different quantile estimators in Equation (1), we can define new ES estimators.
Similarly, by considering different ES estimators in Equation (3), we can define different
RVaR estimators. Here, we use Equation (3) in defining the nonparametric estimators
of RVaR. We first discuss the nonparametric estimators of ES. There are numerous ES
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estimation methods available in the literature; see, for example, Broda and Paolella [17],
Nadarajah et al. [15], and Dutta and Biswas [16]. Before defining the RVaR estimators, we
first define the ES nonparametric estimators. The following sections provide definitions for
the nonparametric RVaR estimators.

2.1. Empirical Estimator

One of the easiest and most-used ES estimators is the empirical estimator. Let F̂ be the
empirical distribution of i.i.d observed losses X1, X2, . . . , Xn i.e.,

F̂(x) =
1
n

n

∑
i=1

I(Xi ≤ x),

where I(·) is the indicator function. Calculating the pth quantile involves (see [18]),

F̂−1(p) = X(i), p ∈
[

i− 1
n

,
i
n

)
,

where X(1) ≤ X(2) ≤ · · · ≤ X(n) be the order statistics. The empirical estimator of ES is
defined as

Empp =
∑n

i=[np]+1 X(i)

n− [np]
,

where [x] is the greatest integer that is not greater than x. One alternative formulation of
the empirical estimator is

Empp =
∑n

t=1 Xt I(Xt ≥ q̂p)

[n(1− p)] + 1
,

where q̂p = X([np]+1). Under certain assumptions, Chen [19] obtained a Bahadur-type
expansion, leading to the asymptotic normality of the empirical estimator Empp. Based on
the Empp the RVaR estimator can be written as

Empp,q =
(1− p)Empp − (1− q)Empq

q− p
.

2.2. Brazauskas et al.’s Estimator [20]

Recall that the definition of ES is

ESp =
1

1− p

∫ 1

p
Qudu.

Let F̂ represent the empirical distribution function and F̂−1 represent the quantile
function. The following is the definition of an empirical estimator of ESp provided by
Brazauskas et al. [20]

ÊSp =
1

1− p

∫ 1

p
F̂−1(u)du.

Assuming that X1, · · · , Xn are i.i.d. with E|X1| < ∞, ÊSp converges to ESp almost
surely as n → ∞ (see [20]). To construct point-wise and concurrent confidence intervals
for ESp, Brazauskas et al. [20] obtained the asymptotic normality for ÊSp. Following
Brazauskas et al. [20], the estimator of RVaR is expressed as

R̂VaRp,q =
(1− p)ÊSp − (1− q)ÊSq

q− p
.

2.3. Kernel Estimator

A number of authors, including Chen [19] and Yu et al. [21] proposed a kernel-based
estimator of ES that uses kernel smoothing to estimate the initial VaR and the final averaging
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of the excessive losses. Again, Bouaddi and Moutanabbir [22] proposed a new kernel-based
estimator of ES that has reduced asymptotic bias compared to the kernel estimators of
Chen [19] and Yu et. al. [21]. Bouaddi and Moutanabbir’s [22] kernel-based ES estimator is
defined as follows:

µp,θ = θµ̃p + (1− θ)µ̂p,

where θ ∈ [0, 1],

µ̃p =
1

n(1− p)

n

∑
t=1

XtK
(

ν̂p − Xt

b

)
and

µ̂p = ν̂p +
bn−1 ∑n

t=1 e
(

ν̂p−Xt
b

)
1− p

.

Here, k is the kernel function, K(t) =
∫ ∞

t k(u)du, ν̂p is F−1
n,b (p) where Fn,b(x) =

1
n ∑n

i=1 K
(

x−Xi
b

)
and

e(d) =
∫ ∞

d
K(t)dt =

∫ ∞

d
(t− d)k(t)dt.

The key issue with the kernel-based approach is the bandwidth selection. There are
many choices available in the literature, for example, Azzalini [23], Bowman et al. [24],
Chen and Tang [25], and Altman and Leger [26]. We estimate Fn,b by using the plug-in
bandwidth suggested by Altman and Leger [26] defined as

hAL =
(1/4V̂

B̂

)1/3
n−1/3, (4)

where

V̂ = $(k)
1

n(n− 1)

n

∑
i=1

n

∑
j=1,i 6=j

1
α

k
( xi − xj

α

)
,

and B̂ = 0.25D̂(F)(µ2(k))2, where $(k) = 2
∫ +∞
−∞ xk(x)K(x)dx, µ2(k) =

∫ +∞
−∞ x2k(x)dx and

D̂(F) =
1

n3α4
b

n

∑
i=1

n

∑
j=1

n

∑
l=1

k′b
( xi − xj

αb

)
k′b
( xi − xl

αb

)
.

The kernel function kb’s (not same as k) derivative is k′b. In practice αb = α and
kb = k. K is the kernel used in the kernel distribution function estimator. Using the
Epanechnikov kernel, [26] demonstrated that when making a decision, it is better to

consider α = n−0.3σ̂(xi), where σ̂(xi) = min
{

ŝ, Q3−Q1
1.349

}
, with ŝ the sample standard

deviation, and Q1, Q3 denote the first and third quartile, respectively. We calculated hAL
using the R software’s ALbw function from the kerdiest package.

