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Abstract: In this paper, we develop the new extended Kumaraswamy generated (NEKwG) family of
distributions. It aims to improve the modeling capability of the standard Kumaraswamy family by
using a one-parameter exponential-logarithmic transformation. Mathematical developments of the
NEKwG family are provided, such as the probability density function series representation, moments,
information measure, and order statistics, along with asymptotic distribution results. Two special
distributions are highlighted and discussed, namely, the new extended Kumaraswamy uniform
(NEKwU) and the new extended Kumaraswamy exponential (NEKwE) distributions. They differ in
support, but both have the features to generate models that accommodate versatile skewed data and
non-monotone failure rates. We employ maximum likelihood, least-squares estimation, and Bayes
estimation methods for parameter estimation. The performance of these methods is discussed using
simulation studies. Finally, two real data applications are used to show the flexibility and importance
of the NEKwU and NEKwE models in practice.

Keywords: Kumaraswamy model; moments; moment of residual life; extreme value distributions;
maximum likelihood estimation; least-squares estimation; Bayes estimation; data analysis

1. Introduction

Since the beginning of the 20th century, the literature concerning modern probability
and distribution theory has been occupied with hundreds of extensions of the classical
distributions and generators of distributions. The newly defined distribution usually
increases the capabilities of the baseline distribution thanks to the modulation of some
additional parameters. Pioneers worked hard to create new useful probability models
that enable practitioners to study simple and complex phenomena that classical models
cannot. These advanced models, which allow for the exploration of data using well-
mastered computational techniques and algorithms, can be used in other fields of study
such as engineering, biomedical studies, reliability analysis, computer sciences, agriculture,
survival analysis, demography, financial studies, economics, and others.

The basis of our contributions is the Kumaraswamy (Kw) distribution introduced
in [1]. Thus, a retrospective on this distribution seems necessary. To begin with, the Kw
distribution is one of the most useful distributions defined on (0, 1); it is traditionally
employed to analyze proportional or percentage data. It has the following “multiple
power-parameters” cumulative distribution function (cdf):

H(t) = 1− (1− ta)b, a, b > 0, t ∈ (0, 1),
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which is traditionally completed with H(t) = 0 for t ≤ 0 and H(t) = 1 for t ≥ 1. Some
details about the genesis of the Kw distribution can be found in [2] (chap. 1). Based on the
choice of parameters, the Kw distribution is considered an alternative to uniform distribu-
tion, triangular distribution, and many other distributions on the unit domain because it
can capture their shapes (see [1,3]). The authors in [4] discovered that the Kw distribution
is a special case of a three-parameter beta distribution. On the other hand, the authors in [2]
demonstrate that the Kw distribution has numerous advantages in terms of tractability and
closed-form properties. The Kw distribution has a straightforward quantile function that
is not determined by a special function. When considering a quantile-based approach to
statistical modeling, the Kw distribution may play a variety of roles; for example, the Kw-
quantile regression model is one of the more flexible quantile-based models in the literature,
see [5–7]. In addition, this distribution is appropriate for many natural phenomena whose
outcomes have a unit domain, such as hydrological data, economics, finance, reliability,
and life testing. Some examples of Kw model applications include those in [8–11]. The
tractability of the Kw distribution has appeal for mathematical and statistical uses. The au-
thors in [2] discussed skewness, kurtosis, symmetric behavior, limiting behavior, moments
of order statistics, maximum likelihood estimation, transformation and relationship with
distributions, and L-moments. Since the work in [2], more attention has been given to the
Kw distribution: the authors in [12] discussed the generalized-order statistics, and those
in [13] provided improved point estimators. In [14], the authors estimated the parameters of
the Kw distribution by Bayesian and non-Bayesian methods and also obtained its reliability
and failure rate functions under progressively type II censored data, while the authors
in [15] discussed the Bayesian and non-Bayesian parameter estimation based on type II
censored samples. The authors in [16] studied the statistical inference of the Kw distribu-
tion based on record values. The authors in [17] provided the stress–strength reliability
parameter inference based on independent random variables with the Kw distribution,
while the authors in [18] deliberated on the maximum likelihood and Bayesian technique
to estimate the stress–strength reliability parameter based on upper record values. The au-
thors in [19] addressed different methods of estimating the two-parameter Kw distribution
from a frequentist point of view.

Various techniques have been used to generalize the Kw distribution. The authors
in [20] provided a summary regarding many extended distributions, among which are tens
of Kw-related distributions. One of the most natural generalizations is the Kw generated
(KwG) family of distributions elaborated in [21]. It is defined by the cdf given by

H∗(x) = H(G(x; η)) = 1− (1− G(x; η)a)b, a, b > 0, x ∈ R,

where G(x; η) is any valid cdf derived from a continuous distribution, preferably one that
is well-known, and η is a generic vector of parameters (if any). The supports of H∗(x)
and G(x; η) are the same. In the following, to simplify the formulas, we set Ḡ(x; η) =
1 − G(x; η). The combined action of the shape parameters a and b, as well as specific
baseline distributions, has shown that the generated models are appropriate for a wide
range of data analysis scenarios. The success of introducing the KwG family has inspired
more developments in distribution theory and applied statistics. We provide references in
Table 1 to some previous achievements concerning the Kw distribution extensions proposed
in the literature to investigate lifetime data in practice.
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Table 1. Main Kw generated families of distributions.

Model Title Cumulative Distribution Function

1 Kumaraswamy-G (KwG) [20] 1− (1− G(x; η)a)b, a, b > 0, x ∈ R

2 Kumaraswamy Kw-G (KwKwG) [22] 1−
(

1−
(

1− [1− G(x; η)α]β
)a)b

, α, β, a, b > 0, x ∈ R

3 Kw Marshall–Olkin-G (KwMOG) [23] 1−
(

1−
(

G(x;η)
1−αḠ(x;η)

)a)b
, a, b > 0, α ∈ (0, 1), x ∈ R

4 Kw transmuted-G (KwTG) [24] 1−
(

1−
(
(1 + λ)G(x; η)− λG(x; η)2)a

)b
, a, b > 0, λ ∈ [−1, 1], x ∈ R

5 Kw Weibull-G (KwWG) [25] 1−
(

1−
(

1− e−α(G(x;η)/[1−G(x;η)])β
)a)b

, α, β, a, b > 0, x ∈ R

6 Kw generalized Marshall–Olkin -G (KwgMOG) [26] 1−
(

1−
([

1−
(

αḠ(x;η)
1−ᾱḠ(x;η)

)]θ
)a)b

, θ, a, b > 0, α ∈ (0, 1), x ∈ R

7 Generalized Kw-G (GKwG) [27] 1−(1−αG(x;η)a)b

1−(1−α)b , a, b > 0, α ∈ (0, 1), x ∈ R

8 Kw half logistic-G (KwHLG) [28] 1−
(

1−
(

1−(1−G(x;η))λ

1+(1−G(x;η))λ

)a)b
, λ, a, b > 0, x ∈ R

9 Exponentiated Kw-G (EKwG) [29]
[
1−

(
1− (G(x; η))a)b

]α
, α, a, b > 0, x ∈ R

10 New Kw-G family (NKwG) [30] 1−
(

1−
(

1− Ḡ(x; η)G(x;η)
)a)b

, a, b > 0, x ∈ R

11 Kw Poisson-G (KwPG) [31] 1−
(

1−
(

1−e−λG(x;η)

1−e−λ

)a)b
, λ a, b > 0, x ∈ R

12 New flexible Kw-G family by [32] 1−
(

1−
(

1− Ḡ(x; η) eG(x;η)
)a)b

, a, b > 0, x ∈ (0, 1)

Other distribution extensions related to the Kw distribution include those of the KwG-
Poisson family in [33], which was developed by compounding the KwG family, and the
Poisson distribution, contrary to the approach in [31]. The majority of the generated
models and coupling techniques can be deduced from their names: beta-generated Kw
Marshall–Olkin generated family in [34]; beta-generalized Marshall-Olkin KwG family
in [35]; Marshall–Olkin KwG family in [36]; beta KwG family in [37], etc. We specifically
refer to [38] (Tables 1a and 1b), [39] (Table 2), and [20] (Table 3) to see a variety of Kw-
related models.

Evidently, the Kw distribution is an important model that draws practitioners’ atten-
tion in both applied and theoretical studies. Hence, we draw attention to providing an
alternative and more flexible KwG family. Recently, the authors in [40] proposed another
method for extending models with a unit domain by employing algebraic manipulation in-
volving exponential and logarithmic functions with power transformation. More precisely,
they developed a new extension of beta distributions that allows the baseline model to have
one additional shape parameter. The authors in [41] used the same technique to propose a
new extension of the Topp-Leone-G distribution and demonstrate its capability in modeling
real-world data using the new extended Topp–Leone exponential (NETLE) distribution.
We aim to utilize the technique in [40] on the Kw distribution to propose a new extended
Kw (NEKwG) family of distributions. The new proposed model can accommodate any
valid baseline cdf. Furthermore, if the baseline cdf is invertible, then the proposed NEKwG
family has a closed-form quantile function, unlike the new extension in [40], which requires
a special function (i.e., a beta function). The NEKwG family can provide distributions
with various hazard rate shapes beyond the Kw distribution possibilities due to additional
parameters and the transformation introduced, depending on the choice of the baseline
cdf. In addition, we want to explore several closed-form and convenient mathematical and
statistical properties of the new model and analyze them with the aid of several mathemati-
cal techniques, computational algorithms, and computer packages. Finally, to illustrate its
importance, we show how it outperforms several existing Kw-related models in practice
using real-life data. We hope that the NEKwG family will allow statisticians to create more
flexible Kw-related models in the future.

The remainder of the paper is laid out as follows: In Section 2, the NEKwG family is
highlighted, and some of its mathematical developments are described. In Section 3, two
special members of the NEKwG family are presented. In Section 4, different estimation
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techniques are discussed and examined in simulation studies. Real data applications are
provided in Section 5. Conclusions are found in Section 6.

2. The NEKwG Family

We introduce the recently proposed KwG family in this section and review some of its
key characteristics and unique members.

