
Citation: Yulita, I.N.; Amri, N.A.;

Hidayat, A. Mobile Application for

Tomato Plant Leaf Disease Detection

Using a Dense Convolutional

Network Architecture. Computation

2023, 11, 20. https://doi.org/

10.3390/computation11020020

Academic Editors: Jaroslaw

Krzywanski, Yunfei Gao, Marcin

Sosnowski, Karolina Grabowska,

Dorian Skrobek, Ghulam Moeen

Uddin, Anna Kulakowska, Anna

Zylka and Bachil El Fil

Received: 4 December 2022

Revised: 27 January 2023

Accepted: 28 January 2023

Published: 31 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Mobile Application for Tomato Plant Leaf Disease Detection
Using a Dense Convolutional Network Architecture
Intan Nurma Yulita 1,* , Naufal Ariful Amri 2 and Akik Hidayat 2

1 Research Center for Artificial Intelligence and Big Data, Universitas Padjadjaran,
Sumedang 45363, Indonesia

2 Department of Computer Science, Faculty of Mathematics and Natural Sciences,
Universitas Padjadjaran, Sumedang 45363, Indonesia

* Correspondence: intan.nurma@unpad.ac.id

Abstract: In Indonesia, tomato is one of the horticultural products with the highest economic value.
To maintain enhanced tomato plant production, it is necessary to monitor the growth of tomato
plants, particularly the leaves. The quality and quantity of tomato plant production can be preserved
with the aid of computer technology. It can identify diseases in tomato plant leaves. An algorithm for
deep learning with a DenseNet architecture was implemented in this study. Multiple hyperparameter
tests were conducted to determine the optimal model. Using two hidden layers, a DenseNet trainable
layer on dense block 5, and a dropout rate of 0.4, the optimal model was constructed. The 10-fold
cross-validation evaluation of the model yielded an accuracy value of 95.7 percent and an F1-score
of 95.4 percent. To recognize tomato plant leaves, the model with the best assessment results was
implemented in a mobile application.

Keywords: tomato; DenseNet; convolutional neural network; mobile application

1. Introduction

The agricultural industry is currently expanding quickly. Indonesia is a country with
a large amount of agricultural potential [1]. Its location on the equator and encirclement by
an ocean results in abundant rains and good land. In Indonesia, fertile soil is characterized
by the presence of numerous plant species [2]. Tomato is one of the plants that have
the capacity to flourish in Indonesia [3–5]. In addition, it has a variety of applications,
ranging from food additives, coloring agents, and cosmetics to sauces, sweets, and other
food industry raw materials. Therefore, the tomato plant is an economically valuable
horticultural item [6].

The production continues to expand annually. It tends to expand. A substantial
growth rate necessitates consistency so that the agricultural industry does not see a decline
in quality or quantity. During their growth stage, these plants require care to prevent a
decline in quality and quantity [7]. Although they are simple to cultivate, they are highly
susceptible to illness. During the growth period, illnesses can be recognized by observing
changes in leaf texture, such as spotting, a mosaic formation, or color alterations [8,9].

Approximately 85 percent of plant illnesses are caused by fungi or fungi-like organisms.
The fields of biotechnology and molecular biology have transformed the diagnosis of plant
diseases. There were developments in invasive diagnostic procedures, such as Western
blotting, enzyme-linked immunosorbent assay (ELISA), and microarrays. Fluorescence
spectroscopy, visible/near-infrared (VNIR) spectroscopy, fluorescence imaging, and hyper-
spectral imaging are the most popular noninvasive approaches. Cui et al. [10] examined the
benefits and drawbacks of these approaches. Golhani et al.’s research aimed to examine the
applicability of hyperspectral imaging for plant disease identification [11].

Some leaves of plants in Indonesia are affected by spotting and rotting, although it is
difficult to discern between the two illnesses with the naked eye. Consequently, farmers

Computation 2023, 11, 20. https://doi.org/10.3390/computation11020020 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11020020
https://doi.org/10.3390/computation11020020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-8539-3311
https://doi.org/10.3390/computation11020020
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11020020?type=check_update&version=2


Computation 2023, 11, 20 2 of 15

are frequently misidentified as those responsible for crop failure. Therefore, we require
the aid of computer technology employing deep learning, which is a subfield of machine
learning. It is a novel viewpoint on learning models that emphasizes layer-based learning.
The model closely resembles the human brain. Its neurons are coupled to one another to
form interconnected networks. Deep learning employs numerous techniques, including
convolutional neural networks (CNNs), recurrent neural networks (RNNs), gated recurrent
units (GRUs), and long short-term memory (LSTM). As indicated in Table 1, deep learning
has been widely used in several scenarios in everyday life.

Table 1. Some applications of deep learning in daily life.

Architecture Application

RNN Speech recognition [12], handwriting recognition [13],
activity recognition [14]

GRU Speech recognition [12], emotion recognition [15], sign
language recognition [16]

LSTM Speech recognition [12], activity recognition [17],
emotion recognition [18]

CNN Handwriting recognition [13], activity recognition [14],
image captioning [19], remote sensing [20]

The CNN is the method with the most significant results for image recognition. It is
one of the deep learning methods that are commonly used for image analysis, detection,
and recognition [13]. It attempts to mimic picture recognition processes in human visual
conceptions. A CNN imitates the concept of human nerves by connecting one neuron to
the next. A CNN requires parameters to characterize the properties of each network used
for object detection. A CNN is comprised of neurons, each of which has a weight, bias, and
activation function for identifying images. A CNN’s design consists of two layers: the layer
for feature extraction and the layer for completely connected nodes [20].

Using a CNN and the DenseNet architecture [21], this work classified images in order
to identify diseases on the leaves of tomato plants. It is one of the CNN architectures with
the dense block characteristic, where blocks on each layer are indirectly connected to all
layers [22]. It has various benefits, including easing the challenge of altering a variable,
enhancing feature rollout, and drastically decreasing the number of parameters. In this
architecture, each dense block receives input from the pixel picture in the form of a matrix,
which is subsequently processed by the batch normalization layer. This layer aids to
prevent overtraining during workouts. This architecture also includes a bottleneck layer
whose purpose is to limit the quantity of input feature maps in order to boost computation
efficiency. This work implemented a mobile, Indonesian language application for detecting
diseases on tomato plant leaves, allowing farmers in Indonesia to readily diagnose tomato
plant leaf diseases.

