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Abstract: The laboratory measurements conducted on Vaca Muerta formation samples demonstrate
stress-dependent elastic behavior and compaction under representative in situ conditions. The
experimental results reveal that the analyzed samples display elastoplastic deformation and shear-
enhanced compaction as primary plasticity mechanisms. These experimental findings contradict
the expected linear elastic response anticipated before brittle failure, as reported in several studies
on the geomechanical characterization of the Vaca Muerta formation. Therefore, we present a com-
prehensive laboratory analysis of Vaca Muerta formation samples showing their nonlinear elastic
behavior and irrecoverable shear-enhanced compaction. Additionally, we calibrate an elastoplastic
constitutive model based on these experimental observations. The resulting model accurately repro-
duces the observed phenomena, playing a pivotal role in geoengineering applications within the
energy industry.

Keywords: rock mechanics; numerical plasticity; Vaca Muerta

1. Introduction

Reservoir rocks’ nonlinear and heterogeneous nature is typically simplified when
analyzing deformation and failure during oil and gas well operations, such as drilling,
hydraulic fracturing, and production [1]. Consequently, geomechanical engineers routinely
assume that the material response is linear elastic until reaching brittle failure; this as-
sumption allows them to use straightforward analytical approximations to model stress
distribution around a wellbore [2]. These oversimplifications are widely used to solve well-
bore stability and hydraulic fracture [3] problems. Typically, the linear elasticity assumption
in unconventional reservoirs has been justified based on their brittleness [4], implying that
reservoir rocks favorable to hydraulic fracturing treatments could be accurately modeled
using linear elastic fracture mechanics [5]. This practice generally produces acceptable
results when the reservoir rock exhibits a linear elastic response during laboratory experi-
ments. However, when the mechanical behavior of these rocks departs from linear elasticity,
more sophisticated theories need to be considered.

The Vaca Muerta Formation is the most prominent unconventional hydrocarbon
reservoir located in the Neuquén Basin in Argentina. This shale rock is composed of
marine sedimentary material rich in organic mudstones, limestones, and marls, and it was
deposited in a distal ramp [6] during the Jurassic period. The mineralogy of this type of
reservoir rock is dominated by calcite, quartz, mica, pyrite, and clays. Typically, the Vaca
Muerta mudrock is described as a linear elastic material [7] in rate-independent mechanical
problems or as a visco-elastic material [8] in geological time-dependent basin modeling
problems. This reservoir can be found at approximately 2900 m depth, depending on its
location in the Basin. The depth and unusually high pore of the Vaca Muerta formation
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make drilling and coring operations a significant challenge [9], turning the acquisition of
rock samples into a valuable asset in their own right to any energy operator company.

After embarking on the demanding venture of drilling and coring 250 m from the Vaca
Muerta formation, we conducted routine core characterization, which involved a limited
series of drained triaxial tests to determine the elastic properties of the formation. These
material properties are inputs in our reservoir geomechanics characterization modeling.
Surprisingly, laboratory test outcomes on these samples consistently indicate a highly
nonlinear material response associated with an unusual compaction enhancement under
drained shear stress, a phenomenon not commonly described for the Vaca Muerta mudrock
(see recent publications, e.g., [7,8]). This finding may explain specific observations during
the completion and production of a wellbore, such as inefficient fracture initiation during
hydraulic fracture operations, unexpected well productivity due to under-stimulated rock
volume, or poor efficiency in proppant placement [10,11]. Additionally, [12] expands on
the importance of incorporating the rocks’ plastic response in estimating pressure limits to
ensure compelling drilling operations.

The compaction of porous rocks is often explained as the closure of porosity due to
increasing effective stress, assuming that the solid constituents have negligible compress-
ibility compared to their pore system. Typically, this mechanism is a factor in the life cycle
of conventional reservoirs in the form of permeability reduction [13] and subsidence [14].
In addition, the regional in situ stress state plays a crucial role in the rock’s failure mode, as
demonstrated in numerous studies found in the literature addressing the brittle–ductile
transition [15–19]. At laboratory scales, as the confining pressure increases, rock failure
evolves from void volume creation through the formation and opening of micro-cracks that
finally coalesce into a macroscopic material discontinuity known as brittle faulting [20].
This strong localization pattern is the consequence of the accumulation of irreversible
plastic volumetric strain from grain rearrangement, the collapse of the pore volume, or
grain fragmentation, which is known in the geomechanics community as shear-enhanced
compaction [21]. Plastic deformation in mudrocks is typically attributed to the abundance
of organic matter and clay inside the reservoir rock matrix [22].