2.1. Definition

We recall that G(x; η) denotes any valid cdf of a continuous distribution, x ∈ R,
and we set η as a general vector of parameters. In the following, the probability density
function (pdf) related to G(x; η) is denoted as g(x; η). The cdf of the NEKwG family of
distributions is defined by

F(x) = 1−
(

1− e−a(− log G(x;η))β
)b

x ∈ R, β, a, b > 0.

Thus, the NEKwG family’s functionality is determined by three parameters: a, b, and
β, as well as the definition of G(x; η).

Simple relationships between the NEKwG family and other families can be established.
For example, if β = 1, the NEKwG family is transformed into the KwG family in [21],
and if the baseline distribution is chosen to be the uniform distribution on unit interval
and β = 1, we get the Kw distribution; if β = 1 and b = 1, the NEKwG family is
transformed into the exponentiated G family; and if β = 1 modulating β 6= 1 opens up
some new modeling possibilities that have not been explored previously. Next, we provide
a comprehensive examination of several of the related distributional features as well as
their practical significance. For the sake of convenience in our computations, we represent
the cdf of the NEKwG family above by

F(x) = 1−
(

1− e−aG(x;η)β
)b

, x ∈ R, β, a, b > 0, (1)

where G(x; η) = − log G(x; η). On the other hand, immediate mathematical features on
G(x; η) are that the image of G(x; η) is (0, ∞), with G(x; η) → 0 as G(x; η) → 1 and
G(x; η) → ∞ as G(x; η) → 0. Furthermore, it satisfies the following inequalities: 1−
G(x; η) ≤ G(x; η) ≤ G(x; η)−1 − 1 = [G(x; η)/(1− G(x; η))]−1. For the last function, we
recognize the inverse of the odd function, which is central in many generated families
of distributions (see, for instance, [42–44]). In this regard, the NEKwG family involving
G(x; η) provides some modeling alternatives to the large panel of three-parameter families
shown in Table 1.

Based on the function in (1), the pdf of the NEKwG family is derived as

f (x) = abβ
g(x; η)

G(x; η)
G(x; η)β−1e−aG(x;η)β

(
1− e−aG(x;η)β

)b−1
. (2)

From the cdf, we can derive the survival function (sf) and hazard rate function (hrf)
by

s(x) = 1− F(x) =
(

1− e−aG(x;η)β
)b

(3)

and

h(x) =
f (x)

1− F(x)
=

abβ g(x; η)G(x; η)β−1e−aG(x;η)β

G(x; η)
(

1− e−aG(x;η)β
) , (4)

respectively. These functions, as well as their curve behaviors, are critical to comprehending
the NEKwG family’s survival analysis potential.
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Finally, to round out this functional investigation, the quantile function (qf) of the
NEKwG family is calculated as the inverse function of F(x). That is,

Q(u) = GQ

(
e−[− log(1−(1−u)1/b)/a]

1/β

; η

)
, u ∈ (0, 1), (5)

where GQ(x; η) is the qf of the baseline distribution G(x; η). The closed form of the qf is
a convenient way to generate quantiles and random data from the NEKwG models; the
median, on the other hand, is given by Q(0.5) (see [45]). The skewness and kurtosis of
the NEKwG family can be studied from the standard quantile measures called Bowley’s
skewness (see [46]) and Moor’s kurtosis (see [47]).

2.2. Some Special Distributions

Here, we derive and review two unique distributions of the NEKwG family that use
the uniform and exponential distributions as the baseline distribution.

2.2.1. New Extended Kw Uniform (NEKwU) Distribution

To begin, we select the baseline uniform distribution U(0, θ), with θ > 0. Its cdf
and pdf are defined by G(x; θ) = x/θ and g(x; θ) = 1/θ for x ∈ (0, θ), respectively. We
complete these definitions by G(x; θ) = g(x; θ) = 0 for x ≤ 0, and G(x; θ) = 1 for x ≥ θ.
By substituting these baseline functions into the cdf and pdf of the NEKwG family, we
define the NEKwU distribution. Thus, the related pdf and hrf are specified by

f (x) = abβ
1
x

(
− log

( x
θ

))β−1
e−a(− log(x/θ))β

(
1− e−a(− log(x/θ))β

)b−1

and

h(x) =
abβ(− log(x/θ))β−1e−a(− log(x/θ))β

x
(

1− e−a(− log(x/θ))β
) , x ∈ (0, θ), β, θ, a, b > 0,

respectively. It is understood that f (x) = h(x) = 0 for x 6∈ (0, θ).
Figure 1 shows a sample of plots of these functions for some parameter values.
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Figure 1. Sample of plots of (left) the pdf and (right) the hrf of the NEKwU distribution.

We see in Figure 1 that the NEKwU distribution is flexible in terms of pdf and hrf
curvatures. In particular, the pdf may have decreasing, unimodal right-skewed, unimodal
near-symmetrical, and U shapes. These properties are generally desirable to model lifetime
phenomena with such bounded value characteristics.

We finally mention the qf of the NEKwU distribution; based on Equation (5) and the
qf of the considered uniform distribution, it is given by

Q(u) = θ

(
e−[− log(1−(1−u)1/b)/a]

1/β
)

, u ∈ (0, 1).

With this function, quantile measures and functions are quite manageable.
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2.2.2. New Extended Kw Exponential (NEKwE) Distribution

For the second member of the NEKwG family, we consider the classical exponential
distribution E(λ), with λ > 0. Its cdf and pdf are defined by G(x; λ) = 1− e−λx and
g(x; λ) = λe−λx, respectively, for x > 0, and G(x; λ) = g(x; λ) = 0 for x ≤ 0. By substi-
tuting these baseline functions into the cdf and pdf of the NEKwG family, we define the
NEKwE distribution. The related pdf and hrf are specified by

f (x) = abβλ
e−λx

1− e−λx

(
− log

(
1− e−λx

))β−1
e−a(− log(1−e−λx))

β(
1− e−a(− log(1−e−λx))β

)b−1
(6)

and

h(x) =
abβ e−λx (− log

(
1− e−λx))β−1e−a(− log(1−e−λx))

β

(
1− e−λx

) (
1− e−a(− log(1−e−λx))

β
) , x, β, λ, a, b > 0,

respectively. It is understood that f (x) = h(x) = 0 for x ≤ 0. Figure 2 shows a sample
of plots of the pdf, whereas Figure 3 isolates reachable shapes of the hrf of the NEKwE
distribution for some parameter values.
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Figure 2. Sample of plots of the pdf of the NEKwE distribution: (left) decreasing and unimodal,
right-skewed, and near-symmetrical shapes and (right) unimodal right shapes with various modes
and kurtosis.

We see in Figure 2 that the pdf is versatile in functionality, with diverse decreasing
and unimodal, right-skewed, and near-symmetrical shapes.
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Figure 3. Sample of plots of the hrf of the NEKwE distribution: (a) increasing convex shape, (b) U
shape, (c) increasing concave shape, (d) reversed 1 shape, and (e) decreasing shape.

The panel of hrf shapes displayed in Figure 3 reveals the high modeling power of the
NEKwE distribution. Thus, it is perfect to model lifetime data of all nature. This aspect will
be illustrated with an appropriate data set in the application section.
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By using Equation (5) and the qf of the considered exponential distribution, the qf of
the NEKwE distribution is obtained as

Q(u) = − 1
λ

log
(

1− e−[−
1
a log(1−(1−u)1/b)]

1/β
)

, u ∈ (0, 1). (7)

Quantile measures and functions, as well as simulation studies based on the NEKwE
distribution, are simple to use with this function.

3. Mathematical Developments

In this part, we examine some specific properties of the NEKwG family. We adopt the
same mathematical concepts as those used in [48].

3.1. Asymptotic Results

To begin, some asymptotic results on the main related function are described in the
next result.

Lemma 1. The equivalence functions of the cdf, pdf, sf, and hrf of the NEKwG family are described
below, by distinguishing whether G(x; η)→ 0 or G(x; η)→ 1.

• As G(x; η)→ 0, we have

F(x) ∼ be−aG(x;η)β
,

f (x) ∼ abβ
g(x; η)

G(x; η)
G(x; η)β−1e−aG(x;η)β

,

h(x) ∼ abβ
g(x; η)

G(x; η)
G(x; η)β−1e−aG(x;η)β

.

• As G(x; η)→ 1, we have

s(x) ∼ abG(x; η)bβ ∼ ab(1− G(x; η))bβ,

f (x) ∼ abbβg(x; η)(1− G(x; η))bβ−1,

h(x) ∼ bβhG(x; η),

where hG(x; η) denotes the hrf associated to the baseline distribution.

The proof is based on standard asymptotic equivalence results (see [49] (p. 10) and [50]
(chap. 2)) that involve exponential functions of some expressions and verify by L’Hôpital’s
rule. It is thus omitted. Similar properties were derived for the new extended Topp–Leone
family in [41].

The preceding result is critical for understanding the role of the parameters a, b,
and β at the support boundaries of the baseline distribution. We see how a activates the
exponential term, as well as how b and β affect baseline-type function exponentiation.

3.2. Expansions and Approximations

A pdf’s series representation simplifies the computation of some distributional prop-
erties. The result below explores this aspect for the exponentiated pdf of the NEKwG
family.

Lemma 2. Let ξ > 0. Then we can express f (x)ξ as

f (x)ξ =
∞

∑
i,j=0

φi,j(ξ)ψj(x; β, ξ, η),
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where

φi,j(ξ) =
(abβ)ξ(−1)i+jaj(i + ξ)j

j!

(
ξ(b− 1)

i

)
and

ψj(x; β, ξ, η) =
g(x; η)ξ

G(x; η)ξ
G(x; η)β(j+ξ)−ξ .

Proof. By applying the generalized version of the binomial theorem in (2), followed by the
exponential series expansion, we have

f (x)ξ = (abβ)ξ g(x; η)ξ

G(x; η)ξ
G(x; η)ξ(β−1)e−aξG(x;η)β

(
1− e−aG(x;η)β

)ξ(b−1)

= (abβ)ξ g(x; η)ξ

G(x; η)ξ
G(x; η)ξ(β−1)

∞

∑
i=0

(
ξ(b− 1)

i

)
(−1)ie−a(i+ξ)G(x;η)β

= (abβ)ξ g(x; η)ξ

G(x; η)ξ
G(x; η)ξ(β−1)

∞

∑
i=0

(
ξ(b− 1)

i

)
(−1)i

[
∞

∑
j=0

(−1)jaj(i + ξ)j

j!
G(x; η)βj

]

=
∞

∑
i,j=0

(abβ)ξ(−1)i+jaj(i + ξ)j

j!