2. Related Works

Disease detection in tomato plants has been studied a lot. The early detection and
classification of diseases affecting tomato plants can help farmers avoid using costly crop
pesticides and increase food production. CNNs have been widely implemented to solve this
problem because of their superiority in processing images. A portion of the current research
focuses not only on model design but also on preprocessing processes, classification types,
and implementation platforms.

Although a lot of work has been put forth to classify illnesses that might affect
tomatoes [23], it is still a challenge to quickly locate and identify different types of
tomato leaf diseases due to the striking similarities between healthy and diseased plant
leaf parts. As if this were not enough to complicate things, the procedure for detecting
plant leaf diseases is further hampered by the poor contrast information between
the background and foreground of a suspicious sample. Tomato plant leaf disease



Computation 2023, 11, 20 3 of 15

classification is a challenging problem. This research produced a strong deep learning
(DL)-based technique, called ResNet-34-based Faster-RCNN, to tackle this problem.
This technique created annotations for photographs that might be suspect in order to pin
down a target area. Furthermore, this technique included ResNet-34 in Faster-Feature
RCNN’s extractor module alongside the convolutional block attention module (CBAM)
to pull out the underlying nuggets of information. Finally, the computed features
were used for training the Faster-RCNN model to detect and label the various leaf
abnormalities in tomato plants. The precision was 99.97%.

The use of a CNN for the detection of tomato diseases was also carried out by
Guerrero-Ibaez et al. [24]. They used a publicly available dataset and supplemented
it with images captured in the field to propose a CNN model. Generative adversarial
networks were utilized to create samples that were similar to the training data without
leading to overfitting. It was shown that the proposed approach was highly effective
at detecting and classifying tomato illnesses. Another approach to preprocessing was
described in research conducted by Chen et al. [25]. Because of environmental noise
during image acquisition, the current machine vision technology for tomato leaf disease
recognition has a hard time distinguishing between diseases because their symptoms are
so similar. Because of this, they recommended a new model for identifying diseases in
tomato leaves. In the first step, the image is denoised and enhanced with the help of the
binary wavelet transform and Retinex, which remove noise points and edge points while
keeping the useful texture information. The artificial bee colony optimization of the KSW
algorithm was then used to isolate the tomato leaves from the rest of the image. Finally,
the images were identified using a model of a both-channel residual attention network.
According to the data from 8616 images used in the application, the overall detection
accuracy was close to 89%.

Agarwal et al. proposed a streamlined CNN model with only eight hidden layers [26]. When
applied to the open-source dataset PlantVillage, the proposed lightweight model outperformed
both traditional machine learning methods and pre-trained models with an accuracy of 98.4%.
In the PlantVillage dataset, 39 classes represent various crops such as apples, potatoes, corn and
grapes, and 10 classes represent various diseases that affect tomatoes. In pretrained models,
VGG16 achieved an accuracy of 93.5%, while the best accuracy obtained using traditional ML
methods was 94.9% with k-NN. After image enhancement, the proposed CNN’s performance
was improved through the use of image pre-processing, specifically by adjusting the image’s
brightness using a random value. The proposed model achieved a remarkable level of accuracy
(98.7%) across a variety of datasets, not just PlantVillage. Other architectures that were used for the
detection of tomato diseases include an attention-based CNN [27], transfer-learning-based deep
convolutional neural networks [28], Google Le-Net Inception V3 [29], an attention-embedded
residual CNN [30], and AlexNet [31]. Some research also mentioned the development of the
platform used. The platforms that are widely used are mobile-based applications, as carried
out in research by Gonzalez-Huitron et al. [32], Elhassouny et al. [33], Ngugi et al. [34], and
Verma et al. [35].

3. Methodology

Data collection, preprocessing, data augmentation, data separation by separating
training data, and data validation were among the stages of the research [36]. The training
data was utilized to construct the output of the model. During the model evaluation
utilizing the k-fold cross-validation method, data validation was utilized. If the model
had not yielded ideal results, iterations were repeated. If the optimal model had been
established, it was then saved and applied in the program for the end user.

3.1. Data Collection

The data in this study was image data of diseases on tomato plant leaves taken from the
Kaggle website The data were obtained by downloading it from https://www.kaggle.com/
datasets/kaustubhb999/tomatoleaf, accessed on 3 November 2022. There are 1000 types of

https://www.kaggle.com/datasets/kaustubhb999/tomatoleaf
https://www.kaggle.com/datasets/kaustubhb999/tomatoleaf


Computation 2023, 11, 20 4 of 15

images for each type of disease on tomato plant leaves. By taking 10 disease classes, data from
10,000 images were obtained. Figure 1 is a sample of each disease on tomato plant leaves. Each
image’s dimensions are 256 by 256. Both the horizontal and vertical resolutions are 96 dpi. The
bit depth is 24.

Computation 2023, 11, x FOR PEER REVIEW 4 of 15 
 

 

3.1. Data Collection 
The data in this study was image data of diseases on tomato plant leaves taken from 

the Kaggle website The data were obtained by downloading it from 
https://www.kaggle.com/datasets/kaustubhb999/tomatoleaf, accessed on 3 November 
2022. There are 1000 types of images for each type of disease on tomato plant leaves. By 
taking 10 disease classes, data from 10,000 images were obtained. Figure 1 is a sample of 
each disease on tomato plant leaves. Each image’s dimensions are 256 by 256. Both the 
horizontal and vertical resolutions are 96 dpi. The bit depth is 24. 

 
Figure 1. Examples of tomato plant leaves. 

3.2. Image Preprocessing and Augmentation 
Image preprocessing is a phase that prepares image data for subsequent processing 

[37]. This step must be completed in order for the data to run efficiently on the intended 
model. Image augmentation, meanwhile, is a method to increase the amount of data by 
altering the image’s shape, either by modifying the image’s rotation, position, or size [38]. 
Both phases of this research are mentioned below: 
• Rescale 

Rescale is a preprocessing step that modifies the image’s size [39]. When the image is 
present in the application, it is represented by a value between 0 and 255. However, 
rescaling is conducted if the range of values is too large for the training procedure to 
be executed. The image value was divided by 255 so that it fell inside the range of 0 
to 1. 

• Rotation 
As depicted in Figure 2, this is accomplished randomly by rotating the image clock-
wise a specified number of degrees between 0 and 90 degrees [40]. This research em-
ployed a rotation range of forty degrees. 