Under certain assumptions and considering a symmetric probability density k satis-
fying

∫ 1
−1 uk(u)du = 0,

∫ 1
−1 u2k(u)du = σ2

K and has bounded and Lipschitz continuous
derivative and also assuming that nb(3−β) → ∞ for any β > 0 and nb4log2(n) → 0 as
n→ ∞, Bouaddi and Moutanabbir [22] proved the asymptotic normality of µp,θ .

Bouaddi and Moutanabbir [22] considered the special case θ = 0.5 and showed
that µp,0.5 has the smallest asymptotic bias among all the estimators µp,θ , for 0 ≤ θ ≤ 1.
They have also concluded that working with µp,0.5 reduces MSE and helps in eliminating
the term b2 and thus reduces the impact of b on MSE. It has a reduced asymptotic bias
compared to the estimators proposed by Chen [19] and Yu et al. [21]. Based on Bouaddi
and Moutanabbir’s [22] estimator we define the RVaR estimator

µp,q,θ =
(1− p)µp,θ − (1− q)µq,θ

q− p
.
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We define another kernel estimator of ES based on the paper by Biswas and Sen [27].
We can call Brazauskas et al.’s estimator a kernel estimator if we use the kernel distribution
function Fn, b instead of the empirical distribution function. Given Fn,b(x) and a quantile
function F−1

n,b , we may express this as

Kerp =
1

1− p

∫ 1

p
F−1

n,b (u)du.

The kernel function used is the Epanechnikov kernel and the bandwidth used is
defined in Equation (4). RVaR’s kernel-based estimator can be expressed as

Kerp,q =
(1− p)Kerp − (1− q)Kerq

q− p
.

2.4. Tail-Trimmed Estimator

Let X(+)
t = Xt I(Xt > 0) and 0 ≤ X(+)

(1) ≤ X(+)
(2) · · · ≤ X(+)

(n) be the positive numbers
ordered in ascending order. Let {kn} be an intermediate sequence, where kn → ∞ and
kn
n → 0. Hill [28] defined the following tail-trimmed estimator of ESp.

Hillp =
1

n(1− p)

n

∑
t=1

Xt I(X(+)
(kn)
≤ Xt ≤ q̂n,p),

where q̂n,p = X([(1−p)n]). The number of trimmed (omitted) tail extremes is denoted by

kn, and it represents an asymptotically negligible sample tail proportion kn
n . Hill [28]

demonstrated the asymptotic normality of Hillp assuming a geometric α-mixing condition
on {Xt} and a few additional regularity criteria. Hillp estimator’s benefit is that it yields
asymptotically standard inference even for time series with heavy tails and infinite variance
(see [28]). When the variance is infinite, tail-trimming is employed to reduce the impact of
extremes in a sample, ensuring conventional Gaussian inference and a faster rate of conver-
gence than without trimming (see [28]). Hill [28] used kn = max{1, [0.25n2/3/(ln(n))2ι]}
and ι = 10−10 in his simulation study. Based on Hillp the RVaR estimator can be written as

Hillp,q =
(1− p)Hillp − (1− q)Hillq

q− p
.

2.5. Yamai and Yoshiba’s Estimator [29]

The following estimator of ESp was defined by Yamai and Yoshiba [29]

ESp,β =
1

n(β− p)

nβ

∑
i=[np]

X(i),

where β is a positive constant such that X(1) < X(2) < .... < X([np]) < .... < X([nβ]) < .... <
X(n). For β = 1, ESp,β is similar to the empirical estimator Empp. Yamai and Yoshiba [29]
showed that under certain assumptions ESp,β is asymptotically normal. If 1− p → 0 as
n increases, we may use β = 1− rn in the ESp,β estimator, where rn converges to zero at
a faster rate than 1− p as n increases. We use nrn = max{1, 0.25(n(1− p))2/3/(ln(n(1−
p) + 1))2ι}, ι = 10−10. The selection of kn in Hill’s estimator [28] served as the basis for this
decision. Based on ESp,β the RVaR estimator can be written as

RVaRp,q,β =
(1− p)ESp,β − (1− q)ESp,β

q− p
.



Computation 2023, 11, 28 6 of 13

2.6. Filtered Historical Method

Barone-Adesi et al. [30] employ a nonparametric method to represent the distribution
of the underlying asset and refer to it as the filtered historical method. The advantages
of the historical simulation method can be outweighed by filtered historical technology.
The purpose of this approach is to bring together the advantages of historical simulation
with the strength and adaptability of conditional volatility models such as GARCH. This
approach involves fitting an appropriate time series model to the asset return data, such as
an ARMA or GARCH. This section analyses the asset return data via a GARCH (1,1) model
fit. Let êi, i = 1, 2, . . . , n, represent the fitted model’s residuals. Then the filtered historical
estimator of ES (Magadia [31]) is given by

FHp =
∑ηt>q ηt

∑ηt>q I(ηt > q)
,

where ηt = êt − 1
n ∑n

t=1 êt and q = η([pn]+1) is the ([pn] + 1)th order statistic of {η1, . . . , ηn}.
The estimator of RVaR can be written as

FHp,q =
(1− p)FHp − (1− q)FHp

q− p
.