(
ξ(b− 1)

i

)
g(x; η)ξ

G(x; η)ξ
G(x; η)β(j+ξ)−ξ

=
∞

∑
i,j=0

φi,j(ξ)ψj(x; β, ξ, η). (8)

The proof ends.

As consequences of Lemma 2, several important moment-type measures of the
NEKwG family can have a series expansion, or approximation.

3.3. Moments and Entropy

The rth central moments and incomplete moments representations, as well as the
Rényi entropy of the NEKwG family, are provided.

1. Moments are significant theoretical measures because they provide an alternative
way to fully and uniquely specify a characteristic of a probability distribution, such as
the central tendency, deviations, skewness, and kurtosis. Incomplete moments aid in
obtaining mean deviations and some important reliability measures, such as moments
of residual life. Let X be a random variable (rv) with a distribution belonging to the
KwG family.

• The rth central moment of X can be expressed and approximated as

mr = E(Xr) =
∫ ∞

−∞
xr f (x) dx ≈

M→∞

∑
i,j=0

φi,j(1)
∫ ∞

−∞
xrψj(x; β, 1, η)dx. (9)

From it, we can derive the mean (E(X)), variance (var = E(X2) − [E(X)]2),
and other raw-moment composed measures.

• The rth incomplete moment of X can be expressed and approximated as

mr(t) = E(Xr1X<t) =
∫ t

−∞
xr f (x)dx ≈

M→∞

∑
i,j=0

φi,j(1)
∫ t

−∞
xrψj(x; β, 1, η)dx.

Based on it, we can derive various mean deviations and reverse residual life
functions.
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Remark 1. In the special case where β is an integer greater to 1 (implying that β(j +
1)− 1 is a positive integer for any positive integer j), we can express G(x; η)β(j+1)−1 in a
series form to further express ψj(x; β, 1, η). This will allow us to obtain the mean, variance,
and other possible moments in series form. The following lemma is required: logarithmic
series representation.

Lemma 3. [51] For a given power series of the form ∑∞
k=0 akxk, let n be a positive integer,

then, (
∞

∑
k=0

akxk

)n

=
∞

∑
k=0

ckxk,

where c0 = an
0 , cm = 1

m a0
∑m

j=1(jn−m + j)ajcm−j for m ≥ 1.

Hence, we can write

(− log G(x; η))β(j+1)−1 =

(
1 +

∞

∑
n=0

wn(G(x; η)− 1)n

)β(j+1)−1

where w0 = −1 and wn = (−1)n/n for n ≥ 1. Therefore, by the binomial formula, we have

G(x; η)β(j+1)−1 = 1 +
β(j+1)−1

∑
k=1

(
β(j + 1)− 1

k

)( ∞

∑
n=0

wn(G(x; η)− 1)n

)k

.

By virtue of Lemma 3, we obtain

G(x; η)β(j+1)−1 = 1 +
β(j+1)−1

∑
k=1

∞

∑
n=0

(
β(j + 1)− 1

k

)
zn(G(x; η)− 1)n,

where z0 = wn
0 and zm = [1/(m w0)]∑m

j=1(jk−m + j)wjzm−j for m ≥ 1. Thus,

G(x; η)β(j+1)−1 = 1 +
β(j+1)−1

∑
k=1

∞

∑
n=0

κi,j,k,l,n Gl(x; η),

where κi,j,k,l,n = ∑n
l=0 (

β(j+1)−1
k )(n

l )(−1)n−lzn. As a result, from (8) at ξ = 1, f (x) can be
expressed as

f (x) =
∞

∑
i,j=0

φi,j(1)
g(x; η)

G(x; η)
+

∞

∑
i,j=0

κ∗i,j,k,l,n g(x; η) Gl−1(x; η), (10)

where κ∗i,j,l,n = ∑
β(j+1)−1
k=1 ∑∞

n=0 φi,j(1)κi,j,l,n. In particular, the rth moments of X can be
expressed as

mr =
∞

∑
i,j=0

φi,j(1)
∫ ∞

−∞
xr g(x; η)G−1(x; η)dx +

∞

∑
i,j=0

κ∗i,j,k,l,n

∫ ∞

−∞
xr g(x; η) Gl−1(x; η)dx,

thus,

mr =
∞

∑
i,j=0

φi,j(1)
∫ ∞

−∞
xr g(x; η)G−1(x; η)dx +

∞

∑
i,j=0

κ∗i,j,k,l,n l−1 El(Yr), (11)

where El(Yr) is the rth moment associated to a random variable Y that follows the exponen-
tiated baseline distribution with cdf Gl(x; η). In particular, for our proposed NEKwE and
NEKwU distributions, the expression of El(Yr) are available in [52,53], respectively; the
computation of the first integral in (11) follow similar way to the El(Yr). In Tables 2 and 3,
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we provide some possible numerical values of some moments from (9) computed using the
integrate function in R3.5.3 software [54].

2. Entropy in information theory is directly analogous to entropy in statistical thermo-
dynamics. The average level of information or uncertainty in a random variable or
system is defined as its entropy. One can see [55,56].
Here, we discuss the Rényi entropy of the new model. The Rényi entropy can be
derived from the following formula:

R(ρ) =
1

1− ρ
log
[

E( f (X)ρ−1)
]
,

where ρ > 0 and ρ 6= 1, and we can approximate the expectation term as

E( f (X)ρ−1) =
∫ ∞

−∞
f (x)ρdx ≈

M→∞

∑
i,j=0

φi,j(ρ)
∫ ∞

−∞
ψj(x; β, ρ, η)dx.

An approximation of R(ρ) follows by substitution. This entropy measures the amount
of information contained in X. Another useful entropy, the Shannon entropy defined
by E[− log f (X)], is a special case of the Rényi entropy when ρ→ 1.

In Tables 2 and 3, we provide some possible numerical values of the first six moments
and Rényi entropy of the NEKwE and NEKwU distributions, respectively.

Table 2. Some possible numerical values of the first six moments and Rényi entropy of the NEKwE
distribution for some parameter values.

(a, b, β, λ) m1 m2 m3 m4 m5 m6 (ρ, R(ρ))

(0.8, 1.2, 1.2, 0.9) 0.71768 1.03313 2.28219 6.83653 25.8867 118.4506 (0.3, 1.41125)
(0.9, 1.3, 1.4, 1.0) 0.61259 0.64795 1.01191 2.12487 5.64265 18.16074 (03, 1.11913)
(1.1, 1.6, 1.5, 1.2) 0.48557 0.35739 0.36531 0.48786 0.81371 1.63761 (0.5, 0.44020)
(1.2, 1.7, 1.6, 1.4) 0.41501 0.24510 0.19427 0.19756 0.24864 0.37611 (0.7, 0.04891)
(1.4, 1.9, 1.8, 1.6) 0.36200 0.16956 0.10021 0.07306 0.06440 0.06735 (0.8, −0.28339)
(1.5, 2.1, 1.9, 1.8) 0.31390 0.12234 0.05827 0.03343 0.22783 0.01821 (0.9, −0.54607)
(1.7, 2.5, 2.0, 2.1) 0.26369 0.08228 0.03011 0.01282 0.00630 0.00355 (1.2, −0.91860)
(2.7, 3.5, 4.0, 3.1) 0.17325 0.03102 0.00575 0.00110 0.00022 4.5132×10−5 (1.5, −2.17380)
(3.0, 4.5, 4.5, 4.1) 0.12747 0.01660 0.00221 0.00030 4.1846×10−5 5.0597×10−6 (2.5, −2.78688)
(3.5, 5.0, 5.5, 5.2) 0.10027 0.01019 0.00105 0.00011 1.3697×10−5 1.5809×10−6 (4.0, −3.34023)

Table 3. Some possible numerical values of the first six moments and Rényi entropy of the NEKwU
distribution for some parameter values.

(a, b, β, θ) m1 m2 m3 m4 m5 m6 (ρ, R(ρ))

(0.2, 0.3, 0.3, 5.0) 2.86816 13.54189 65.44814 319.3925 1567.033 7714.550 (0.3, 1.019132)
(0.3, 0.4, 0.5, 5.0) 2.67845 11.85061 55.04053 260.9645 1251.6520 6047.708 (0.3, 1.29516)
(0.5, 0.6, 0.7, 6.0) 2.98179 14.18390 73.55873 396.6081 2186.6081 12,232.710 (0.5, 1.56745)
(0.7, 0.7, 0.8, 7.0) 3.655797 19.36484 112.9656 690.1417 4333.0080 27,701.230 (0.6, 1.83527)
(0.9, 0.9, 0.9, 9.0) 4.56824 28.82154 203.27880 1518.787 11,756.430 93,213.580 (0.9, 2.17128)
(1.2, 1.1, 1.3, 10.0) 5.012322 30.77091 211.8259 1567.821 12,194.33 98,314.690 (0.95, 2.22128)
(1.5, 1.3, 1.6, 11.0) 5.46455 34.2996 237.5096 1767.261 13,882.63 113,731.80 (1.1, 2.12436)
(2.2, 2.3, 2.3, 13.0) 5.88904 36.80876 242.8527 1682.792 12,190.180 91,929.880 (1.2, 1.74467)
(2.6, 2.8, 2.8, 15.0) 6.65158 45.90616 328.19940 2426.8060 18,530.43 145,889.60 (1.5, 1.57082)
(5.8, 8.9, 8.7, 30.0) 12.06492 145.8572 1766.8880 21,447.02 260,855.60 317,926.00 (5, 0.504434)

These tables validate the adaptability of the considered measures, demonstrating the
flexibility of the moments and the uncertain nature of the considered distributions.
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3.4. Order Statistics and Applications

We now investigate some distributional properties of the order statistics related
to the NEKwG family. Given a random sample of size n denoted by X1, X2, . . . , Xn,
i = 1, 2, . . . , n., the order statistics are the rvs X(1), X(2), . . . , X(n), defined in function
of X1, X2, . . . , Xn, such that X(1) = inf(X1, X2, . . . , Xn), X(n) = sup(X1, X2, . . . , Xn), and
P(X(1) ≤ X(2) ≤ . . . , X(n)) = 1.