• Shift 
A shift is an enhancement technique for image movement [41]. It is performed to 
provide more varied picture data for image positions. There are two sorts of shift 
ranges: width and height. The height and breadth are respectively vertical and hori-
zontal position shifts. Figures 3 and 4 depict the implementations used in this inves-
tigation. 

• Zoom 
Zoom is an augmentation technique for changing the size of an image [42]. It is in-
tended that the image be more diverse in terms of size, as shown in Figure 5. 

Figure 1. Examples of tomato plant leaves.

3.2. Image Preprocessing and Augmentation

Image preprocessing is a phase that prepares image data for subsequent processing [37]. This
step must be completed in order for the data to run efficiently on the intended model. Image
augmentation, meanwhile, is a method to increase the amount of data by altering the image’s
shape, either by modifying the image’s rotation, position, or size [38]. Both phases of this research
are mentioned below:

• Rescale

Rescale is a preprocessing step that modifies the image’s size [39]. When the image
is present in the application, it is represented by a value between 0 and 255. However,
rescaling is conducted if the range of values is too large for the training procedure to be
executed. The image value was divided by 255 so that it fell inside the range of 0 to 1.

• Rotation

As depicted in Figure 2, this is accomplished randomly by rotating the image clockwise
a specified number of degrees between 0 and 90 degrees [40]. This research employed a
rotation range of forty degrees.

Computation 2023, 11, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. Rotation illustration. 

 
Figure 3. Illustration of width shift. 

 
Figure 4. Illustration of height shift. 

 
Figure 5. Illustration of zoom. 

3.3. Data Splitting 
Data splitting is the division of a dataset into multiple sections. In this study, the 

dataset was separated into training and testing data, where 10,000 training data and 1000 
test data were used. The training data were used to develop the model, whilst the testing 
data were used to evaluate the model. In data training, data was also divided into 2 com-
ponents, called data training and data validation. In order to conduct the validation, a 10-
fold cross-validation technique was implemented. 

3.4. Modeling 
• Hyperparameter 

The objective of determining the proper hyperparameter is to create the ideal model. 
As indicated in Table 2, this study evaluated three types of hyperparameters, namely, 
the hidden layer, the trainable layer, and the dropout value of the layer. 

• Architecture 
This study was constructed using Python and the Keras library. In Keras, the layers 
are defined progressively. The DenseNet layer, which was the initial layer, used an 

Figure 2. Rotation illustration.

• Shift

A shift is an enhancement technique for image movement [41]. It is performed to
provide more varied picture data for image positions. There are two sorts of shift ranges:



Computation 2023, 11, 20 5 of 15

width and height. The height and breadth are respectively vertical and horizontal position
shifts. Figures 3 and 4 depict the implementations used in this investigation.

Computation 2023, 11, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. Rotation illustration. 

 
Figure 3. Illustration of width shift. 

 
Figure 4. Illustration of height shift. 

 
Figure 5. Illustration of zoom. 

3.3. Data Splitting 
Data splitting is the division of a dataset into multiple sections. In this study, the 

dataset was separated into training and testing data, where 10,000 training data and 1000 
test data were used. The training data were used to develop the model, whilst the testing 
data were used to evaluate the model. In data training, data was also divided into 2 com-
ponents, called data training and data validation. In order to conduct the validation, a 10-
fold cross-validation technique was implemented. 

3.4. Modeling 
• Hyperparameter 

The objective of determining the proper hyperparameter is to create the ideal model. 
As indicated in Table 2, this study evaluated three types of hyperparameters, namely, 
the hidden layer, the trainable layer, and the dropout value of the layer. 

• Architecture 
This study was constructed using Python and the Keras library. In Keras, the layers 
are defined progressively. The DenseNet layer, which was the initial layer, used an 

Figure 3. Illustration of width shift.

Computation 2023, 11, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. Rotation illustration. 

 
Figure 3. Illustration of width shift. 

 
Figure 4. Illustration of height shift. 

 
Figure 5. Illustration of zoom. 

3.3. Data Splitting 
Data splitting is the division of a dataset into multiple sections. In this study, the 

dataset was separated into training and testing data, where 10,000 training data and 1000 
test data were used. The training data were used to develop the model, whilst the testing 
data were used to evaluate the model. In data training, data was also divided into 2 com-
ponents, called data training and data validation. In order to conduct the validation, a 10-
fold cross-validation technique was implemented. 

3.4. Modeling 
• Hyperparameter 

The objective of determining the proper hyperparameter is to create the ideal model. 
As indicated in Table 2, this study evaluated three types of hyperparameters, namely, 
the hidden layer, the trainable layer, and the dropout value of the layer. 

• Architecture 
This study was constructed using Python and the Keras library. In Keras, the layers 
are defined progressively. The DenseNet layer, which was the initial layer, used an 

Figure 4. Illustration of height shift.

• Zoom

Zoom is an augmentation technique for changing the size of an image [42]. It is
intended that the image be more diverse in terms of size, as shown in Figure 5.

Computation 2023, 11, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. Rotation illustration. 

 
Figure 3. Illustration of width shift. 

 
Figure 4. Illustration of height shift. 

 
Figure 5. Illustration of zoom. 

3.3. Data Splitting 
Data splitting is the division of a dataset into multiple sections. In this study, the 

dataset was separated into training and testing data, where 10,000 training data and 1000 
test data were used. The training data were used to develop the model, whilst the testing 
data were used to evaluate the model. In data training, data was also divided into 2 com-
ponents, called data training and data validation. In order to conduct the validation, a 10-
fold cross-validation technique was implemented. 

3.4. Modeling 
• Hyperparameter 

The objective of determining the proper hyperparameter is to create the ideal model. 
As indicated in Table 2, this study evaluated three types of hyperparameters, namely, 
the hidden layer, the trainable layer, and the dropout value of the layer. 

• Architecture 
This study was constructed using Python and the Keras library. In Keras, the layers 
are defined progressively. The DenseNet layer, which was the initial layer, used an 

Figure 5. Illustration of zoom.

3.3. Data Splitting

Data splitting is the division of a dataset into multiple sections. In this study, the dataset
was separated into training and testing data, where 10,000 training data and 1000 test data
were used. The training data were used to develop the model, whilst the testing data were
used to evaluate the model. In data training, data was also divided into 2 components, called
data training and data validation. In order to conduct the validation, a 10-fold cross-validation
technique was implemented.

3.4. Modeling

• Hyperparameter

The objective of determining the proper hyperparameter is to create the ideal model.
As indicated in Table 2, this study evaluated three types of hyperparameters, namely, the
hidden layer, the trainable layer, and the dropout value of the layer.