Additionally, high contents of these constituents are often related to long-term vis-
coplastic mechanical responses, and its numerical modeling is comprehensively treated
in [23] and well understood. On the contrary, laboratory experiments conducted in this
work on the Vaca Muerta mudrock samples suggest that the irrecoverable volumetric strain
is mainly controlled by shear-enhanced compaction, possibly dominated by microscopic
rigid displacements of the grains and resulting in a macroscopic porosity reduction, being
a predominant mechanism of unrecoverable volumetric plastic deformation in the Vaca
Muerta shale. Our experimental observations underscore the need for a cogent constitu-
tive model that captures this intricate mechanical response and ultimately improves the
reliability of geomechanical engineers’ estimations on applications involving this defying
shale rock.

In this work, we present a comprehensive analysis of our scarce but compelling rock
samples; we also adopt a phenomenological macroscopic elastoplastic constitutive model
that adequately captures the observed material response during laboratory routine tests and
calibrates its constitutive parameters so that the geoengineering community can reliably
use this model in their applications. From all available phenomenological constitutive
models, we choose the modified Cam-Clay (MCC) model [24,25] as it adequately describes
the main experimental observations while maintaining a simple mathematical structure
widely implemented in numerous commercial simulators. Although the MCC model was
initially developed to characterize soils’ critical state, it was extended to other types of
cohesive-frictional materials [26,27], showing its ample applicability range. Inspired by
the work published in [28,29], we adopt an implicit integration algorithm and simulate a
drained triaxial test response at the Gauss point level, comparing the numerical simulation
with experimental data.
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Finally, we structure this manuscript as follows: a brief introduction is covered in this
section; Section 2 establishes the laboratory procedures that we use and shows experimen-
tal evidence of compaction enhanced by shear in Vaca Muerta; Section 3 addresses the
methodology for calibrating the constitutive material parameters for the MCC model using
a standard rock mechanics laboratory test program to capture the Vaca Muerta mudrock’s
compaction response adequately; Section 4 discusses the numerical framework to integrate
the elastoplastic constitutive model properly and presents simulated results; Section 5 opens
a discussion about our findings highlighting limitations and advantages of the proposed
methodology; and Section 6 concludes this work and details future research avenues.

2. Experimental Evidence of Shear-Enhanced Compaction in Vaca Muerta Mudrock

The Vaca Muerta formation has been typically described as a linear elastic material.
In addition, several publications limit the mechanical characterization of Vaca Muerta
to linear elasticity (see [7,8]). This assumption invites geomechanics practitioners to use
simplified analytical models to solve oil field-related geomechanical problems, such as
wellbore stability and fracture propagation. Drilling wells in Vaca Muerta is challenging;
its depth and highly over-pressurized environment hinder the possibility of extracting
rock samples to study and adequately characterize their mechanical and petrophysical
properties. In addition, due to the complex logistics and operational risks, the removal
of a core is carefully planned and infrequent because of the reasons mentioned above,
and due to the destructive nature of rock mechanics tests, the number of samples delved
for geomechanical characterization is scarce. As a part of a multidisciplinary project, we
carefully plan to extract a 250 m continuous core from the Vaca Muerta formation covering
the main productive sections to perform a complete set of laboratory studies focused on
characterizing this prominent shale oil reservoir. Among all the involved disciplines, we
perform routine geomechanics tests on a finite amount of samples from that core to preserve
material for future geological characterization. We extract five cylindrical samples at two
different productive sections in Vaca Muerta to measure elastic properties correctly to
calibrate a geomechanical model to assess wellbore stability problems. However, after
testing these samples, we observe that the linear elasticity assumption for this rock is far
from being accurate.

We ran our rock mechanics program at the W. D. Von Gonten Engineering laboratory
facilities in Houston, Texas. This program performed a drained hydrostatic compression test
to investigate the rock’s response under drained isotropic compression and four drained
triaxial compression tests for vertically oriented samples to estimate the rock’s elastic
parameters. Following ASTM D4543 [30] and D7012 [31] testing standards, each sample
was tested in a modern servo-controlled triaxial GCTS RTR-1000 loading system (see
Figure 1).