Order statistics play a significant role in theoretical studies and practice, especially the
minimum, maximum, range, and study of a particular Xi. One can find records and the
role of order statistics in [57]. Order statistics have a wide range of applications in various
fields such as survival analysis, life testing, reliability, quality control, signal processing,
classification analysis, and wireless communication (see [58,59]). In addition, applications
of order statistics are in biomedical studies (see [60]); image processing, filtering theory,
and order statistics filters representing a class of non-linear filters (see [61]); and sampling
plans (see [62]).

Lemma 4. If the distribution of X1 belongs to the NEKwG family, then the pdf of X(i) can be
written as a finite combination of pdfs of the NEKwG family.

Proof. By using a well-known result on the pdf of order statistics, the pdf of X(i) is given by

f(i)(x) = i
(

n
i

)
f (x)F(x)i−1s(x)n−i.

It follows from the binomial formula that

f(i)(x) = i
(

n
i

) i−1

∑
j=0

(
i− 1

j

)
(−1)j f (x)s(x)j+n−i,

and we have

f (x)s(x)j+n−i = abβ
g(x; η)

G(x; η)
G(x; η)β−1e−aG(x;η)β

(
1− e−aG(x;η)β

)b(j+n−i+1)−1

=
1

j + n− i + 1
f j(x),

where f j(x) denotes the pdf of the NEKwG family with parameters a, b(j + n− i + 1) and
β. This ends the proof.

Lemma 4 may be useful to determine moment-type measures of X(i) based on those
of the NEKwG family. In particular, the rth raw moment of X(i) can be expressed as

mr,(i) = E(Xr
(i)) =

i−1

∑
j=0

υi,jm∗r,i,j,

where

υj = i
(

n
i

)(
i− 1

j

)
(−1)j 1

j + n− i + 1

and m∗r,i,j denotes the rth raw moment of a rv with distribution belonging to the NEKwG
family with parameters a, b(j + n− i + 1), and β.

We now provide some asymptotic distribution results for the extreme order statistics
in the special case of the NEKwE distribution for X1. On this topic, the general theory can
be found in [63], among others.
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Proposition 1. Assume that X1 follows the NEKwE distribution. Then, the sequence of rvs
(Bn)n≥1, where Bn = (Xn:n − an)/bn, an = Q(1− 1/n) and bn = E(X1 − an|X1 ≥ an), tends
in distribution to a standard Gumbel distribution.

Proof. We aim to apply the result in [63] (Theorem 8.3.2). In this regard, we consider the
following limit:

u(x) = lim
t→∞

s(t + xM(t))
s(t)

,

where s(t) denotes the sf of the NEKwE distribution and M(t) = E(X1 − t|X1 ≥ t).
As x → ∞, we have

s(x) =
(

1− e−a(− log(1−e−λx))
β
)b
∼ ab

(
− log

(
1− e−λx

))bβ
∼ abe−λbβx.

Hence, as t→ ∞, we have

M(t) =
∫ ∞

0

s(x + t)
s(t)

dx ∼
∫ ∞

0
e−λbβxdx =

1
λβb

.

Therefore,

u(x) ∼ lim
t→∞

e−λβb(t+x/λβb)

e−λβbt = e−x.

The direct application in [63] (Theorem 8.3.2) yields the desired result.

The asymptotic distribution for X(1) is established in the next result.

Proposition 2. Assume that X1 follows the NEKwE distribution defined with β = 1. Then,
as a → ∞, the sequence of rvs (B∗n)n≥1, where B∗n = (X(1) − a∗n)/b∗n, a∗n = Q(1/n) and
b∗n = E(a∗n − X1|X1 ≤ a∗n), tends in distribution to the distribution of the rv log(Y), where Y
follows the standard exponential distribution.

Proof. We aim to use the result in [63] (Theorem 8.3.6). In this regard, we consider

v(x) = lim
t→0

F(t + xm(t))
F(t)

,

where m(t) = E(t− X1|X1 ≤ t) and F(t) is the cdf of the NEKwE distribution defined with
β = 1. As x → 0, we have

F(x) ∼ be−a(− log(1−e−λx)) ∼ bλaxa.

Thus, as t→ 0, we have

m(t) =
∫ t

0

F(x)
F(t)

dx ∼ t−a
∫ t

0
xadx =

t
a + 1

.

Therefore, as a→ ∞,

u(x) ∼ lim
t→∞

bλa(t + tx/(a + 1))a

bλta =

(
1 +

x
a + 1

)a
→ ex.

The desired result is obtained by applying the result in [63] (Theorem 8.3.6) directly.

4. Inference

Maximum likelihood estimation, least-squares estimation, and Bayes estimation meth-
ods under the square error loss function are considered for estimating the parameters of
the NEKwG models based on data. Additionally, their performance is studied using a



Computation 2023, 11, 26 13 of 26

simulation work. Once the estimates are obtained, function estimation can be derived
through the plug-in method.

4.1. Maximum Likelihood Estimation Method

Maximum likelihood estimation is the most commonly used method in statistical in-
ferences (see [64]). It is effective due to its advantages in theoretical studies and asymptotic
efficiency. The authors of [65] provide a comprehensive note regarding this method. Let
X1, X2, . . . , Xn be a random sample of size n from the NEKwG distribution with unknown
parameters and x1, x2, . . . , xn be associated observations. Let Θ = (β, a, b, η)T be the vector
of these parameters. The maximum likelihood estimates (MLEs) of the parameters in Θ,
constituting the MLE vector Θ̂ = (β̂, â, b̂, η̂)T , can be computed by maximization of the
following function with respect to Θ, called the log-likelihood function:

`(Θ) =
n

∑
i=1

log f (xi) = n log a + n log b + n log β +
n

∑
i=1

log g(xi; η)−
n

∑
i=1

log G(xi; η)

+ (β− 1)
n

∑
i=1

logG(xi; η)− a
n

∑
i=1

G(xi; η)β

+ (b− 1)
n

∑
i=1

log
(

1− e−aG(xi ;η)β
)

. (12)

The MLEs of the parameters are also the solutions of the following equations:

∂`(Θ)

∂a
=

n
a
−

n

∑
i=1

G(xi; η)β + (b− 1)
n

∑
i=1

G(xi; η)βe−aG(xi ;η)β

1− e−aG(xi ;η)β
= 0,

∂`(Θ)

∂b
=

n
b
+

n

∑
i=1

log
(

1− e−aG(xi ;η)β
)
= 0,

∂`(Θ)

∂β
=

n
β
+

n

∑
i=1

logG(xi; η)− a
n

∑
i=1

G(xi; η)β logG(x; η)

+ a(b− 1)
n

∑
i=1

G(xi; η)β logG(xi; η) e−aG(xi ;η)β

1− e−aG(xi ;η)β
= 0

and

∂`(Θ)

∂η
=

n

∑
i=1

g
′η(xi; η)

g(xi; η)
−

n

∑
i=1

G
′η(xi; η)

G(xi; η)
+ (β− 1)

n

∑
i=1

G
′η(xi; η)

G(xi; η) log G(xi; η)

+ aβ
n

∑
i=1

G
′η(xi; η)G(xi; η)β−1

G(xi; η)

− aβ(b− 1)
n

∑
i=1

G
′η(xi; η)G(xi; η)β−1e−aG(xi ;η)β(

1− e−aG(xi ;η)β
)

G(xi; η)
= 0,

where g
′η(xi; η) and G

′η(xi; η) denote the partial derivative of g(xi; η) and G(xi; η), respec-
tively, with respect to the parameter vector η.

The theory underlying the MLEs is well known and can be applied to perform a
more detailed estimated analysis of the parameters. If n is large enough, the asymptotic
distribution of the vector of MLEs is a multivariate normal distribution with the same
dimension as the total number of unknown parameters, zero mean, and a well-identified
variance–covariance matrix. We can derive the standard errors (SEs) of the MLEs, as well
as confidence intervals and ratio likelihood tests.
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4.2. Least-Squares Estimation Method

Under the statistical setting of the above part, let us now consider the ordered ob-
servations denoted by x(1), x(2), . . . , x(n). One of the oldest methods of estimation is the
least-squares estimation (see [66]); for many decades this method was used to estimate the
parameters of beta distributions (see [67]). The least-squares estimates (LSEs) of the param-
eters in Θ, constituting the LSE vector Θ̂ = (β̂, â, b̂, η̂)T , can be computed by minimizing
the least-squares function with respect to Θ, called the least-squares function:

L(Θ) =
n

∑
i=1

(
F(x(i))−

i
n + 1

)2
=

n

∑
i=1

(
n + 1− i

n + 1
−
(

1− e−aG(x(i);η)
β
)b
)2

, (13)

These LSEs of the parameters are also the solutions of the following equations:

∂L(Θ)

∂a
= −2b

n

∑
i=1

(
1−

(
1− δ(x(i); a, β, η)

)b
− i

n + 1

)
×

δ(x(i); a, β, η)G(x(i); η)β
(

1− δ(x(i); a, β, η)
)b−1

= 0,

∂L(Θ)

∂b
= −2

n

∑
i=1

(
1−

(
1− δ(x(i); a, β, η)

)b
− i

n + 1

)
×

(
1− δ(x(i); a, β, η)

)b−1
log
(

1− δ(x(i); a, β, η)
)
= 0,

∂L(Θ)

∂β
= −2ab

n

∑
i=1

(
1−

(
1− δ(x(i); a, β, η)

)b
− i

n + 1

)
×

δ(x(i); a, β, η)G(x(i); η)β logG(x(i); η)
(

1− δ(x(i); a, β, η)
)b−1

= 0

and

∂L(Θ)

∂η
= −2abβ

n

∑
i=1

(
1−

(
1− δ(x(i); a, β, η)

)b
− i

n + 1

)
δ(x(i); a, β, η)

G
′η(x(i), η)

G(x(i); η)

×G(x(i); η)β−1
(

1− δ(x(i); a, β, η)
)b−1

= 0,

where δ(xi; a, β, η) = e−aG(x(i);η)
β
.