Table 2. Hyperparameters.

Hyperparameter Value

Trainable layer [Non-trainable, trainable]
Dropout [0.2, 0.3, 0.4]

Number of dense layers [2, 3]



Computation 2023, 11, 20 6 of 15

• Architecture

This study was constructed using Python and the Keras library. In Keras, the layers
are defined progressively. The DenseNet layer, which was the initial layer, used an
input value of 224 × 224. There were five levels of dense block. The first dense block
layer received a 112 × 112 input and was convolved once. With a 56 × 56 input, the
second dense block layer was convolved six times. With a 28 × 28 input, the third dense
block layer was convolved twelve times. The fourth dense block layer was convolved
48 times with a 14 × 14 input, while the fifth dense block layer was convolved 32 times
with a 7 × 7 input. The output was then applied to the flattened layer. The layer
transformed data into 1-D vectors that could then be utilized by the fully connected
layer. The subsequent step was to process the layer of batch normalization. This layer
was used to standardize the data input. It could also accelerate the data training process
and enhance the model’s performance. The following layer was the dropout layer,
which was used to prevent overfitting. The dense layer comprised 10 units based on the
number of classified classes. Prior to training, there were three configurations, including
the loss function employing categorical cross-entropy and the Adam optimizer with a
learning rate of 0.01. The structure can be seen in Figure 6.Computation 2023, 11, x FOR PEER REVIEW 7 of 15 

 

 

 
Figure 6. Network architecture. 
Figure 6. Network architecture.



Computation 2023, 11, 20 7 of 15

3.5. Evaluation

This step evaluated the model using test data. It aimed to ensure that the model ran
well. If the model did not display a good performance, then the model must be repaired.
This study evaluated the model based on a confusion matrix, which showed how frequently
correct and incorrect detections were made during classification. There were four possible
permutations of predicted and actual values. The confusion matrix contained four columns
labeled with the four possible outcomes of the classification process: true positive, true
negative, false positive, and false negative. Accuracy, precision, recall, and F-1 scores
can be calculated using these four factors. Accuracy describes how accurately the model
can correctly classify. Therefore, accuracy is the ratio of correct predictions (positive and
negative) to the entire set of data. In other words, accuracy is the degree of closeness of the
predicted value to the actual value. Precision describes the level of accuracy between the
requested data and the predicted results provided by the model. Thus, precision is defined
as the ratio of the correct positive predictions to the overall positive predictions. Recall
describes the success of the model in retrieving information. Thus, recall is the ratio of the
correct positive predictions compared with all of the correct positive data. The F1-score is a
combination of precision and recall.

3.6. Application

After locating the ideal model, the next stage was to develop an application for end
users. The construction of the application utilized the Android platform and the Flutter
application development framework. We incorporated the best model from the previous
phase into the Android-based application. Figure 7 illustrates the deployment diagram. The
Android program and the execution environment are the two nodes. There are four sections
in the Android application section: compiled classes, compiled resources, uncompiled
resources, and deployment specifications. This is the portion of the code that is run in the
execution environment.



Computation 2023, 11, 20 8 of 15
Computation 2023, 11, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 7. Design of the mobile application. 

4. Results 
4.1. Image Augmentation Analysis 

In this experiment, image augmentation analysis was required to determine how the 
quantity of data impacted the correctness of the created model. Experiments were con-
ducted by comparing the performance of the model with and without augmentation. As 
demonstrated in Table 3, experiments were conducted using constant hyperparameters. 
The hidden units indicate the required number of nodes for the hidden layer. This number 
falls between the number of input nodes and output nodes. Adam is an optimization tech-
nique that is an extension of stochastic gradient descent that has lately gained popularity 
in deep learning. This study employed the DenseNet algorithm, which is a transfer-learn-
ing technique. The epoch value was set to a low value so that the training procedure was 
not too lengthy. Table 4 displays the results of a comparison of the model’s performance 

Figure 7. Design of the mobile application.

4. Results
4.1. Image Augmentation Analysis

In this experiment, image augmentation analysis was required to determine how
the quantity of data impacted the correctness of the created model. Experiments were
conducted by comparing the performance of the model with and without augmentation. As
demonstrated in Table 3, experiments were conducted using constant hyperparameters. The
hidden units indicate the required number of nodes for the hidden layer. This number falls
between the number of input nodes and output nodes. Adam is an optimization technique
that is an extension of stochastic gradient descent that has lately gained popularity in
deep learning. This study employed the DenseNet algorithm, which is a transfer-learning
technique. The epoch value was set to a low value so that the training procedure was not
too lengthy. Table 4 displays the results of a comparison of the model’s performance with
and without picture enhancement depending on the shift range, rotation range, and zoom
range. The amount of data obtained with picture augmentation was 30,000, while it was
only 10,000 without image augmentation. The model’s accuracy was only 85.32 percent
without picture augmentation, compared with 92.53 percent with image augmentation.
Due to the absence of variation in the training data, models without image augmentation
earned lower scores and were therefore less competent at identifying image patterns. The
experimental outcomes of this study are summarized in Table 5. The findings are described
in Sections 4.2–4.4.



Computation 2023, 11, 20 9 of 15

Table 3. Hyperparameter values in the image augmentation analysis.

Hyperparameter Value

Hidden units 128
Optimizer Adam

Epoch 30
Batch size 32

Table 4. Image augmentation analysis.

Dataset Accuracy (%)

With image augmentation 92.53
Without image augmentation 85.32

Table 5. Experimental results.

Hidden
Layers Dropout Trainable Layer Accuracy (%) Loss (%) Running Time (h)

2 0.2 Non-trainable 92.53 22.02 8.02
2 0.3 Non-trainable 92.55 21.75 8.52
2 0.4 Non-trainable 92.21 23.3 8.78
2 0.2 Dense block 5 95.29 17.36 7.48
2 0.3 Dense block 5 95.49 16.91 7.56
2 0.4 Dense block 5 95.79 14.42 7.82
3 0.2 Non-trainable 92.21 24.69 9.31
3 0.3 Non-trainable 92.28 26.08 9.55
3 0.4 Non-trainable 92.87 28.31 10.02
3 0.2 Dense block 5 95.23 15.39 8.42
3 0.3 Dense block 5 95.32 16.21 8.85

4.2. Analysis of the Number of Hidden Layers

This study examined whether the optimal model had two or three hidden layers. The
model with two hidden layers contained 256 and 128 neurons, whereas the model with
three hidden layers contained 256, 128, and 64 neurons. The results of the experiments
utilizing 30 epochs and the Adam optimizer are presented in Table 5. They demonstrate that
the number of hidden layers did not increase the accuracy of this study much. However, the
addition of a concealed layer increased the running time. Using the hardware parameters
of this investigation, it was determined that the best training time for a model with two
hidden layers was less than eight hours on average. Three hidden layers required more than
eight hours of instruction. Because memory use was directly proportional to the number of
hidden layers. The addition of a hidden layer may also enhance the model’s potential for
learning. It generated more intricate patterns that were useful for data prediction. However,
a complicated pattern posed the risk of overfitting, in which the model predicts well on
previously analyzed data but not on new data.