3. Simulation

The MSE of the seven estimators Emp,q, R̂VaRp,q, Kerp,q, Hillp,q, RVaRp,q,β, FHp,q and
µp,q,θ is estimated in order to compare the behavior of these estimators in finite samples by
simulating observations from several models. Considered are three models (see [16]).

(i) {Xi}i=1,2,··· is an i.i.d. process, marginal distribution GPD with ξ = 1/3.
(ii) {Xi}i=1,2,··· is an i.i.d. process, marginal distribution Student’s t-test with 4 df.
(iii) {Xi}i=1,2,··· is an i.i.d. process, marginal distribution N(0,1).

Cont’s [32] empirical observations of the extent of the tail heaviness of the marginal
asset return distributions serve as the basis for the first two models. We take into account
the following ARMA (1,1) models in Drees [33] to examine the effect of dependence on the
aforementioned RVaR estimators

Xi − φXi−1 = Zi + θZi−1,

(iv) φ = 0.95, θ = −0.6,

(v) φ = 0.95, θ = −0.9.

Even when the data generation process is fully defined, it might be challenging to
calculate the exact value of the MSE of these estimators. Here the MSE of each of these
estimators is approximated by means of Monte Carlo (MC) simulation. MSE, as estimated
by the MC technique, for any given estimator Pn of a parameter Θ is defined as 1

B ∑B
j=1(Pnj−

Θ)2, where B represents the total number of MC samples collected from a given process,
each of size n and Pnj is an estimate calculated from the j-th MC sample, j = 1, · · · , B. Our
calculations assume that B = 1000.

The sample sizes considered are n = 30, 100, 250, 500, 1000, and (p, q) are considered
to be (0.90, 0.95), (0.90, 0.97), (0, 90, 0.99), (0.95, 0.97), (0.95, 0.99), (0.97, 0.99), and (0.99, 0.999).
We generate 1000 MC samples of size n from each of the aforementioned models (i)− (v)
and for every possible combination of (n, p, q). We calculate the values of the seven RVaRp,q
estimators for different values of (p, q) from each of these samples. For different values of
(n, p, q), as well as the underlying model, we compute the MC estimate of that estimator’s
MSE. MSE1 represents the MSE of Empp,q, MSE2 for R̂VaRp,q, MSE3 for Kerp,q, MSE4 for
RVaRp,q,β, MSE5 for FHp,q and MSE6 for Hillp,q. In Tables 1 and 2 we report the ratios
of the MSEs for different choices of p and q for i.i.d and ARMA models respectively. We
also estimate the MSE of the estimator µp,q,θ and compare it with the MSE of the empirical
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estimator. However, we observe that µp,q,θ does not outperform the Empp,q under any
conditions considered in our simulation study. Therefore, we do not report the ratio of the
MSEs in our simulation study.

Table 1. Ratios estimated for iid cases with varying p and q.

n p q MSE2
MSE1

MSE3
MSE1

MSE4
MSE1

MSE5
MSE1

MSE6
MSE1

MSE2
MSE1

MSE3
MSE1

MSE4
MSE1

MSE5
MSE1

MSE6
MSE1

MSE2
MSE1

MSE3
MSE1

MSE4
MSE1

MSE5
MSE1

MSE6
MSE1

GPD Student’s t-test N(0,1)

30 0.90 0.95 0.3704 0.6170 0.7629 0.6351 3.0778 0.4951 1.1608 1.4127 0.6442 0.6687 0.6395 2.3625 2.7567 0.4848 1.2645
0.90 0.97 1.1157 1.8370 1.7129 1.7095 8.8617 1.0266 2.2624 2.1632 0.8610 4.5020 0.9339 3.1180 2.7707 0.6174 1.5516
0.90 0.99 0.4412 0.9591 0.7595 0.7562 2.9942 0.5753 1.1668 1.2338 0.5554 0.7482 0.5373 1.7450 1.9845 0.3699 0.8247
0.95 0.97 0.2274 0.3945 0.1944 0.6249 1.4144 0.1850 0.3969 0.1919 0.3649 5.5124 0.1413 0.3976 0.1841 0.1689 3.0142
0.95 0.99 0.5868 1.5563 0.7289 0.8695 2.8118 0.5600 1.4055 1.0591 0.6043 1.1978 0.5159 1.2962 1.3685 0.3852 0.7019
0.97 0.99 0.1440 0.3882 0.3321 0.4088 0.5045 0.1092 0.3584 0.3586 0.2375 0.8010 0.0606 0.1547 0.3557 0.0687 1.1985
0.99 0.999 1.0644 1.0662 1.3973 1.0073 2.4861 0.6482 0.8074 0.6802 0.7207 3.8952 0.2561 0.1753 0.4073 0.2468 4.3096