4.3. Bayes Estimation Method

Bayesian procedures for estimating parameters have been successfully applied in
various situations and many disciplines, for instance, in physics (see [68]), epidemiology
(see [69]), and econometrics (see [70]). One of the advantages of Bayesian methods is that
they allow estimating models when traditional estimation fails due to model complexity. We
now discuss the Bayes estimation of Θ under the square error loss (SEL) function. The Bayes
estimates (BEs) of the parameters in Θ, constituting the BE vector Θ̂ = (β̂, â, b̂, η̂)T , are
derived from the posterior distributions given the data. A brief description of the method is
proposed below. Let N and K be the number of iterations and burn in samples, respectively.
Then, the SEL function for the assumed prior distribution is minimized by the posterior
mean as

Θ̂ =
1

N − K

N

∑
i=K+1

Θ̂(i),

where Θ̂(i) refers to the MLE vector of Θ at the ith iteration. Furthermore, we can establish
the highest posterior density (HPD) credible interval for Θ̂ using the package HDInterval
elaborated in [71] in the R software.

Now, let X1, X2, . . . , Xn be a random sample of size n drawn from a general distribution
of the NEKwG family with unknown parameters, and x1, x2, . . . , xn represent associated
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observations. We suppose that η contains m − 3 unknown parameters, such as η =
(η4, η5, . . . , ηm) and turn out β, a, b, and η as independent rvs that follow the gamma
distribution with the pdf defined by

j(x) =
d

cj
j

Γ(cj)
xcj−1e−djx, x > 0,

j = 1, 2, 3, . . . , m, respectively, and j(x) = 0 for x ≤ 0. Here, Γ(c) denotes the standard
gamma function. In this context, the related likelihood function is specified by

`(Θ|data) = anbnβn
n

∏
i=1

g(xi; η)
n

∏
i=1

G−1(xi; η)
n

∏
i=1

G(xi; η)β−1 e−a ∑n
i=1 G(xi ;η)β

×
n

∏
i=1

(
1− e−aG(xi ;η)β

)b−1
.

The joint posterior pdf of Θ|data can be derived as

π(Θ|data) =
`(Θ|data)j(Θ)∫

z(data; Θ)dΘ
, (14)

where z(data; Θ) = `(Θ|data)j(Θ) is the joint pdf for the data. The conditional posterior
pdfs of β, a, b, and η can be derived from Equation (14) as

π1(a) ∝ an+c1−1e−a ∑n
i=1 G(xi ;η)β−d1a

n

∏
i=1

(
1− e−aG(xi ;η)β

)b−1
, (15)

π2(b) ∝ bn+c2−1e−d2b
n

∏
i=1

(
1− e−aG(xi ;η)β

)b−1
, (16)

π3(β) ∝ βn+c3−1e−a ∑n
i=1 G(xi ;η)β−d3β

n

∏
i=1

G(xi; η)β−1
n

∏
i=1

(
1− e−aG(xi ;η)β

)b−1
, (17)

and, for j = 4, . . . , m,

πj(η) ∝ η
cj−1
j e−a ∑n

i=1 G(xi ;ηj)
β−djηj

n

∏
i=1

g(xi; ηj)
n

∏
i=1

G−1(xi; ηj)
n

∏
i=1

G(xi; ηj)
β−1

×
n

∏
i=1

(
1− e−aG(xi ;ηj)

β
)b−1

. (18)

Since none of these posterior pdfs correspond to a common distribution, we can apply
the Metropolis–Hastings algorithm (MHA) and the Gibbs sampling technique to generate
samples from the posterior distributions. Further details in this regard can be found
in [72–74]. The MHA uses the normal distribution as a proposal distribution. The step-by-
step instructions are provided below, taking the Gibbs sampling technique into account:

(i) Begin with initial values (a(0), b(0), β(0), η(0));
(ii) Set t = 1;
(iii) Apply the MHA to generate a(t) from π1(a) in (15);
(iv) Apply the MHA to generate b(t) from π2(b) in (16);
(v) Apply the MHA to generate β(t) from π3(β) in (17);

(vi) Apply the MHA to generate η
(t)
j from πj(η) in (18);

(vii) Set t = t + 1;
(viii) Repeat the procedures in (iii) to (vii) T times.
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For a large-enough T, Θ̂ can be obtained based on the SEL function. Furthermore,
an approximate 100(1 − ε)% HPD credible interval of Θ can be established using the
procedure given in [75]. In the next subsection, we will choose some value of T to demon-
strate how the technique works on our models. In some particular problems, practitioners
have provided some ways of determining T based on their studies, we referred to the last
paragraph in [76] (sec. 4).

4.4. Simulation

Simulation studies are computer experiments that involve creating data by pseudo-
random sampling. A strong point of simulation studies is the ability to comprehend the
behavior of statistical methods because some facts, say, parameters, are known from the
process of generating the data. This allows us to consider properties of methods, such as
bias, standard deviation, etc.; one can see [77].

A simulation study was conducted to discuss the performance of the maximum likeli-
hood, least-squares, and Bayes estimation methods as described above, using the R3.5.3
software (see [54]) for the special NEKwE distribution. In this regard, M = 1000 moderate
samples, each of size n = (30, 60, 90, . . . , 300), is generated from the NEKwE distribution
for selected parameter values. For the Bayes estimation, we use T = 1000 iterations and
the first 20% as burn-in samples. We also discover that when the hyperparameters are set
to greater than one, they work well. In this case, we consider c1 = 9, d1 = 6, c2 = 9, d2 = 6,
c3 = 9, d3 = 5, c4 = 5, and d4 = 6. The bias and mean square error (MSE) of the estimates
are examined. Tables 4 and 5 show the simulation findings, including the average estimate
(AE). We provide some important steps for the numerical simulation below:

1. Choose the sample size n, replication number M, and the values of parameters
a, b, β, η;

2. Generate random sample with Ui following the uniform (0, 1) distribution, i =
1, 2, 3, · · · n;

3. Generate random sample with Xi following the NEKwE distribution, i = 1, 2, 3, · · · n,
from (7);

4. Calculate the MLEs, LSEs, and BEs of the parameters of the NEKwE distribution from
the simulated data;

5. Repeat steps 2− 4, M times;
6. Calculate the average bias and the average MSE for each parameter.

Table 4. Simulation results for the MLEs, SLEs, and BEs based on the NEKwE distribution.

Sample Size Actual Values Maximum Likelihood Least Squares Estimation Bayes Estimation

n Parameter AE MSE (Bias) AE MSE (Bias) AE MSE (Bias)

30 a = 0.9 1.8006 2.7013 (0.9001) 1.7304 6.7979 (0.8303) 1.4027 0.4654 (0.5027)
b = 0.5 1.6046 2.9620 (1.1046) 0.2263 0.7973 (−0.2734) 0.4907 0.0483 (−0.0092)
β = 1.5 1.7107 0.8835 (0.2108) 2.3014 2.8475 (0.8014) 1.1071 0.3733 (−0.3929)
λ = 0.2 0.4660 0.1726 (0.2660) 0.9407 0.8815 (0.7408) 1.3949 1.6274 (1.1949)

50 a = 0.9 1.0588 0.8541 (0.1588) 1.5768 3.8842 (0.6768) 1.3716 0.4396 (0.4716)
b = 0.5 1.4082 2.8272 (0.9081) 0.2108 0.7341 (−0.2892) 0.4499 0.0349 (−0.0501)
β = 1.5 1.9599 0.7059 (0.4599) 2.6065 2.7268 (1.1065) 1.0137 0.3641 (−0.4863)
λ = 0.2 0.3119 0.0983 (0.1186) 0.7612 0.5395 (0.5612) 1.3869 1.5649 (1.1869)

100 a = 0.9 1.1416 0.5249 (0.2415) 1.0754 0.6415 (0.1754) 1.2564 0.3129 (0.3564)
b = 0.5 1.1579 1.3741 (0.6579) 0.9353 0.6362 (0.4353) 0.4496 0.0222 (−0.0504)
β = 1.5 1.6213 0.3529 (0.1213) 1.8049 1.0281 (0.3049) 0.9662 0.3581 (−0.5339)
λ = 0.2 0.3231 0.0657 (0.1231) 0.3509 0.1247 (0.1509) 1.3065 1.3316 (1.1065)

200 a = 0.9 1.2736 0.5044 (0.3736) 1.2862 0.4045 (0.3862) 1.1489 0.1719 (0.2488)
b = 0.5 0.6213 1.0565 (0.1213) 0.1695 0.1633 (−0.3305) 0.4668 0.0143 (−0.0333)
β = 1.5 1.4605 0.2436 (−0.0395) 3.0593 1.0173 (1.5593) 0.9356 0.3458 (−0.5644)
λ = 0.2 0.3912 0.0577 (0.1912) 0.5846 0.1028 (0.3846) 1.2134 1.0191 (1.0134)
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Table 4. Cont.