4.3. Trainable DenseNet Analysis

Analysis was based on the architectural layer that was retrained in DenseNet. On
dense block 5 with 30 iterations and the Adam optimizer, two types of tests were conducted:
without and with retraining (non-trainable layer). The trainable layer in dense block 5 led
to greater precision than without it. The trainable system in dense block 5 achieved an
average accuracy of 95%, whereas the model without a trainable layer achieved an average
accuracy of 92%. It was due to the fact that the trainable layer retrained dense block 5. The
repetition of training generated new weights, which, when added to the existing weights,
could enhance the model’s optimization.



Computation 2023, 11, 20 10 of 15

4.4. Dropout Analysis

The experiment altered the model’s dropout layer’s value. This study examined three
dropout values: 0.2, 0.3, and 0.4. This dropout rate layer was positioned on a fully-connected
layer with 30 iterations and an Adam optimizer. It indicated that a dropout rate of 0.4 had
the best level of accuracy. It could also optimally manage overfitting. A dropout number that
was too small resulted in a less ideal model for dealing with overfitting, while a dropout rate
that was too high resulted in a less-than-optimal training process because too many neurons
were deleted, i.e., it made the model’s categorization performance less optimal.

5. Discussion

After completing the trials on hyperparameters discussed in the preceding chapter,
the research obtained values for these parameters that were deemed ideal. Table 6 gives the
ideal hyperparameter values. The model was then evaluated using the test data that had
been previously separated. As shown in Figure 8, the results of this test were produced in
the form of a confusion matrix table. Following is an examination of Table 7:

1. Based on the precision value, it could be seen that mosaic virus disease received a
score of 100 percent, whereas late blight disease received a score of 83 percent. The low
precision value of late blight disease was caused by a high number of false positives.
This occurred as a result of the detection of late blight disease in cases of other diseases.
Based on the dataset at hand, the late blight illness possessed more diversified traits
that resulted in misclassification.

2. According to the recall value, mosaic virus disease received the highest score of 99 percent,
while two-spotted spider mite, leaf mold, and early blight disease received the lowest
score of 92 percent. Due to a high percentage of false negatives on the label, the evaluation
score for these three diseases was the lowest. This occurred due to detection errors, such
as the misidentification of leaf mold illness as another disease. According to the data,
two-spotted spider mites, leaf mold, and early blight likely resemble other diseases,
particularly late blight.

3. The accuracy and F1-score in this study were 95.40% and 95.44%, respectively. With
these values, along with the training, which had an accuracy of 95.79%, it can be
concluded that the model had a good performance.

Table 6. The optimal hyperparameters.

Hyperparameter Value

Trainable layer Trainable layer on dense block 5
Dropout 0.4

Number of dense layers 2

Table 7. Evaluation of each class.

Label Precision (%) Recall (%) F1-Score (%)

Bacterial spot 96.03 97.00 96.51
Early blight 94.84 92.00 93.40
Late blight 83.05 98.00 89.90
Leaf mold 97.87 92.00 94.84

Septoria leaf spot 95.00 95.00 95.00
Two-spotted spider mite 95.83 92.00 93.87

Target spot 96.87 93.00 94.89
Yellow leaf curl virus 98.00 98.00 98.00

Mosaic virus 100.00 99.00 99.49
Healthy 98.98 98.00 98.49

Macro average 95.65 95.40 95.44

Accuracy 95.40



Computation 2023, 11, 20 11 of 15

Computation 2023, 11, x FOR PEER REVIEW 11 of 15 
 

 

Table 6. The optimal hyperparameters. 

Hyperparameter Value 
Trainable layer Trainable layer on dense block 5 

Dropout 0.4 
Number of dense layers 2 

Table 7. Evaluation of each class. 

Label Precision (%) Recall (%) F1-Score (%) 
Bacterial spot 96.03 97.00 96.51 
Early blight 94.84 92.00 93.40 
Late blight 83.05 98.00 89.90 
Leaf mold 97.87 92.00 94.84 

Septoria leaf spot 95.00 95.00 95.00 
Two-spotted spider mite 95.83 92.00 93.87 

Target spot 96.87 93.00 94.89 
Yellow leaf curl virus 98.00 98.00 98.00 

Mosaic virus 100.00 99.00 99.49 
Healthy 98.98 98.00 98.49 

Macro average 95.65 95.40 95.44 
Accuracy 95.40 

 
Figure 8. Confusion matrix. 

Figure 10 shows the ‘disease detection’ menu, which is a page for detecting illnesses 
on the leaves of tomato plants. On this page, the user will enter data to be processed by 
the DenseNet model. The model will detect the ailment that most closely corresponds to 
the visual input. There are two methods for importing photos: the camera and the gallery. 
Figure 11 shows an ‘analysis results’ menu, which is the page displaying the outcomes of 
the conducted trials. This page contains a performance table of the model for each tested 
hyperparameter. Three hyperparameters, namely, the hidden layer, the dropout rate, and 
the trainable dense layer, are evaluated. 

Figure 8. Confusion matrix.

After identifying the optimal model, the authors of this study created an Android-
based mobile application. The intended audience consisted of Indonesian farmers, hence
the instructional language was Indonesian. Four primary menus make up the application:
disease detection, disease list, analysis findings, and application description. Figure 9
depicts the home page.

Computation 2023, 11, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 9. Main menu. This presentation is in Indonesian. The display comprises four menus: 
“Lakukan Deteksi” to detect diseases of tomato plant leaves, “List Penyakit” containing a list of 
diseases, “Hasil Analisis Metode Densenet” to load the findings of densenet method analysis, and 
“Tentang Aplikasi” containing information about the application. 