100 0.90 0.95 1.0136 1.6392 2.7245 4.3550 30.0715 0.9458 4.1248 2.9190 0.6664 1.7078 0.9399 8.8502 3.5330 0.6421 2.9785
0.90 0.97 0.9955 1.4886 3.0427 3.4308 27.5909 0.9434 3.4578 3.2329 0.6599 1.1799 0.8891 7.6579 3.9790 0.6048 1.9272
0.90 0.99 0.9935 1.4874 3.3770 2.3855 23.3081 0.9297 3.1006 3.6722 0.7285 1.0124 0.8636 7.3716 4.5362 0.6069 1.3870
0.95 0.97 0.8958 1.3929 2.7193 2.2161 19.5694 0.9708 2.8450 3.2218 0.8399 0.9089 0.9023 6.0342 4.4099 0.6772 0.8173
0.95 0.99 1.0298 1.4818 3.1933 1.6793 16.2055 0.9606 2.3017 3.6080 0.9579 1.0801 0.8211 4.9537 4.6617 0.6669 0.8576
0.97 0.99 0.8789 1.3990 3.1690 1.4965 12.5912 0.9482 1.5360 3.3543 0.9763 1.3515 0.8838 3.5301 4.6741 0.5638 1.0281
0.99 0.999 0.1446 0.4644 0.3514 0.4153 0.8555 0.1009 0.2699 0.2766 0.2556 0.4242 0.0361 0.1070 0.2678 0.0335 0.0547

250 0.90 0.95 0.9466 1.9889 4.0012 6.6997 60.2381 0.9998 9.1369 5.6867 0.7755 1.1210 1.0190 21.5678 6.9466 0.7021 1.1124
0.90 0.97 0.9897 1.7595 4.8413 6.1350 61.9315 1.0212 7.9031 6.4552 0.7597 1.1598 1.0062 19.5989 7.8825 0.6833 1.0907
0.90 0.99 0.9877 1.6376 5.5025 4.1585 53.9612 1.0129 6.7049 7.2854 0.8263 1.2199 1.0090 19.8743 8.9640 0.7340 1.0441
0.95 0.97 1.0084 1.2008 5.0330 4.0020 48.1856 1.0511 4.3433 5.2321 0.7241 1.1937 0.9320 13.0276 6.1557 0.8061 0.9422
0.95 0.99 1.0323 1.4286 5.4753 2.5450 40.5005 1.0571 4.1732 6.8251 0.9349 1.4533 1.0289 13.6812 8.7194 0.8475 1.2020
0.97 0.99 1.0568 1.4919 5.1915 2.0892 31.0938 1.0489 3.4172 5.4880 0.9096 1.7515 1.0515 11.1775 7.7577 0.9203 1.5271
0.99 0.999 0.5210 1.2208 2.0321 0.8999 6.7592 0.3442 1.1927 2.0212 0.7868 1.7518 0.1326 1.0387 1.1924 0.2303 0.8061

500 0.90 0.95 1.0138 3.2545 3.5089 17.7057 136.2577 0.9964 16.1244 4.3109 0.6967 1.2577 0.9909 40.9206 4.9194 0.6710 1.4998
0.90 0.97 0.9901 2.4164 5.1351 14.0492 127.2878 0.9753 13.0704 6.1295 0.6891 1.2042 0.9539 35.2031 6.8935 0.6609 1.3548
0.90 0.99 0.9941 2.0466 7.0472 9.0053 110.0205 0.9883 11.0968 8.4780 0.7459 1.1941 0.9730 36.0310 9.2007 0.7047 1.1250
0.95 0.97 0.9765 2.3326 6.3236 7.1133 87.1302 1.0255 9.3827 7.4155 0.9880 1.1082 0.8989 30.5333 8.3458 0.7660 0.9435
0.95 0.99 0.9892 1.4267 8.0369 4.3250 75.5526 0.9958 6.2728 10.1727 0.8693 1.2649 0.9648 23.6321 11.8011 0.8076 0.9668
0.97 0.99 0.9560 1.4463 8.2862 3.047 58.4255 1.0175 5.1981 9.4919 0.9280 1.3822 1.1006 15.3432 11.0651 0.6994 1.1214
0.99 0.999 0.5575 1.1539 4.9985 0.9927 14.3386 0.4415 1.4266 3.7208 0.8696 2.8509 0.2257 3.2448 3.7744 0.4992 1.9549

1000 0.90 0.95 1.0051 5.1937 5.5181 36.0557 276.7373 1.0019 30.0736 6.1346 0.6674 1.1035 0.9972 75.8635 6.7328 0.6743 1.2340
0.90 0.97 0.9842 3.5747 7.7135 27.5497 250.7777 0.9842 24.3248 8.6272 0.6527 1.1199 0.9650 64.4906 9.3164 0.6678 1.2139
0.90 0.99 0.9913 2.8267 10.5087 17.2286 213.6938 1.0058 20.1837 11.9185 0.7133 1.1146 0.9898 67.1564 12.5048 0.7098 1.0592
0.95 0.97 0.9344 1.6033 7.8643 12.4267 165.433 1.0364 13.5317 9.3160 0.7719 1.0597 0.9218 32.8256 8.1436 0.9998 0.9511
0.95 0.99 0.9880 1.6997 11.7349 7.7225 145.1197 1.0136 10.7052 13.9441 0.8383 1.1503 0.9871 43.9631 15.9078 0.8122 0.9866
0.97 0.99 0.9765 0.8927 12.7676 5.0675 110.5812 1.0557 18.0558 12.8675 0.8673 1.2072 1.1277 26.4734 11.1276 0.7212 1.1267
0.99 0.999 1.1871 1.6969 11.7933 1.3241 35.9417 1.3432 1.9405 13.9584 1.7342 1.0907 1.3228 4.5892 14.5651 0.9702 0.6581

Following are the observations from Tables 1 and 2.