Sample Size Actual Values Maximum Likelihood Least Squares Estimation Bayes Estimation

n Parameter AE MSE (Bias) AE MSE (Bias) AE MSE (Bias)

300 a = 0.9 0.9245 0.2123 (0.0245) 1.3457 0.3252 (0.4457) 1.0740 0.0175 (0.1746)
b = 0.5 0.8167 1.0143 (0.3167) 0.1575 0.1538 (−0.3425) 0.4802 0.0071 (−0.0198)
β = 1.5 1.5928 0.1516 (0.0928) 2.6932 1.0119 (1.4466) 0.9152 0.3137 (−0.5848)
λ = 0.2 0.2462 0.0322 (0.0462) 0.3140 0.1011 (0.3934) 0.1620 0.9664 (0.9621)

30 a = 0.8 1.2599 1.6494 (0.4599) 1.0549 2.0909 (0.2549) 1.4039 0.4689 (0.6393)
b = 0.6 3.1148 6.3529 (2.5148) 0.3145 0.9258 (−0.2855) 0.7568 0.1265 (0.1568)
β = 1.3 1.7215 1.2941 (0.4215) 2.1351 2.4326 (0.8351) 1.1430 0.1724 (−0.1569)
λ = 0.3 0.5408 0.8770 (0.2408) 1.4441 2.0211 (1.1441) 1.0523 1.0136 (0.7523)

50 a = 0.8 0.8026 0.6147 (0.0027) 1.0165 1.0591 (0.2165) 1.3538 0.4213 (0.5538)
b = 0.6 0.8751 2.7323 (0.2751) 0.2626 0.3763 (−0.3375) 0.6455 0.1006 (0.0455)
β = 1.3 1.8551 1.2417 (0.5551) 1.9444 1.8305 (0.6444) 1.1106 0.1242 (−0.1439)
λ = 0.3 0.7767 0.7698 (0.4767) 1.4506 1.2177 (1.1506) 1.2768 1.0119 (0.9768)

100 a = 0.8 1.0189 0.2508 (0.2189) 0.8088 0.4905 (0.0088) 1.3493 0.4201 (0.5493)
b = 0.6 0.5024 1.4239 (−0.0976) 1.4947 0.3712 (0.8947) 0.5079 0.0660 (−0.0921)
β = 1.3 1.3348 0.2385 (0.0348) 1.6855 1.1491 (0.3856) 1.0849 0.1065 (−0.2152)
λ = 0.3 0.8522 0.4676 (0.5522) 0.4497 0.2703 (0.1496) 1.5119 1.0103 (1.2111)

200 a = 0.8 0.7443 0.2100 (−0.0557) 1.0069 0.4091 (0.2069) 1.3226 0.3925 (0.5226)
b = 0.6 0.9253 1.3761 (0.3253) 0.2773 0.1868 (−0.3227) 0.4519 0.0048 (−0.1481)
β = 1.3 1.5262 0.2351 (0.2262) 1.6212 0.7274 (0.3212) 1.0901 0.1057 (−0.2099)
λ = 0.3 0.4672 0.1342 (0.1672) 1.3094 0.1977 (1.0093) 1.5502 1.0100 (1.2503)

300 a = 0.8 0.8393 0.1383 (0.0394) 0.9956 0.3129 (0.1956) 1.3172 0.3789 (0.5172)
b = 0.6 0.5177 1.1733 (−0.0080) 0.3118 0.1798 (−0.2882) 0.4432 0.0041 (−0.1567)
β = 1.3 1.3359 0.2073 (0.0359) 1.5242 0.4723 (0.2242) 1.0648 0.1036 (−0.2352)
λ = 0.3 0.3278 0.1282 (0.3279) 0.5912 0.1223 (0.7912) 0.5244 1.0031 (1.2244)

30 a = 0.9 3.6849 6.9051 (2.7849) 3.3102 4.1841 (2.4102) 1.3901 0.4901 (0.4920)
b = 0.8 0.7941 5.0230 (−0.0059) 0.2286 0.6271 (−0.5713) 0.4622 0.1470 (−0.3377)
β = 1.6 1.3163 1.8718 (−0.2837) 1.3882 1.1080 (−0.2118) 1.0320 0.4988 (−0.679)
λ = 0.1 0.6934 0.5599 (0.5934) 1.2924 1.8682 (1.1924) 1.3599 1.7374 (1.2599)

50 a = 0.9 1.3867 1.8839 (0.4868) 2.5043 2.2238 (2.0421) 1.2972 0.4145 (0.3972)
b = 0.8 1.1378 1.7544 (0.9379) 0.2289 0.5851 (−0.5711) 0.4519 0.1435 (−0.3480)
β = 1.6 2.1052 1.8452 (0.5052) 1.3469 0.8534 (−0.2531) 0.9595 0.4905 (−0.6404)
λ = 0.1 0.2209 0.0599 (0.1209) 0.2657 1.8499 (1.1657) 0.2981 1.5494 (1.1981)

100 a = 0.9 1.5896 1.6266 (0.6596) 3.9471 1.6999 (0.0471) 1.1788 0.2715 (0.2788)
b = 0.8 0.9147 1.6862 (0.1147) 0.2309 0.5715 (−0.5691) 0.4668 0.1246 (−0.3332)
β = 1.6 1.7741 0.5433 (0.1741) 1.3780 0.7239 (−0.2219) 0.9183 0.4045 (−0.6817)
λ = 0.1 0.2895 0.0552 (0.1896) 0.2221 1.8218 (1.1221) 0.2037 1.2743 (1.1037)

200 a = 0.9 2.657 1.0958 (1.7578) 3.9653 1.5652 (1.0652) 1.0464 0.0810 (0.1464)
b = 0.8 0.3649 0.8503 (−0.4351) 0.5164 0.4247 (−0.5836) 0.4946 0.0966 (−0.3054)
β = 1.6 1.1009 0.3560 (−0.4991) 1.3398 0.6188 (−0.2616) 0.8989 0.3042 (−0.7010)
λ = 0.1 0.5457 0.0402 (0.4457) 0.1476 1.6308 (1.0476) 0.1285 1.0772 (1.0285)

300 a = 0.9 2.1815 1.0396 (1.2815) 3.9173 1.4341 (1.0173) 1.0106 0.0232 (0.1106)
b = 0.8 0.4289 0.6126 (−0.3710) 0.5359 0.3921 (−0.5641) 0.4976 0.0922 (−0.3024)
β = 1.6 1.2506 0.2827 (−0.3494) 1.3718 0.6034 (−0.2282) 0.9008 0.2899 (−0.6992)
λ = 0.1 0.4141 0.0337 (0.3141) 0.0553 1.3245 (0.9053) 0.1057 1.0148 (1.0057)

Table 5. Simulation results for the MLEs, SLEs, and BEs based on the NEKwE distribution.

Sample Size Actual Values Maximum Likelihood Least Squares Estimation Bayes Estimation

n Parameter AE MSE (Bias) AE MSE (Bias) AE MSE (Bias)

30 a = 0.9 0.3817 0.9681 (−0.5182) 0.6761 0.6955 (−0.2239) 1.0351 0.0433 (0.1351)
b = 0.9 0.4463 1.9703 (−0.4537) 0.8107 2.1919 (−0.0893) 0.4917 0.1717 (−0.4083)
β = 0.8 1.6751 1.2806 (0.8750) 0.8272 0.4846 (0.0272) 0.9006 0.0335 (0.1006)
λ = 0.1 0.3460 0.1252 (0.2461) 0.9111 0.8984 (0.8111) 0.3430 1.1152 (1.0430)

50 a = 0.9 0.5165 0.9570 (−0.4835) 0.6052 0.4416 (−0.2948) 1.0020 0.0116 (0.1019)
b = 0.9 0.8511 1.2601 (−0.0489) 0.4769 2.0619 (−0.4231) 0.4989 0.1619 (−0.4016)
β = 0.8 1.5370 1.1341 (0.7371) 0.7443 0.1975 (−0.0557) 0.9003 0.0111 (0.1003)
λ = 0.1 0.2811 0.0612 (0.1811) 0.0564 0.8817 (0.8564) 0.5056 1.0144 (1.0056)
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Table 5. Cont.

Sample Size Actual Values Maximum Likelihood Least Squares Estimation Bayes Estimation

n Parameter AE MSE (Bias) AE MSE (Bias) AE MSE (Bias)

100 a = 0.9 0.3895 0.4320 (−0.5105) 0.4918 0.3323 (−0.4082) 1.0001 0.0101 (0.1001)
b = 0.9 0.4533 1.1413 (−0.4467) 0.2570 1.5292 (−0.6429) 0.4999 0.1601 (−0.4007)
β = 0.8 1.4027 0.8709 (0.6027) 0.7718 0.1407 (−0.0283) 0.8999 0.0099 (0.0999)
λ = 0.1 0.2649 0.0433 (0.1649) 0.9504 0.8489 (0.8504) 0.1900 1.0002 (1.0001)

200 a = 0.9 0.8821 0.3965 (−0.5179) 0.4250 0.2890 (−0.4749) 1.2697 0.0036 (0.3697)
b = 0.9 0.4246 1.1347 (−0.6754) 0.8399 0.6607 (−0.7600) 0.7590 0.0933 (−0.1409)
β = 0.8 1.5257 0.4936 (0.7256) 0.7760 0.0719 (−0.0239) 0.8619 0.0086 (0.0619)
λ = 0.1 0.2368 0.0206 (0.1168) 0.1919 0.8153 (0.8919) 1.0169 0.8727 (0.9169)

300 a = 0.9 0.9498 0.3642 (−0.4501) 0.8025 0.2800 (−0.4975) 1.2561 0.0033 (0.3561)
b = 0.9 0.9639 1.0483 (−0.5036) 0.6369 0.6491 (−0.7631) 0.7566 0.0963 (−0.1434)
β = 0.8 1.2168 0.4162 (0.4168) 0.8055 0.0689 (0.0056) 0.8825 0.0084 (0.6246)
λ = 0.1 0.2316 0.0207 (0.1316) 0.0965 0.8151 (0.8655) 0.0980 0.8633 (0.9098)

30 a = 1.2 1.743 1.9704 (0.0256) 1.3804 2.9631 (0.1804) 1.3034 0.0282 (0.1034)
b = 0.5 1.2735 1.4076 (1.6213) 2.9285 1.3845 (1.4285) 1.3702 0.9756 (0.8702)
β = 1.8 3.1076 1.6792 (1.3076) 3.1377 1.8231 (1.3377) 1.4807 0.1295 (−0.3193)
λ = 1.5 1.2450 1.5867 (−0.2549) 1.9838 1.2011 (0.9034) 0.9034 0.3688 (−0.5966)

50 a = 1.2 1.6408 1.8623 (0.4408) 1.3028 2.8544 (0.1028) 1.2630 0.0280 (0.0629)
b = 0.5 1.6196 1.3254 (0.1196) 1.9128 1.2836 (1.4128) 1.3304 0.7124 (0.8304)
β = 1.8 2.5037 1.2487 (0.7038) 2.8896 1.7275 (1.0896) 1.4823 0.1278 (−0.3178)
λ = 1.5 1.9977 1.5511 (0.4977) 1.7057 1.0768 (0.2057) 0.9057 0.3680 (−0.5945)

100 a = 1.2 1.3408 1.4408 (0.2408) 1.2354 1.4042 (0.0354) 1.2025 0.0214 (0.0025)
b = 0.5 1.3463 1.2978 (0.8463) 1.4629 1.1302 (0.9629) 1.2389 0.5877 (0.7389)
β = 1.8 2.2718 1.1064 (0.4718) 2.6212 0.8195 (0.8212) 1.5189 0.1085 (−0.2812)
λ = 1.5 1.8946 1.0894 (0.3946) 1.5977 0.5677 (0.0977) 0.9187 0.3131 (−0.5813)