Laboratory tests were performed under room temperature and drained conditions
using a Teflon isolating jacket, cantilever radial displacement gauge, and four equally
spaced axial displacement transducers (LVDT). Before conducting triaxial tests, three
hydrostatic cycles followed by a uniaxial strain compression test were performed before
the triaxial test (see Figure 2). The initial cycles of hydrostatic compression consolidate
each sample and minimize the effect of coring-induced microcracks and other artifacts. The
uniaxial-strain test seeks to evaluate the evolution of elastic properties as a function of the
confining pressure.
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Figure 1. Triaxial GCST RTR-1000 testing system (https://www.gcts.com/).

Figure 2. General laboratory test program for Vaca Muerta samples.

Table 1 shows the physical properties of each sample, where D is the diameter, L is the
length, V0 is the initial total volume, m is the mass, ϕ0 is the initial porosity, V0

v is the initial
pore volume, and V0

s is the initial solid volume.

Table 1. Vaca Muerta samples’ physical properties.

Properties\ID Sample 0 Sample 1 Sample 2 Sample 3 Sample 4

D [cm] 2.54 2.53 2.55 2.53 2.54
L [cm] 5.05 5.09 5.12 5.05 5.06

V0 [cm3] 25.70 25.77 26.18 25.54 25.662
m [g] 61.03 62.24 62.19 62.75 59.67

ϕ0 [%] 9.67 12.29 11.03 9.84 12.30
V0

v [cm3] 2.48 3.16 2.88 2.50 3.14
V0

s [cm3] 23.21 22.59 23.30 23.02 22.49
Test type Hydrostatic Triaxial Triaxial Triaxial Triaxial

Several methods exist to determine a rock sample’s initial porosity, ϕ0. For example,
in [32], the authors proposed a novel technique relying on sample saturation and buoyancy.
This methodology determined the effective porosity of dolomitic carbonates with karstic

https://www.gcts.com/
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voids. However, Vaca Muerta is a significantly low-permeability shale rock, and its porosity
origins vary from embedded interconnected pores in an organic-rich phase to inter-granular
connected pores [6], making the technique mentioned above for determining porosity
impracticable. In [33], the authors proposed a novel methodology using nuclear magnetic
resonance (NMR) spectroscopy and demonstrated its accuracy in determining total porosity
in shale rocks. Given the similarity of the type of rock and the accuracy of this method, we
used NMR spectroscopy to determine ϕ0. Following [34], we determined the initial solid
and pore volume. We used the additive decomposition of the total initial volume V0 in a
solid V0

s and void V0
v contributions as in Figure 3, where

V0 = V0
s + V0

v . (1)

Figure 3. Additive decomposition of a porous medium volume.

In each test, we needed to estimate the evolution of the porosity as a function of
increasing mean stress, p. First, we defined the porosity, solid volume, and pore volume at
a time t as

ϕt :=
Vt

v
Vt , (2)

Vt
s := (1 − ϕt)Vt, (3)

Vt
v := ϕt Vt. (4)

The pore system was unpressurized since all our laboratory tests were conducted
under drained conditions. Therefore, we considered the solid volume (matrix) incompress-
ible compared to the pore volume; namely, we considered V0

s = Vt
s = Vs. Under this

assumption and applying additive decomposition to the initial and final volume, (3) and
(4), the volumetric deformation at time t adopts the following form:

εt
v =

Vt − V0

V0 = ϕt Vt

V0 − ϕ0

where V0, ϕ0, and Vt, ϕt are the initial volume and porosity and the porosity and vol-
ume at time t, respectively. During the test, we calculated εt

v, ϕ0, V0 and Vt from LVDT
measurements. We, thus, can estimate the evolution of the porosity as follows:

ϕt =
(

εt
v + ϕ0

)V0

Vt . (5)

Before performing triaxial compression tests to estimate the elastic properties, we
conducted a drained hydrostatic compression test to characterize the consolidation proper-
ties of the Vaca Muerta shale rock in Sample 0. Figures 4 and 5 show the evolution of the
volumetric strain and the porosity as a function of the mean stress under drained isotropic
compression during loading and unloading. Under loading conditions, we observe a mono-
tonic linear evolution of the volumetric strain and a linear decreasing trend in porosity (see
blue dashed line in Figures 4 and 5). This illustrates that the sample is consolidating under
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hydrostatic loading. During unloading, we observe a residual volumetric strain and a
reduction in porosity. This observation is meaningful since it corroborates the occurrence of
compaction due to a pore volume reduction of approximately 0.5%, similar to the residual
volumetric strain, reinforcing the assumption of matrix incompressibility under drained
loading conditions.