1. There is no estimator that consistently outperforms the others. However, there are
some circumstances in which some of these estimators perform well.

2. GPD → We observe that for (0.90, 0.99) and 30 ≤ n ≤ 1000, R̂VaRp,q outperforms

all the estimators. For (0.90, 0.97) and 100 ≤ n ≤ 1000, R̂VaRp,q outperforms all
the estimators. For (0.99, 0.999) and 100 ≤ n ≤ 500, R̂VaRp,q outperforms all the
estimators. For (0.97, 0.99) and 30 ≤ n ≤ 100, R̂VaRp,q outperforms all the estimators.
Again for n = 30 and (0.90, 0.95), (0.90, 0.99) and (0.95, 0.99), R̂VaRp,q outperforms
all the estimators. For (30, 0.95, 0.97), RVaRp,q,β outperforms all the estimator and for
(1000, 0.97, 0.99), Kerp,q outperforms all the estimator.

3. N(0, 1)→We observe that FHp,q outperforms all estimators for all possible combi-
nations of (n, p, q) except in few cases where the difference is very small. We also
observe that for 30 ≤ n ≤ 100 and for all values of (p, q), R̂VaRp,q outperforms the
Empp,q. For 250 ≤ n ≤ 500 and (0.99, 0.999), R̂VaRp,q outperforms all the estimators.
For (1000, 0.95, 0.97), R̂VaRp,q also outperforms all the estimators.

4. Student’s t-test→ We observe that for (30, 0.90, 0.95), (30, 0.95, 0.97) and (30, 0.95,

0.99), R̂VaRp,q outperforms all the estimators. For (0.97, 0.99) and 30 ≤ n ≤ 100,
R̂VaRp,q outperforms all the estimators and for 250 ≤ n ≤ 1000, FHp,q outperforms
all the estimators. For (0.99, 0.999) and 30 ≤ n ≤ 500, R̂VaRp,q outperforms all the
estimators. For (0.90, 0.95) and 100 ≤ n ≤ 1000, FHp,q outperforms all the estimators.
For 30 ≤ n ≤ 1000 and (0.90, 0.97), (0.90, 0.99), FHp,q outperforms all the estimators.
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For 100 ≤ n ≤ 1000 and (0.95, 0.97), (0.95, 0.99), FHp,q outperforms all the estimators.
Furthermore, we observe that for all values of (n, p, q), FHp,q outperforms the Empp,q.

5. ARMA → We observe that FHp,q outperforms all the estimators for all possible
combinations of (n, p, q) except for a few cases where the difference is very small. We
also observe that R̂VaRp,q outperforms the Empp,q for all possible combinations of (n,
p, q) except (250, 0.90, 0.95) and the Kerp,q outperforms the Empp,q when 30 ≤ n ≤ 100
and for all possible combinations of (p, q) except (0.97, 0.99) for the ARMA model
(0.95, −0.6). For 30 ≤ n ≤ 100 and 500 ≤ n ≤ 1000 and for all possible combinations
of (p, q), R̂VaRp,q outperforms the Empp,q for the ARMA model (0.95, −0.90).

Table 2. Ratios estimated for ARMA model with varying p and q.

n p q MSE2
MSE1

MSE3
MSE1

MSE4
MSE1

MSE5
MSE1

MSE6
MSE1

MSE2
MSE1

MSE3
MSE1

MSE4
MSE1

MSE5
MSE1

MSE6
MSE1

(0.95,−0.6) (0.95,−0.9)

30 0.90 0.95 0.9393 0.7067 1.3518 0.2338 0.9746 0.7752 1.8135 2.4579 0.3222 1.1859
0.90 0.97 0.9316 0.6697 1.3082 0.3088 0.7447 0.9325 2.0245 2.1787 0.3964 1.0901
0.90 0.99 0.9137 0.6150 1.3671 0.3274 0.9233 0.6825 1.3880 1.9503 0.2891 0.8092
0.95 0.97 0.5421 0.4609 0.8346 0.2948 1.2333 0.1900 0.1708 0.4715 0.1683 3.1030
0.95 0.99 0.9109 0.5461 1.3848 0.4560 0.8904 0.6461 1.0559 1.4892 0.3540 0.6666
0.97 0.99 0.4535 0.3658 0.8150 0.1996 1.6649 0.0931 0.0820 0.4087 0.0611 1.4097
0.99 0.999 0.8749 0.6108 1.1461 0.6229 3.0935 0.3680 0.2255 0.4473 0.2893 3.9557