200 a = 1.2 1.4169 1.1409 (0.2167) 1.2822 1.1884 (0.0822) 2.1391 0.0108 (−0.0609)
b = 0.5 0.9447 1.1756 (0.4442) 1.1759 1.0702 (0.6759) 1.0670 0.3774 (0.5671)
β = 1.8 2.0925 0.6398 (0.2925) 2.3519 0.3334 (0.5519) 1.5915 0.0796 (−0.2085)
λ = 1.5 1.8495 1.0294 (0.3495) 1.6843 0.5305 (0.1843) 0.9908 0.3082 (−0.5093)

300 a = 1.2 1.3656 1.1399 (0.1656) 1.3682 0.5389 (0.1682) 1.1149 0.0104 (−0.0851)
b = 0.5 0.8583 1.1012 (0.3583) 1.0543 1.0513 (0.5542) 0.9693 0.2727 (0.4693)
β = 1.8 2.0026 0.5430 (0.2026) 2.2385 0.1725 (0.4385) 1.6363 0.0634 (−0.1637)
λ = 1.5 1.7865 1.0184 (0.2865) 1.7890 0.4505 (0.2894) 1.0262 0.3079 (−0.4738)

30 a = 1.3 1.7701 2.6890 (1.5491) 1.6335 1.4435 (0.3335) 1.2880 0.0163 (−0.0119)
b = 0.7 1.0233 1.3059 (1.5331) 0.9805 1.9453 (1.1056) 1.0440 0.5653 (0.7406)
β = 1.5 1.4934 1.8305 (−0.065) 1.6488 1.5479 (1.1488) 1.4599 0.0277 (−0.0401)
λ = 1.5 1.0851 1.9755 (1.5851) 1.4190 1.4532 (0.6119) 0.9538 0.3060 (−0.5462)

50 a = 1.3 1.7819 2.6289 (0.4819) 1.5130 1.4428 (0.2130) 1.2487 0.0108 (−0.0513)
b = 0.7 1.3448 1.2257 (1.6448) 2.6199 1.7703 (1.9199) 1.4130 0.5307 (0.7130)
β = 1.5 2.0436 1.7296 (0.5436) 2.4146 1.1699 (0.9146) 1.4379 0.0241 (−0.0621)
λ = 1.5 2.4704 1.7845 (0.9704) 2.0158 1.4152 (0.5158) 0.9584 0.3034 (−0.5406)

100 a = 1.3 1.4670 1.6288 (0.1670) 1.4288 1.2613 (0.1287) 1.2057 0.0103 (−0.0943)
b = 0.7 2.3552 1.1633 (1.6552) 1.7995 1.5024 (1.0995) 1.3747 0.4955 (0.6747)
β = 1.5 1.8117 1.2098 (0.3117) 2.0658 1.0073 (0.5657) 1.4328 0.0227 (−0.0672)
λ = 1.5 2.0452 1.6784 (0.5452) 2.0116 1.3612 (0.5126) 0.9522 0.3008 (−0.5478)

200 a = 1.3 1.7226 1.3829 (0.4226) 1.3905 1.0983 (0.0903) 1.1658 0.0101 (−0.1343)
b = 0.7 1.2389 1.1065 (0.5389) 1.5357 1.1174 (0.8357) 1.2681 0.3853 (0.5681)
β = 1.5 1.5232 0.7898 (0.0232) 1.8928 0.9315 (0.3928) 1.4646 0.0221 (−0.0356)
λ = 1.5 2.4740 1.6092 (0.9740) 1.9057 1.2091 (0.4058) 0.9821 0.3001 (−0.5179)

300 a = 1.3 1.4445 1.1039 (0.1445) 1.3748 1.0700 (0.0748) 1.1678 0.0100 (−0.1322)
b = 0.7 1.0345 1.0288 (0.8345) 1.4435 1.0874 (0.7435) 1.1725 0.1886 (0.4725)
β = 1.5 1.6759 0.4200 (0.1758) 1.7882 0.6083 (0.2882) 1.1180 0.0215 (−0.0195)
λ = 1.5 2.0199 0.5198 (0.5199) 1.8745 0.3745 (0.3745) 1.4170 0.2615 (−0.4583)

From Tables 4 and 5, we can see that the MLEs, LSEs, and BEs perform consistently,
that the MSEs of the estimates decrease as the sample size increases, and that the bias
is sometimes negative. As a result, the related approaches can be deemed effective in
estimating the parameters of the NEKwE distribution, as well as those of the other NEKwG
family members.
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5. Real Data Illustrations

Using two real data studies, this section compares the flexibility and advantages of
the models generated by the NEKwG family to those generated by other popular families.
To be more specific, the NEKwE and NEKwU models are considered under two different
data analysis scenarios. We compare the performance of the models in terms of fit using
the Akaike information criterion (AIC), Bayesian information criterion (BIC), Corrected
AIC (CAIC), Kolmogorov–Smirnov (KS), Anderson–Darling (AD), and Cramér–von Mises
(CvM). As with the numerical values of the AIC, BIC, and CAIC, the estimated maximum
likelihood function (L) is also computed. The distribution with the smallest value among
these measures represents the data better than the others.

The considered competing models are listed as follows: Weibull–Pareto (WP) model
(see [78]), transmuted exponentiated U-quadratic (TEUq) model (see [79]), Kw exponen-
tiated U-quadratic (KwEUq) model (see [80]), modified Weibull (MW) model (see [81]),
flexible Weibull (FW) model (see [82]), Kw-power (KwP) model (see [83]), Poisson-odd-
exponential uniform (POEU) model (see [84]), beta uniform (BU) model (see [85]), ex-
ponentiated Kw-power (EKwP) model (see [86]), beta exponential (BE) model (see [87]),
beta generalized exponential (BGE) model (see [88]), beta Erlang-truncated exponential
(BETE) model (see [89]), generalized exponential Poisson (GEP) model (see [90]), gener-
alized exponential (GE) model (see [52]), exponentiated Nadarajah and Haghighi (ENH)
model (see [91,92]), extended Erlang-truncated exponential (EETE) model (see [93]), Kw
half-logistic (KwHL) model (see [94]), Kw exponential (KwE) model (see [95]), Kw Weibull
(KwW) model (see [96]), extended cosine exponential (ExCE) model (see [48]), exponenti-
ated sine exponential (ESE) model (see [97]), exponentiated Kw exponential (EKwE) model,
and exponentiated Kw Weibull (EKwE) model (see [29]).

5.1. First Data Illustration

The first data set is reported from [98]. The values are the failure and run times from a
sample of 30 devices: 2, 10, 13, 23, 23, 28, 30, 65, 80, 88, 106, 143, 147, 173, 181, 212, 245, 247,
261, 266, 275, 293, 300, 300, 300, 300, 300, 300, 300, 300. The numerical results of the estimates
and goodness of fit measures of the competing models for the first data are given in Tables 6
and 7. The results obtained based on the six goodness of fits in Table 7 indicate that the
NEKwU model has the least numerical values, thus representing the data better than the
other competing models, including some of the more popular Kw generated models with
respect to uniform distribution. Importantly, note that Figure 4 shows how well the plots
of the histogram of the first data are fitted by the NEKwU pdf and how well the empirical
cdf is fitted by the NEKwU cdf. In particular, from Figure 4 (left), it is clear that the fitted
NEKwU pdf has well captured the special U-shape of the histogram, and the data at the
boundaries have also been properly fitted. Figure 5a shows the quantile–quantile (QQ) plot
of the NEKwU model to visually check the data adequacy and its relatedness. In addition,
Figures 5b–d are the plots of the profile log-likelihood functions to present the uniqueness
of the obtained MLEs.

Table 6. MLEs of the parameters of the considered models for the first data set.

Model â b̂ ĉ α̂ β̂ λ̂ θ̂ γ̂

NEKwU 0.0232 0.1111 − − 2.8583 − 300.9 −
KwP 1.4217 0.3686 − − − 301 0.3439 −
EKwP 0.9966 0.3316 − 0.6703 − 301.0 0.8344 −
KwEUq 2.0000 300.00 − − − 1.0137 0.7106 1.0137
POEU − − − 0.1926 − 1.4578 330.00 −
BU 0.5516 0.3660 − − 0.0033 − − −
WP − − 8.0589 − 0.1337 − 0.1000 −
TEUq 1.9999 300 − − − −0.8260 − 0.6099
MW − − − 0.0179 0.4537 0.0071 − −
FW − − − 3.284× 10−3 15.8700 − − −



Computation 2023, 11, 26 20 of 26

Table 7. Estimated log-likelihood value, model selection criteria, and goodness-of-fit measures of the
considered models for the first data set.

Model L AIC BIC CAIC KS AD CvM

NEKwU −154.0918 316.1836 321.7884 317.7836 0.1293 0.6315 0.0702
KwP −155.7924 319.5848 325.1896 321.1848 0.3944 0.8053 0.0939
EKwP −155.7217 321.4434 328.4494 323.9434 0.2813 0.7592 0.0881
KwEUq −169.9056 349.8112 356.8172 352.3112 0.2333 4.1183 0.7248
POEU −174.0059 354.0118 358.2153 354.9349 0.2390 0.9243 0.1237
BU −156.5669 319.9338 324.1374 320.8569 0.2813 0.7629 0.0889
WP −187.2308 380.4616 384.6652 374.6924 0.2225 2.0018 0.3501
TEUq −167.9419 343.8838 349.4886 345.4838 0.2333 4.2319 0.7462
MW −178.0635 362.127 366.3305 363.0500 0.1820 1.9999 0.2712
FW −191.810 387.6208 390.4232 388.0650 0.3944 1.9939 0.3191
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Figure 4. Plots of the histogram with (left) the fitted pdf and (right) fitted cdf of the NEKwU model
for the first data set.
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Figure 5. (a) QQ plot of the NEKwU model and (b–d) plots of the profile log-likelihood of the
NEKwU model for the first data set, for a, b, and β, respectively.