Figure 4. Evolution of volumetric strain as a function of mean stress during drained hydrostatic test
on Sample 0.

Figure 5. Evolution of porosity as a function of mean stress during drained hydrostatic test on
Sample 0.

After the consolidation analysis of a representative Vaca Muerta sample, we conducted
a series of drained triaxial compression tests on four samples to investigate their elastic
properties and post-elastic stress–strain behavior. Several novel methodologies based on
machine learning techniques are available in the literature to determine a rock’s elastic
constants. For instance, in [35], the authors proposed a comprehensive study of regression
models to determine rock samples’ elastic properties, which could be adequate when
many samples are available. However, due to the challenging drilling environment of
the Vaca Muerta formation, recovering a core involves high drilling costs and logistics
planning. Therefore, due to the limited number of samples available, we followed the
ASTM D7012-23 [33] standards to determine elastic properties in four available Vaca Muerta
rock samples. Since we aimed to characterize the mechanical response of Vaca Muerta at in
situ effective stress conditions, each sample was subjected to a confinement pressure (σc) of
18 MPa. We determined the elastic bulk modulus for each sample by analyzing the cyclic
hydrostatic stage during our rock testing program (see Figure 2). During the hydrostatic
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cycling stage, the deviatoric stress q = σ1 − σ3 remained constant, and the mean stress
p = 1

3 (σ1 + 2σ3) monotonically increased from 1 MPa to 18 MPa. From this test, we can
determine the initial volumetric modulus during unloading K0 considering the slope of the
unloading curve from p against the εv chart. Elastic properties, namely Young’s modulus
(E) and Poisson’s ratio (ν), were determined at the drained triaxial stage by determining
the slope of the linear trend in stress difference (σ1 − σ3) and the radial strain (εr) against
the axial strain (ε1) charts, respectively.

Figures 6–9 show the determination of the elastic constants from laboratory tests, and
Table 2 summarizes its values for samples 1 to 4. During unloading/reloading hydrostatic
cycles, an insignificant amount of hysteresis develops. We disregarded this behavior
when determining the elastic bulk modulus and considered only the first unloading cycle.
The maximum mean stress during hydrostatic cycling should be the confinement pressure
under triaxial conditions. Otherwise, the triaxial stress path may induce unwanted isotropic
compression. Therefore, the sample might show a different response at failure.

Table 2. Elastic properties from hydrostatic cycles and drained triaxial tests.

Properties\ID Sample 1 Sample 2 Sample 3 Sample 4 Mean Value

E [GPa] 16.05 15.54 20.96 16.34 17.22
K0 [GPa] 13.65 12.22 14.09 11.19 12.78

ν 0.186 0.168 0.196 0.162 0.178

Our rock mechanics laboratory results show elastic property values that align closely
with those published in [7]. However, during triaxial testing, the Vaca Muerta samples
exhibit a highly non-linear response after a slight elastic deformation range. To investigate
this non-linearity source, we also analyzed the evolution of the volumetric strain and the
porosity (using (5)) against the mean stress p.

Figure 6. Elastic constant determination for Sample 1. (Upper left) Young’s modulus determination.
(Upper right) Bulk modulus determination. (Bottom left) Poisson’s ratio determination. (Bottom
right) Volumetric strain evolution during drained triaxial test.
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Figure 7. Elastic constant determination for Sample 2. (Upper left) Young’s modulus determination.
(Upper right) Bulk modulus determination. (Bottom left) Poisson’s ratio determination. (Bottom
right) Volumetric strain evolution during drained triaxial test.

Figure 8. Elastic constant determination for Sample 3. (Upper left) Young’s modulus determination.
(Upper right) Bulk modulus determination. (Bottom left) Poisson’s ratio determination. (Bottom
right) Volumetric strain evolution during drained triaxial test.
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Figure 9. Elastic constant determination for Sample 4. (Upper left) Young’s modulus determination.
(Upper right) Bulk modulus determination. (Bottom left) Poisson’s ratio determination. (Bottom
right) Volumetric strain evolution during drained triaxial test.