100 0.90 0.95 0.9689 0.9520 1.3507 0.2755 1.0296 0.9324 4.6609 2.5654 0.3454 1.9372
0.90 0.97 0.9608 0.9086 1.4054 0.2939 0.9704 0.9157 4.1361 2.8280 0.3540 1.3882
0.90 0.99 0.9486 0.8420 1.4972 0.3166 0.9431 0.8786 4.1094 3.2281 0.3543 1.1352
0.95 0.97 0.9442 0.8481 1.5694 0.3661 0.9108 0.1900 0.1708 0.4715 0.1683 3.1030
0.95 0.99 0.9246 0.7276 1.6514 0.3740 0.8773 0.6461 1.0559 1.4892 0.3540 0.6666
0.97 0.99 0.8988 1.1909 1.7921 0.4036 0.8522 0.7961 0.6924 3.8074 0.4754 0.8236
0.99 0.999 0.2299 0.1840 0.7099 0.1251 0.1776 0.0443 0.0408 0.3247 0.0361 0.0606

250 0.90 0.95 1.0006 1.5630 1.4698 0.2923 1.0615 1.0098 10.2840 4.2836 0.3755 1.1226
0.90 0.97 0.9963 1.5095 1.5406 0.3172 1.0609 1.0008 11.1308 4.6397 0.3921 1.0594
0.90 0.99 0.9929 1.4261 1.6923 0.3517 1.0547 1.0006 8.8790 5.5738 0.4196 1.0250
0.95 0.97 0.9824 0.9441 1.6720 0.3728 1.0582 0.9882 0.8685 4.5314 0.4430 0.9914
0.95 0.99 0.9874 1.2656 1.9140 0.4438 1.0380 1.0092 7.4102 6.2170 0.5661 1.0471
0.97 0.99 0.9938 0.9173 2.0903 0.4511 1.0245 1.0356 0.9921 7.1850 0.5994 1.1297
0.99 0.999 0.8384 0.3656 2.2598 0.4904 1.0329 0.2718 0.2568 1.9939 0.2025 0.5711

500 0.90 0.95 0.9964 2.1937 1.3552 0.3188 1.0679 0.9851 19.4459 3.1098 0.3474 1.2039
0.90 0.97 0.9950 2.1005 1.4985 0.3437 1.0474 0.9821 19.1484 4.0124 0.3650 1.0914
0.90 0.99 0.9896 1.9697 1.7588 0.3741 1.0308 0.9711 17.2998 5.4852 0.3870 1.0157
0.95 0.97 0.9921 0.9717 1.9173 0.3851 1.0071 0.9794 0.8949 6.1375 0.4552 0.9784
0.95 0.99 0.9814 1.6951 2.2980 0.4573 0.9858 0.9608 14.0243 7.9080 0.5191 0.9305
0.97 0.99 0.9811 0.9609 2.4348 0.4696 0.9677 0.9632 0.9167 8.9159 0.5856 0.9132
0.99 0.999 0.9693 0.9751 6.4613 0.5531 1.2491 0.9693 0.9751 6.4613 0.5531 1.2491

1000 0.90 0.95 0.9999 3.6383 1.4551 0.2905 1.1181 0.9925 25.1321 4.0596 0.3422 1.1181
0.90 0.97 0.9996 3.4880 1.6256 0.3213 1.0407 0.9916 24.7609 5.1372 0.3599 1.0407
0.90 0.99 0.9977 3.2691 1.9563 0.3582 0.9636 0.9857 23.7890 7.0635 0.3807 0.9636
0.95 0.97 0.9958 0.9867 2.2169 0.3889 0.9461 0.9918 0.9688 7.7049 0.4750 0.9461
0.95 0.99 0.9947 2.7792 2.6165 0.4594 0.8745 0.9815 23.001 9.9279 0.5091 0.8745
0.97 0.99 0.9915 1.1148 3.1991 0.4868 0.8465 0.9853 0.9243 13.3850 1.0237 0.8465
0.99 0.999 0.9492 0.8868 5.5758 0.5882 0.7420 0.8883 0.9059 19.7915 0.6999 0.7420

Findings from Table

The aforementioned considerations serve as suggestions for selecting the most appro-
priate RVaR estimation method for a given set of real-world data. The observations suggest
that estimator R̂VaRp,q is a preferable choice for all sample sizes and (0.90, 0.99) for the
estimation of RVaR for the GPD model. For the rest of the values of (n, p, q), no estimator is
consistently outperforming the other estimators in the case of the GPD model. For Normal,
we can consider FHp,q for the estimation of RVaR for all possible combinations of (n, p, q).
R̂VaRp,q is also a preferable choice for a small sample size and for all possible combinations
of (p, q) in the case of Normal. For Student’s t-test, FHp,q is a preferable choice for all (n, p,
q) considered in our simulation study. R̂VaRp,q can also be considered for the estimation
of RVaR when the sample size is small and we have (p, q) as (0.90, 0.95), (0.95, 0.97), (0.95,
0.99), (0.97, 0.99), and (0.99, 0.999) in the case of Student’s t-test. FHp,q and R̂VaRp,q appear
to perform well for all the options of (n, p, q) explored in our analysis if the data were
generated using an ARMA model. Hence we expect the FHp,q estimator to work well in
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practice. Based on this in the next section, we perform our backtesting exercise and validate
that FHp,q is a preferable choice.