 
Figure 10. Disease detection implementation page. The page is given in Indonesian. This menu is 
for identifying tomato plant leaf diseases. On this page, the user will upload images that will be 
utilized by the constructed model. The image on the left demonstrates that there are two ways to 
upload photos: using the camera and the gallery. The image on the right displays the results of the 
detection. 

Figure 9. Main menu. This presentation is in Indonesian. The display comprises four menus:
“Lakukan Deteksi” to detect diseases of tomato plant leaves, “List Penyakit” containing a list of
diseases, “Hasil Analisis Metode Densenet” to load the findings of densenet method analysis, and
“Tentang Aplikasi” containing information about the application.

Figure 10 shows the ‘disease detection’ menu, which is a page for detecting illnesses
on the leaves of tomato plants. On this page, the user will enter data to be processed by
the DenseNet model. The model will detect the ailment that most closely corresponds to
the visual input. There are two methods for importing photos: the camera and the gallery.



Computation 2023, 11, 20 12 of 15

Figure 11 shows an ‘analysis results’ menu, which is the page displaying the outcomes of
the conducted trials. This page contains a performance table of the model for each tested
hyperparameter. Three hyperparameters, namely, the hidden layer, the dropout rate, and
the trainable dense layer, are evaluated.

Computation 2023, 11, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 9. Main menu. This presentation is in Indonesian. The display comprises four menus: 
“Lakukan Deteksi” to detect diseases of tomato plant leaves, “List Penyakit” containing a list of 
diseases, “Hasil Analisis Metode Densenet” to load the findings of densenet method analysis, and 
“Tentang Aplikasi” containing information about the application. 

 
Figure 10. Disease detection implementation page. The page is given in Indonesian. This menu is 
for identifying tomato plant leaf diseases. On this page, the user will upload images that will be 
utilized by the constructed model. The image on the left demonstrates that there are two ways to 
upload photos: using the camera and the gallery. The image on the right displays the results of the 
detection. 

Figure 10. Disease detection implementation page. The page is given in Indonesian. This menu is for
identifying tomato plant leaf diseases. On this page, the user will upload images that will be utilized
by the constructed model. The image on the left demonstrates that there are two ways to upload
photos: using the camera and the gallery. The image on the right displays the results of the detection.

Computation 2023, 11, x FOR PEER REVIEW 13 of 15 
 

 

 
Figure 11. Experimental results implementation page. This page displays the outcomes of experi-
ments that have been conducted. This page is formatted as a table listing every tested hyperparam-
eter. Three hyperparameters, namely the hidden layer, the dropout rate, and the trainable dense 
layer, are evaluated. 

6. Conclusions 
The following conclusions were made based on the research conducted on the clas-

sification of illnesses on tomato plant leaves and their implementation in mobile applica-
tions: 
1. With two hidden layers, a dropout rate of 0.4, and the trainable layer in dense block 

5, the best model of the DenseNet architecture was obtained. The model was con-
structed using 10-fold cross-validation to address local maximum issues. 

2. An Android application for disease detection on tomato plant leaves was developed. 
The app’s primary function was disease detection. The technique consisted of cap-
turing images to be forecasted based on the application’s stored model. This applica-
tion is available in Indonesian for the convenience of Indonesian farmers. 

3. Using DenseNet, the prediction of disease on tomato plant leaves performed admi-
rably. The examination of the testing data using this model yielded accuracy and F1-
score values of 95.4% and 95.4%, respectively. 

Author Contributions: Conceptualization, I.N.Y.; methodology, I.N.Y. and A.H.; software, N.A.A.; 
validation, I.N.Y., N.A.A., and A.H.; formal analysis, I.N.Y.; investigation, I.N.Y. and N.A.A.; re-
sources, N.A.A.; data curation, N.A.A.; writing—original draft preparation, I.N.Y.; writing—review 
and editing, I.N.Y.; visualization, N.A.A.; supervision, A.H.; project administration, I.N.Y.; funding 
acquisition, I.N.Y. All authors have read and agreed to the published version of the manuscript. 

Funding: This study was funded by the Associate Professor Acceleration Research 2022, Universitas 
Padjadjaran, No. Contract: 2203/UN6.3.1/PT.00/2022. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Figure 11. Experimental results implementation page. This page displays the outcomes of experiments
that have been conducted. This page is formatted as a table listing every tested hyperparameter. Three
hyperparameters, namely the hidden layer, the dropout rate, and the trainable dense layer, are evaluated.



Computation 2023, 11, 20 13 of 15

6. Conclusions

The following conclusions were made based on the research conducted on the classifi-
cation of illnesses on tomato plant leaves and their implementation in mobile applications:

1. With two hidden layers, a dropout rate of 0.4, and the trainable layer in dense block 5,
the best model of the DenseNet architecture was obtained. The model was constructed
using 10-fold cross-validation to address local maximum issues.

2. An Android application for disease detection on tomato plant leaves was developed.
The app’s primary function was disease detection. The technique consisted of captur-
ing images to be forecasted based on the application’s stored model. This application
is available in Indonesian for the convenience of Indonesian farmers.

3. Using DenseNet, the prediction of disease on tomato plant leaves performed ad-
mirably. The examination of the testing data using this model yielded accuracy and
F1-score values of 95.4% and 95.4%, respectively.

Author Contributions: Conceptualization, I.N.Y.; methodology, I.N.Y. and A.H.; software, N.A.A.;
validation, I.N.Y., N.A.A. and A.H.; formal analysis, I.N.Y.; investigation, I.N.Y. and N.A.A.; resources,
N.A.A.; data curation, N.A.A.; writing—original draft preparation, I.N.Y.; writing—review and
editing, I.N.Y.; visualization, N.A.A.; supervision, A.H.; project administration, I.N.Y.; funding
acquisition, I.N.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the Associate Professor Acceleration Research 2022, Universitas
Padjadjaran, No. Contract: 2203/UN6.3.1/PT.00/2022.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to the Rector, Directorate of Research and Community
Service (DRPM), and Research Center for Artificial Intelligence and Big Data, Universitas Padjadjaran.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Saptutyningsih, E.; Diswandi, D.; Jaung, W. Does social capital matter in climate change adaptation? A lesson from agricultural

sector in Yogyakarta, Indonesia. Land Use Policy 2020, 95, 104189. [CrossRef]
2. Wartenberg, A.C.; Blaser, W.J.; Roshetko, J.M.; Van Noordwijk, M.; Six, J. Soil fertility and Theobroma cacao growth and

productivity under commonly intercropped shade-tree species in Sulawesi, Indonesia. Plant Soil 2020, 453, 87–104. [CrossRef]
3. Sunarpi, H.; Kurnianingsih, R.; Ghazali, M.; Fanani, R.A.; Sunarwidhi, A.L.; Widyastuti, S.; Prasedya, E.S. Evidence for the

presence of growth-promoting factors in Lombok Turbinaria murayana extract stimulating growth and yield of tomato plants
(Lycopersicum esculentum Mill.). J. Plant Nutr. 2020, 43, 1813–1823. [CrossRef]

4. Hidayatuloh, A.; Nursalman, M.; Nugraha, E. Identification of tomato plant diseases by Leaf image using squeezenet model.
In Proceedings of the 2018 International Conference on Information Technology Systems and Innovation (ICITSI), Bandung,
Indonesia, 22–26 October 2018.