Comparing the drained hydrostatic compression test response previously illustrated
with the material’s behavior under drained triaxial conditions, we observe significant devi-
ation in the volumetric strain and porosity evolution from the observed hydrostatic com-
paction trend (see Figures 4 and 5). These experimental observations show that compaction
is enhanced by shear until reaching dilatancy before localized failure. In Figures 10–13,
we identify the mean stress value where the deviation from hydrostatic compaction trend
occurs (p0

c ). This value is designated as the onset of compaction by [21]. According to [21],
the deviation from the hydrostatic compaction trend line is a measure of the plastic contri-
bution to the total volumetric strain, validating the decomposition of the total volumetric
strain into an elastic and plastic component (see [34]), εv = εe

v + ε
p
v, under small strains.

The same decomposition applies to the porosity reduction under small strains, ∆ϕ.

Figure 10. Shear-enhanced compaction analysis for Sample 1. (Left) Volumetric strain evolution as a
function of mean pressure. (Right) Porosity evolution as a function of mean stress.
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Figure 11. Shear-enhanced compaction analysis for Sample 2. (Left) Volumetric strain evolution as a
function of mean pressure. (Right) Porosity evolution as a function of mean stress.

Figure 12. Shear-enhanced compaction analysis for Sample 3. (Left) Volumetric strain evolution as a
function of mean pressure. (Right) Porosity evolution as a function of mean stress.

Figure 13. Shear-enhanced compaction analysis for Sample 4. (Left) Volumetric strain evolution as a
function of mean pressure. (Right) Porosity evolution as a function of mean stress.

The experimental evidence of plastic deformation at confinement pressures compara-
ble to the in situ conditions for Vaca Muerta samples is a remarkable finding that challenges
the linear elasticity assumption in geomechanical engineering applications for drilling,
fracturing, and producing wells targeting the Vaca Muerta formation. Moreover, our exper-
imental results underscore the need to calibrate a more sophisticated constitutive model for
geoengineering applications related to wellbore stability and fracture mechanics problems
within the oil and gas sector.

3. Experimental Calibration of an Elastoplastic Constitutive Model for Vaca Muerta

In this section, we investigate adopting a macroscopic elastoplastic constitutive model
capable of capturing shear-enhanced compaction. This mathematical framework should
satisfy two main objectives. First and foremost, the constitutive parameters to calibrate the
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chosen model need to be easily determined from standard laboratory tests. Secondly, to
widely adopt this model among engineer practitioners, it should be comprehensive and
commonly implemented in commercial finite element codes.

Various constitutive models were developed in the literature for modeling the elasto-
plastic response of cohesive-frictional materials. Among the most popular yield criteria,
we can highlight the Mohr–Coulomb (MC), Hoek–Brown (HB), and Drucker–Prager (DP)
criteria in their inner and outer formulations (see [36]). Despite the wide application of the
models above in failure analysis, these models have certain drawbacks in their numerical
implementation. The MC yield criterion has discontinuities that need to be solved, the
HB yield criterion possesses free parameters that are difficult to generalize, and the DP
yield criteria do not capture various loading states typical for geomechanical applications
(see [27,36]).

The modified Cam-Clay (MCC) yield criterion was initially developed to character-
ize the elastoplastic response of wet clays. Recently, this yield criterion was extended to
adequately capture the mechanical response of different materials ranging from pharma-
ceutical applications [27] to the characterization of localization patterns in sandstones [26].
Additionally, in [23], a comprehensive analysis of the MCC yield criterion and its numerical
implementation for capturing creep in Barnette shale is presented. This wide range of
applications and its extensive adoption for modeling the elastoplastic response of cohesive-
frictional materials drive us to explore its applicability to adequately capture the observed
elastoplastic response in Vaca Muerta shale samples during drained triaxial testing.

3.1. Notation and Definitions

Throughout the rest of this manuscript, we extensively use tensor algebra. Therefore,
we will briefly define our notation, meaningful identities, and tensor sign conventions.

We denote second-order tensors (i.e., matrix arrays that satisfy specific change of
basis rules) using bold Greek symbols or letters; fourth-order tensors with upper case
blackboard bold letters (e.g., C)); vectors (i.e., first-order tensors) with lower case italic,
bold letters; and scalars with lower case Greek symbols or letters. In addition, we adopt
Einstein’s summation convention (given i = 1, 2, 3; ai bi = a1 b1 + a2 b2 + a3 b3) to perform
component-wise tensor operations, such as contractions (vector inner products) or double
contractions (second-order tensor inner products). The symbol ⊗ denotes the tensor
product (outer product).