5.2. Second Data Illustration

Here, we want to display how the new families can perform well when dealing with
COVID-19 data. The second data set is the number of daily new deaths caused by COVID-
19 in the UK from 15 February 2020 to 7 September 2021. The data were extracted from
the following internet link: https://www.worldometers.info/coronavirus/country/uk/
accessed on 3 September 2022: 1, 1, 1, 4, 2, 1, 18, 14, 22, 15, 33, 42, 32, 54, 24, 67, 143, 178,
226, 283, 294, 214, 375, 383, 662, 641, 735, 761, 645, 568, 1040, 1035, 1109, 1152, 840, 685, 745,
1044, 841, 1031, 937, 1111, 495, 557, 1169, 824, 719, 1004, 832, 405, 320, 903, 768, 658, 710, 588,
291, 278, 677, 612, 493, 590, 289, 241, 194, 564, 444, 377, 328, 428, 100, 150, 473, 309, 284, 308,
230, 387, 103, 124, 426, 345, 270, 149, 73, 94, 237, 249, 139, 253, 151, 61, 47, 188, 159, 82, 133,
104, 33, 30, 114, 106, 75, 79, 75, 34, 14, 89, 87, 102, 78, 40, 31, 21, 51, 99, 40, 48, 35, 19, 11, 53,
57, 32, 34, 17, 9, 8, 46, 26, 23, 27, 9, 11, 10, 25, 17, 9, 32, 15, 8, 3, 21, 34, 2, 18, 13, 5, 1, 18, 14, 18,

https://www.worldometers.info/coronavirus/country/uk/
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12, 3, 5, 17, 14, 20, 18, 11, 3, 5, 3, 12, 16, 6, 2, 18, 6, 4, 16, 16, 12, 9, 12, 1, 2, 3, 10, 13, 10, 12, 2, 3,
32, 8, 14, 6, 9, 5, 9, 27, 20, 21, 27, 27, 18, 11, 37, 37, 40, 35, 34, 17, 13, 71, 71, 59, 66, 49, 33, 19,
76, 70, 77, 87, 81, 65, 50, 143, 137, 138, 136, 150, 67, 80, 241, 191, 189, 224, 174, 151, 102, 368,
310, 280, 274, 326, 162, 136, 398, 493, 379, 356, 414, 156, 194, 533, 596, 564, 377, 463, 168, 213,
599, 530, 502, 511, 341, 399, 206, 608, 697, 498, 522, 480, 213, 205, 604, 649, 415, 505, 398, 231,
172, 617, 534, 517, 426, 520, 144, 232, 507, 613, 533, 490, 535, 326, 215, 692, 745, 575, 571, 241,
316, 402, 415, 983, 966, 614, 446, 455, 452, 831, 1044, 1165, 1328, 1038, 564, 530, 1246, 1567,
1251, 1283, 1298, 672, 600, 1613, 1824, 1293, 1404, 1351, 611, 593, 1634, 1729, 1242, 1248, 1203,
588, 407, 1452, 1325, 916, 1016, 829, 374, 333, 1055, 1003, 679, 759, 622, 258, 230, 800, 739, 455,
534, 446, 214, 178, 549, 443, 323, 346, 290, 144, 104, 343, 315, 242, 236, 158, 82, 65, 231, 190,
181, 175, 121, 52, 64, 110, 141, 94, 101, 96, 33, 17, 112, 98, 63, 70, 58, 19, 22, 56, 43, 51, 52, 10,
10, 26, 20, 45, 53, 60, 40, 7, 13, 23, 38, 30, 34, 35, 10, 4, 31, 22, 18, 40, 32, 11, 6, 17, 29, 22, 15, 7,
14, 1, 4, 27, 13, 15, 5, 2, 4, 20, 11, 11, 17, 7, 4, 5, 7, 3, 7, 9, 6, 5, 3, 15, 9, 10, 10, 7, 6, 1, 12, 18, 11,
13, 4, 1, 13, 6, 7, 17, 12, 8, 3, 10, 9, 19, 11, 14, 6, 5, 27, 19, 21, 18, 23, 11, 3, 23, 14, 22, 27, 18, 15,
9, 37, 33, 35, 29, 34, 26, 6, 50, 49, 63, 49, 41, 25, 19, 96, 73, 84, 64, 86, 28, 14, 131, 91, 85, 68, 71,
65, 24, 138, 119, 86, 92, 103, 39, 37, 146, 104, 94, 100, 91, 61, 26, 170, 111, 113, 114, 104, 49, 40,
174, 149, 140, 100, 133, 61, 48, 50, 207, 178, 121, 120, 68, 45, 209, 191, 167, 147, 156, 56, 61, 185,
201, 158, 178, 164.

The computed numerical results of the estimates and six goodness-of-fit measures
for the second data set are provided in Tables 8 and 9, respectively. The results show
that the NEKwE model fit the data better than the other competing models because it
has the lowest values for all model selection measures: AIC = 7001.93, BIC = 7019.24,
CAIC = 7002.01, KS = 0.0483, AD = 1.3119, and CvM = 0.2142. Based on these data,
the NEKwE model outperforms many popular Kw and exponentially generated models,
clearly outperforming those in Table 9. In support of that, Figure 6 shows how excellently
the plots of the histogram of the second data are fitted by the NEKwE pdf and how well the
empirical cdf is fitted by the NEKwE cdf. Based on Figure 6 (left), it is clear that the fitted
NEKwE pdf has perfectly fitted the decreasing tendency of the histogram, importantly, the
KS = 0.0483, which is considerably very small. Figure 7a shows the QQ plot of the NEKwE
model, illustrating that the quantiles are quite related. Finally, Figures 7b–d are the plots of
the profile log-likelihood functions of the NEKwE model to show the uniqueness of the
estimated MLEs.

Table 8. MLEs of the parameters of the considered models for the second data set.

Model â b̂ ĉ α̂ β̂ λ̂ θ̂

NEKwE 0.0130 0.1931 − − 3.2126 0.0036 −
KwE 0.6357 12.0400 − − − 1.038× 10−4 −
KwHL 0.6300 13.7800 − 1.609× 10−4 − − −
KwW 3.6148 0.1326 − − 0.5183 0.6516 −
EKwE 3.2390 0.0910 0.2575 0.0199 − − −
EKwW 4.0170 0.1206 0.5123 − 0.6496 0.2249 −
BE 0.5383 3.2864 − − − 0.0007 −
BGE 10.1540 8.3090 − 0.1091 − 7.895× 10−5 −
BETE 0.5371 2.0977 − 0.0303 − − 0.0394
GE − − − 0.5304 − 0.0026 −
GEP − − − 0.0021 0.5997 1.3324 −
ENH − − − 0.3536 1.0203 0.0443 −
EETE − − − 0.5304 0.0041 1.0299 −
ESE − − − 0.4998 − 0.0001 −
ExCE − − − 0.2250 − 0.0010 −
E − − − − − 0.0041 −
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Table 9. Estimated log-likelihood value, model selection criteria, and goodness-of-fit measures of the
considered models for the second data set.

Model L AIC BIC CAIC KS AD CvM

NEKwE −3496.97 7001.93 7019.24 7002.01 0.0483 1.3119 0.2142
KwE −3525.98 7057.96 7070.94 7058.01 0.0760 5.2396 0.8618
KwHL −3525.54 7057.09 7070.06 7057.13 0.0745 5.2324 0.8624
KwW −3511.12 7030.25 7047.55 7030.32 0.0590 2.5505 0.3974
EKwE −3510.95 7029.89 7047.19 7029.96 0.0584 2.9721 0.4813
EKwW −3508.79 7027.59 7049.22 7027.70 0.0570 2.3095 0.3605
BE −3534.44 7074.87 7087.85 7074.92 0.0910 6.7660 1.1255
BGE −3517.18 7042.35 7059.66 7042.42 0.0636 3.6641 0.5921
BETE −3534.51 7077.02 7094.32 7077.09 0.0915 6.7869 1.1293
GE −3535.16 7074.31 7082.96 7074.33 0.0925 6.9233 1.1533
GEP −3529.84 7065.68 7078.66 7065.73 0.0859 5.8390 0.9623
ENH −3523.08 7052.16 7065.14 7052.20 0.9147 4.8904 0.7838
EETE −3535.16 7076.31 7089.29 7076.36 0.0925 6.9235 1.1534
ESE −3539.93 7083.86 7092.52 7083.89 0.0956 7.7026 1.2884
ExCE −3653.67 7311.35 7320.00 7311.37 0.2528 7.5756 1.2586
E −3626.78 7255.55 7259.88 7255.56 0.2335 7.0396 1.1712
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Figure 6. Plots of the histogram with (left) the fitted pdf and (right) fitted cdf of the NEKwE model
for the second data set.
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Figure 7. (a) QQ plot of the NEKwE model and (b–e): plots of the profile log-likelihood of the
NEKwE model for the second data set, for a, b, β, and λ, respectively.

6. Conclusions

In this research paper, we proposed a new extension of the Kumaraswamy generated
(KwG) family of distributions, designated as the NEKwG family. The model has flexible
members capable of fitting decreasing, increasing, unimodal, and bathtub failure rates.
Some special members were presented and studied, namely, the new extended Kw uniform
(NEKwU) and new extended Kw exponential (NEKwE) distributions. Several properties of
the NEKwG family were established, such as closed-form expressions for the probability
density function and its series representation, the cumulative distribution function, various
moments, order statistic results, and Rényi entropy.

Maximum likelihood estimates, least-squares estimates, and Bayes estimates of the
model parameters were examined. The simulation studies were carried out using the
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NEKwE model, which examined the mean square error and bias of the estimators from the
three techniques. The simulation result was quite good, as both the MSEs of the estimates
decreased as sample size increased. In addition, two real-world data illustrations were
provided to demonstrate the flexibility of the fitted model and how they outperform other
popular models in practice as measured by some model selection criteria and goodness-of-
fit tests; one of the data sets is the number of daily new deaths due to COVID-19 in the UK
from 15 February 2020 to 7 September 2021.

Finally, we recommend further analysis of the other models of the NEKwG family
and their estimation methods, such as product spacing and percentile estimation methods,
among others. Discrete versions or multivariate extensions are also interesting directions
of research.
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