5. Yijo, S.; Asnawati, A.; Darma, S.; Achmad, G.N.; Arizandi, M.A.; Hidayati, T.; Darma, D.C. Social experiments on problems from
tomato farmers during Covid-19-Indonesia case. SAR J. Sci. Res. 2021, 4, 7–13. [CrossRef]

6. Mansur, A.; Ardi, R.P.; Mistriani, N. Optimizing the Preservation of Fresh Tomatoes into Tomato Dates to Increase the Shelf Life
of Vegetable Food. Bp. Int. Res. Crit. Inst. (BIRCI-J.) Hum. Soc. Sci. 2021, 4, 9792–9803.

7. Thwe, A.A.; Kasemsap, P.; Vercambre, G.; Gay, F.; Phattaralerphong, J.; Gautier, H. Impact of red and blue nets on physiological
and morphological traits, fruit yield and quality of tomato (Solanum lycopersicum Mill.). Sci. Hortic. 2020, 264, 109185. [CrossRef]

8. Tian, K.; Zeng, J.; Song, T.; Li, Z.; Evans, A.; Li, J. Tomato leaf diseases recognition based on deep convolutional neural
networks. J. Agric. Eng. 2022. [CrossRef]

9. Kaur, P.; Harnal, S.; Gautam, V.; Singh, M.P.; Singh, S.P. An approach for characterization of infected area in tomato leaf disease
based on deep learning and object detection technique. Eng. Appl. Artif. Intell. 2022, 115, 105210. [CrossRef]

10. Cui, S.; Ling, P.; Zhu, H.; Keener, H.M. Plant pest detection using an artificial nose system: A review. Sensors 2018, 18, 378.
[CrossRef]

11. Golhani, K.; Balasundram, S.K.; Vadamalai, G.; Pradhan, B. A review of neural networks in plant disease detection using
hyperspectral data. Inf. Process. Agric. 2018, 5, 354–371. [CrossRef]

http://doi.org/10.1016/j.landusepol.2019.104189
http://doi.org/10.1007/s11104-018-03921-x
http://doi.org/10.1080/01904167.2020.1750642
http://doi.org/10.18421/SAR41-02
http://doi.org/10.1016/j.scienta.2020.109185
http://doi.org/10.4081/jae.2022.1432
http://doi.org/10.1016/j.engappai.2022.105210
http://doi.org/10.3390/s18020378
http://doi.org/10.1016/j.inpa.2018.05.002


Computation 2023, 11, 20 14 of 15

12. Lu, T.; Han, B.; Chen, L.; Yu, F.; Xue, C. A generic intelligent tomato classification system for practical applications using
DenseNet-201 with transfer learning. Sci. Rep. 2021, 11, 1–8. [CrossRef] [PubMed]

13. Shewalkar, A. Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM and GRU. J. Artif.
Intell. Soft Comput. Res. 2019, 9, 235–245. [CrossRef]

14. Geetha, R.; Thilagam, T.; Padmavathy, T. Effective offline handwritten text recognition model based on a se-quence-to-sequence
approach with CNN–RNN networks. Neural Comput. Appl. 2021, 33, 10923–10934. [CrossRef]

15. Dua, N.; Singh, S.N.; Semwal, V.B. Multi-input CNN-GRU based human activity recognition using wearable sensors.
Computing 2021, 103, 1461–1478. [CrossRef]

16. Huan, R.H.; Shu, J.; Bao, S.L.; Liang, R.H.; Chen, P.; Chi, K.K. Video multimodal emotion recognition based on Bi-GRU and
attention fusion. Multimedia Tools Appl. 2021, 80, 8213–8240. [CrossRef]

17. Subramanian, B.; Olimov, B.; Naik, S.M.; Kim, S.; Park, K.H.; Kim, J. An integrated mediapipe-optimized GRU model for Indian
sign language recognition. Sci. Rep. 2022, 12, 1–16. [CrossRef]

18. Tang, J.; Shu, X.; Yan, R.; Zhang, L. Coherence constrained graph LSTM for group activity recognition. IEEE Trans. Pattern
Anal. Mach. Intell. 2019, 44, 636–647. [CrossRef]

19. Xing, X.; Li, Z.; Xu, T.; Shu, L.; Hu, B.; Xu, X. SAE+ LSTM: A New framework for emotion recognition from multi-channel EEG.
Front. Neurorobot. 2019, 13, 37. [CrossRef]

20. Li, R.; Liang, H.; Shi, Y.; Feng, F.; Wang, X. Dual-CNN: A Convolutional language decoder for paragraph image captioning.
Neurocomputing 2020, 396, 92–101. [CrossRef]

21. Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing.
ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [CrossRef]

22. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology.
Insights Imaging 2018, 9, 611–629. [CrossRef] [PubMed]

23. Nawaz, M.; Nazir, T.; Javed, A.; Masood, M.; Rashid, J.; Kim, J.; Hussain, A. A robust deep learning approach for tomato plant
leaf disease localization and classification. Sci. Rep. 2022, 12, 1–18. [CrossRef] [PubMed]

24. Guerrero-Ibañez, A.; Reyes-Muñoz, A. Monitoring Tomato Leaf Disease through Convolutional Neural Networks. Electronics
2023, 12, 229. [CrossRef]

25. Chen, X.; Zhou, G.; Chen, A.; Yi, J.; Zhang, W.; Hu, Y. Identification of tomato leaf diseases based on combination of ABCK-BWTR
and B-ARNet. Comput. Electron. Agric. 2020, 178, 105730. [CrossRef]