4. Backtesting

Risk measures play an important role in the computation of regulatory capital, which
is needed to ensure the financial viability of the underlying financial institution. Due to this,
the regulator must guarantee that the institution’s risk calculation technique is conservative
and that the resulting capital reserves are adequate (see [34,35]). The backtesting approach
is one of the most important quantitative methods used by regulators to examine the risk
measurement methodology’s conservativeness. As a result, extensive research is carried
out on backtests and the associated statistical features of risk estimators, and the estimat-
ing approaches are being constantly improved; see Davis [36]; Acerbi and Szekely [37];
Ziegel [38]; and Frank [39] for exemplary contributions. Backtesting involves generating
the forecast of a risk measure based on a sample and then comparing the future observed
loss to this forecast to determine a failure rate.

Basically, before risking any actual capital, an investor can use backtesting to simulate
a trading strategy using historical data to generate results and evaluate risk and profitability.
A successful backtest demonstrates to investors that the strategy is fundamentally sound
and likely to result in profits when put into action. Whereas, if a well-conducted backtest
produces poor outcomes, investors will adjust or reject a strategy. This makes it essential to
backtest RVaR estimators and to conclude that RVaR is estimated correctly. Here we perform
a backtesting exercise to validate that RVaR is estimated correctly by FHp,q estimator.

The discovery, in 2011, that the ES is not elicitable dispelled the incorrect belief that it
could not be backtested. This misunderstanding prompted a number of criticisms of the
Basel Committee’s decision to adopt ES despite VaR. Acerbi and Szekely [37] contributed
to this debate in various ways by proposing different, model-independent, nonparametric
backtesting methodologies which are shown to be more powerful than the Basel VaR
test. These tests typically require more data to be stored, but they don not impose any
conceptual constraints or computational challenges. Based on Acerbi and Szekely’s [37]
first test statistic, we backtest RVaR and the method is mentioned below.

Let {ti}T
i=0 be a sequence of historical trading days and {Li}T

i=1 the corresponding
realized trading losses. Let Fti be the realized distribution and Pti be the model predictive
distribution conditional on previous information used to compute VaR and RVaR. For each
trading day i = 1, . . . , T, let VaRF

p,i denote the VaR at level p based on Fti and VaRp,i denote
the VaR at level p based on Pti defined as follows

VaRF
p,i = F−1

ti
(p)

and
VaRp,i = P−1

ti
(p).

RVaRF
p,q,i and RVaRp,q,i are defined similarly. We want to test the null hypothesis

H0 : P[p]
ti

= F[p]
ti

, f or all ti

where P[p]
ti

(x) = min(1, Pti (x)/p) is the conditional tail distribution of the distribution of
Pti below the quantile p. The alternatives are

H1 : RVaRF
p,q,i ≥ RVaRp,q,i, f or all i and > f or some i

VaRF
p,i = VaRp,i, f or all i.
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Under the null hypothesis, the expected and realized tails of the return distribution
are assumed to be identical. The alternative hypothesis rejects RVaR without rejecting VaR.
The test statistic is defined as follows:

Z(L) =
T

∑
i=1

Li Ii
NT RVaRp,q,i

+ 1, (5)

where NT = ∑T
i=1 Ii is the number of exceedances and Ii = 1(Li<VaRp,i)

.

4.1. Significance

For the test Z, the significance is decided based on simulations.

1. For all i and m = 1, 2, . . . , M, we simulate Lm
i from Pti , where M is the number

of simulations.
2. For every m, we compute the value of Zm = Z(Lm).

3. The p-value needs to be calculated as p = ∑M
m=1

I(Zm<Z(l))
M , where Z(l) denotes the

observed value of Z.
4. The null hypothesis is rejected if the p-value is smaller than the p level.

4.2. Simulation Study

Backtesting is performed using the simulated data defined in Section 3. We maintain a
one-year (250 observations) fixed estimation learning period. The rolling window length is
250 and the backtesting period is one day. As a result, in order to carry out the backtesting
procedure, we require 500 subsequent observations for a single test run. VaR is calculated
daily, starting at 251. This is performed up until day 500. Let x = (x1, . . . , x500) be the
500 observations. RVaRp,q,i is estimated using FHp,q estimator. Using the simulated data
mentioned above, we estimate the Z and p-values for various p and q values. Assuming
that each sample represents 250 observations, we generate a total of 1000 simulated MC
samples. In Table 3, we estimated the Z and p-values for various p and q and simulated
data. We observe that the simulated p-values of Acerbi and Szekely’s test are higher than
the p level. That is, for fixed p and different values of q, the p-values are greater than p
level. Hence, we could not reject the null hypothesis. As a result, we conclude that the
FHp, q method accurately estimates RVaR.