26. Agarwal, M.; Gupta, S.K.; Biswas, K.K. Development of Efficient CNN model for Tomato crop disease identification.
Sustain. Comput. Inform. Syst. 2020, 28, 100407. [CrossRef]

27. Bhujel, A.; Kim, N.E.; Arulmozhi, E.; Basak, J.K.; Kim, H.T. A lightweight Attention-based convolutional neural networks for
tomato leaf disease classification. Agriculture 2022, 12, 228. [CrossRef]

28. Thangaraj, R.; Anandamurugan, S.; Kaliappan, V.K. Automated tomato leaf disease classification using transfer learning-based
deep convolution neural network. J. Plant Dis. Prot. 2021, 128, 73–86. [CrossRef]

29. Trivedi, N.K.; Gautam, V.; Anand, A.; Aljahdali, H.M.; Villar, S.G.; Anand, D.; Kadry, S. Early detection and classification of
tomato leaf disease using high-performance deep neural network. Sensors 2021, 21, 7987. [CrossRef]

30. Karthik, R.; Hariharan, M.; Anand, S.; Mathikshara, P.; Johnson, A.; Menaka, R. Attention embedded residual CNN for disease
detection in tomato leaves. Appl. Soft Comput. 2020, 86, 105933.

31. Chen, H.C.; Widodo, A.M.; Wisnujati, A.; Rahaman, M.; Lin, J.C.W.; Chen, L.; Weng, C.E. AlexNet convolutional neural network
for disease detection and classification of tomato leaf. Electronics 2020, 11, 951. [CrossRef]

32. Gonzalez-Huitron, V.; León-Borges, J.A.; Rodriguez-Mata, A.E.; Amabilis-Sosa, L.E.; Ramírez-Pereda, B.; Rodriguez, H. Disease detection
in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4. Comput. Electron. Agric. 2021, 181, 105951.
[CrossRef]

33. Elhassouny, A.; Smarandache, F. Mobile application to recognize tomato leaf diseases using Convolutional Neural Networks. In
Proceedings of the 2019 International Conference of Computer Science and Renewable Energies (ICCSRE), Agadir, Morocco,
22–24 July 2019.

34. Ngugi, L.C.; Abdelwahab, M.; Abo-Zahhad, M. Tomato leaf segmentation algorithms for mobile phone applications using deep
learning. Comput. Electron. Agric. 2020, 178, 105788. [CrossRef]

35. Verma, S.; Chug, A.; Singh, A.P.; Sharma, S.; Rajvanshi, P. Deep learning-based mobile application for plant disease diagnosis: A
proof of concept with a case study on tomato plant. In Applications of Image Processing and Soft Computing Systems in Agriculture;
IGI Global: Hershey, PA, USA, 2019; pp. 242–271.

36. Kim, J.; Kim, J. The impact of imbalanced training data on machine learning for author name disambiguation. Scientometrics
2018, 117, 511–526. [CrossRef]

37. Maier, A.; Syben, C.; Lasser, T.; Riess, C. A gentle introduction to deep learning in medical image processing. Z. für Med. Phys.
2019, 29, 86–101. [CrossRef]

38. Bloice, M.D.; Roth, P.M.; Holzinger, A. Biomedical image augmentation using Augmentor. Bioinformatics 2019, 35, 4522–4524.
[CrossRef] [PubMed]

39. Xiao, M.; Zheng, S.; Liu, C.; Wang, Y.; He, D.; Ke, G.; Liu, T.Y. Invertible image rescaling. In European Conference on Computer
Vision; Springer: Cham, Switzerland, 2010.

http://doi.org/10.1038/s41598-021-98942-5
http://www.ncbi.nlm.nih.gov/pubmed/34548603
http://doi.org/10.2478/jaiscr-2019-0006
http://doi.org/10.1007/s00521-020-05556-5
http://doi.org/10.1007/s00607-021-00928-8
http://doi.org/10.1007/s11042-020-10030-4
http://doi.org/10.1038/s41598-022-15998-7
http://doi.org/10.1109/TPAMI.2019.2928540
http://doi.org/10.3389/fnbot.2019.00037
http://doi.org/10.1016/j.neucom.2020.02.041
http://doi.org/10.1016/j.isprsjprs.2020.12.010
http://doi.org/10.1007/s13244-018-0639-9
http://www.ncbi.nlm.nih.gov/pubmed/29934920
http://doi.org/10.1038/s41598-022-21498-5
http://www.ncbi.nlm.nih.gov/pubmed/36329073
http://doi.org/10.3390/electronics12010229
http://doi.org/10.1016/j.compag.2020.105730
http://doi.org/10.1016/j.suscom.2020.100407
http://doi.org/10.3390/agriculture12020228
http://doi.org/10.1007/s41348-020-00403-0
http://doi.org/10.3390/s21237987
http://doi.org/10.3390/electronics11060951
http://doi.org/10.1016/j.compag.2020.105951
http://doi.org/10.1016/j.compag.2020.105788
http://doi.org/10.1007/s11192-018-2865-9
http://doi.org/10.1016/j.zemedi.2018.12.003
http://doi.org/10.1093/bioinformatics/btz259
http://www.ncbi.nlm.nih.gov/pubmed/30989173


Computation 2023, 11, 20 15 of 15

40. Khalifa, N.E.; Loey, M.; Mirjalili, S. A comprehensive survey of recent trends in deep learning for digital images augmentation.
Artif. Intell. Rev. 2021, 55, 1–27. [CrossRef]

41. Nanni, L.; Maguolo, G.; Paci, M. Data augmentation approaches for improving animal audio classification. Ecol. Inform. 2020, 57,
101084. [CrossRef]

42. Sánchez-Peralta, L.F.; Picón, A.; Sánchez-Margallo, F.M.; Pagador, J.B. Unravelling the effect of data augmentation transformations
in polyp segmentation. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1975–1988. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s10462-021-10066-4
http://doi.org/10.1016/j.ecoinf.2020.101084
http://doi.org/10.1007/s11548-020-02262-4

	Introduction 
	Related Works 
	Methodology 
	Data Collection 
	Image Preprocessing and Augmentation 
	Data Splitting 
	Modeling 
	Evaluation 
	Application 

	Results 
	Image Augmentation Analysis 
	Analysis of the Number of Hidden Layers 
	Trainable DenseNet Analysis 
	Dropout Analysis 

	Discussion 
	Conclusions 
	References