Table 3. Z and p-values obtained using the Acerbi and Szekely’s test.

p q Z p-Value Z p-Value Z p-Value Z p-Value Z p-Value

Model (i) (ii) (iii) (iv) (v)

0.90 0.95 1.5354 0.675 1.4531 0.522 0.9985 0.415 0.9390 0.398 0.9994 0.404
0.90 0.97 1.4661 0.708 1.3878 0.522 0.9986 0.440 0.9799 0.398 0.9996 0.405
0.90 0.99 1.3785 0.646 1.3190 0.521 0.9986 0.486 0.9847 0.399 0.9999 0.407
0.95 0.97 1.3544 0.720 1.2507 0.521 0.9988 0.504 0.9873 0.395 1.0001 0.409
0.95 0.99 1.2791 0.602 1.2001 0.521 0.9988 0.538 0.9904 0.397 1.0003 0.407
0.97 0.99 1.2319 0.511 1.1142 0.520 0.9988 0.563 0.9925 0.398 1.0004 0.407
0.99 0.999 1.1306 0.485 1.0012 0.517 0.9989 0.592 0.9964 0.403 1.0007 0.413

Notes: Here (i) represents GPD, (ii) represents N(0,1), (iii) represents Student’s t-test, (iv) and (v) represents ARMA
models with coefficients (0.95,−0.6) and (0.95,−0.9).

5. Summary and Discussions
5.1. Summary of Main Results

In practice, the debate over which quantitative risk measure to use has primarily
focused on the distinction between VaR,a quantile, and ES, a tail expectation. In this paper,
we have discussed the two-parameter family of risk measures, called RVaR, which is a
natural interpolation between these two prominent risk measures. This results in a trade-off
between the former’s robustness and the latter’s sensitivity, making it a standalone risk
measure that is useful in real-world situations, so it becomes important how efficiently we
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can estimate RVaR and validate the RVaR estimates. Here we defined seven nonparametric
estimators of RVaR and compared their finite sample performances using the MC simula-
tions. We observe that the FHp,q estimator outperforms all the estimators for all choices
of (n, p, q) for N(0,1), Student’s t-test, and for ARMA models, except for few cases where
the difference is very small. For GPD, R̂VaRp,q estimator is a preferable choice compared
to other estimators. From the observation FHp,q estimator is the best choice in most of
the cases except for GPD. We perform a backtesting exercise of RVaR using Acerbi and
Szekely’s [37] method, where we estimate RVaR using FHp,q estimator. We observe that for
all the simulated data and for all choices of (p, q), we could not reject the null hypothesis.
This allows us to conclude that RVaR is calculated accurately by the FHp, q method.

5.2. Implications from Our Study

As mentioned in the beginning, there has been an extensive discussion on the use of
RVaR in the quantitative risk management literature, and [5] said that RVaR outperforms
VaR and ES in terms of robustness. However, due to a lack of literature on the estimation
methods of RVaR, it becomes difficult to estimate RVaR with precision. We are aware that
estimates of risk measures are required in a variety of real-world contexts, including capital
allocation, establishing reserve estimates, pricing extreme occurrences, and constructing
risk transfer mechanisms. Finding point estimates of a risk measure and evaluating their
variability is a crucial first step in tackling these difficulties. Hence, our aim is to find the
point estimates of RVaR and validate the estimates. For this purpose, the nonparametric
method is the best one to use because the data generation process does not need to be
precisely specified. It is resistant to incorrect marginal distribution specifications, whereas
the parametric approach is sensitive to initial modeling assumptions. Our illustrations
have focused on seven nonparametric estimators for the estimation of RVaR that might
be helpful for further risk analysis (e.g., contract pricing, risk measurement, and capital
allocation). From our simulation study and backtesting exercise, we observe that the
nonparametric estimator of RVaR, which is defined using the filtered historical estimator of
ES, outperforms the other estimator in most cases. The filtered historical technique retains
the advantages of the historical simulation method while overcoming its faults. The filtered
historical technique first applies an appropriate econometric model to historical data to
filter out stylized aspects such as leverage, heavy tail, and volatility clustering frequently
seen in real financial time series. As a result of our research, we believe that the FHp, q
estimator is a good choice for estimating RVaR.

5.3. Future Work

From our study, we observe that the filtered historical method is the best approach for
most of the conditions considered in our study, except for heavy-tailed distribution such as
GPD. In this paper, we have fitted a GARCH (1,1) model to the asset return data and then
estimated the RVaR using the filtered historical method. Future studies can be conducted
by fitting different conditional volatility models to the asset return data, studying their
statistical properties, and then estimating the RVaR using the filtered historical method.
Since this paper concentrates on unconditional RVaR, our future work will also include the
estimation of the conditional RVaR using a nonparametric approach.

From recent studies, we observe that interest in using physical processes for fast
computation is growing (see [40,41]). Investigating which efficient computations can be
harnessed by chaos is thought to be of tremendous interest among many different sorts
of physical processes. Chaotic maps in MC techniques, which represent a broad class
of stochastic computations with numerous real-world applications, were compared to
conventional pseudo-random-number generators in Umeno’s [41] study. This paper shows
that using the dynamical correlation of chaotic dynamical systems, super efficient MC
computations can be carried out. Hence, in our future work we shall use the chaotic series
for MC simulations instead of the conventional pseudo-random-number generator.
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