We assume that all the operations are performed in Euclidean space. Thus, we make
no distinction between covariant and contravariant basis vectors. Unit basis vectors in
the Euclidean space R3 are denoted as ei, i = 1, 2, 3, with the properties ei · ej = δij and
ei · ei = δii = 3 for i, j = 1, 2, 3, where δij ∈ R3×3 is the Kronecker Delta and where δii = 1
and δij = 0 if i ̸= j. Therefore, we write first-order, second-order, and fourth-order tensors
as follows:

a = ai ei, σ = σij ei ⊗ ej, C = Cijkl ei ⊗ ej ⊗ ek ⊗ el , with i, j, k, l = 1, 2, 3

Since we work in a three-dimensional Euclidean space, the range for indexes will be
omitted to avoid clutter in the rest of this manuscript.

The transpose of a second-order tensor σ ∈ R3×3 using index notation is defined as

σT := σji ei ⊗ ej = σij ej ⊗ ei,

and the trace of a second-order tensor σ is given by tr(σ) := σ : 1, where 1 = δij ei ⊗ ej.

Given two vectors a, b ∈ R3 and two second-order tensors σ, ε ∈ R3×3, the contrac-
tion and the double contraction are given as follows:

a · b := ai bj (Contraction) σ : ε := σij εkl (Double Contraction)
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We often make use of the symmetric fourth-order unit tensor, defined as

I := Iijkl ei ⊗ ej ⊗ ek ⊗ el :=
1
2
(
δik δjl + δil δjk

)
ei ⊗ ej ⊗ ek ⊗ el . (6)

The symmetric fourth-order unit tensor admits the following decomposition:

I := Id + Iv,

where Iv and Id are the volumetric and deviatoric contributions given by

Iv :=
1
3

1 ⊗ 1, Id := I− Iv.

The operator ∥ ∗ ∥ : ∗ 7→ R denotes the Frobenius norm for either vectors or second-
order tensors. For vectors, ∥a∥ =

√
a · a =

√
ai ai, whereas for second-order tensors,

∥σ∥ =
√
σ : σ =

√
σij σij. We usually work with variables that evolve during a pseudo-

time increment ∆t = [tn+1, tn], ∀n ∈ N+. The derivative of a tensor or scalar field concern-
ing the pseudo-time t is denoted as

∂σ(t)
∂t

:= σ̇(t) = σ̇ij(t), ∀σ(t) ∈ R3×3 × [0, T]
∂ϕ(t)

∂t
:= ϕ̇(t), ∀ϕ : Rn × [0, T] 7→ R.

We adopt the rock mechanics convention in which compressive stresses are positive
and tensile stresses are negative. In addition, we denote the effective Cauchy’s stress tensor
by σ and the infinitesimal strain tensor by ε. The mean stress is p := 1

3 tr(σ) = σ : 1, and
the deviatoric effective stress s := σ− p 1 with the property that tr(s) = 0. Additionally,
for a symmetric second-order tensor σ, we define the following tensor invariants:

I1(σ) := σ : 1 = σii, (7)

I2(σ) :=
1
2

(
I(σ)2

1 −σ : σ
)

, (8)

I3(σ) :=
1
6

[
2 (σ ·σ) : σ− 3 I1(σ)(σ : σ) + I3

1

)
= det(σ). (9)

The stress invariants for the deviatoric symmetric second-order tensor are

J1(s) := tr(s) = 0, (10)

J2(s) :=
1
2

s : s, (11)

J3(s) :=
1
3
(s : s) : s. (12)

Finally, the deviatoric stress invariants relate to the stress invariants as follows:

J2(s) =
1
3

(
I2
1 (σ)− 3 I2(σ)

)
, (13)

J3(s) =
1
27

(
2 I3

1 (σ)− 9 I1(σ) I2(σ) + 27 I3(σ)
)

, (14)

I2(σ) =
1
3

(
I2
1 (σ)− 3 J2(s)

)
, (15)

I3(σ) =
1
27

(
I3
1 (σ)− 9 I1(σ) J2(s) + 27 J3(s)

)
. (16)

3.2. Continuous Elastoplastic Modified Cam-Clay Constitutive Model

Following [36], elastoplastic constitutive models should be able to capture the follow-
ing experimental observations: for loads below a threshold that defines a flow criterion,
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the material response is reversible (elastic); once the material reaches the limit condition,
the deformation becomes partly irrecoverable (plastic); plastic deformations evolve the
failure state as described by a hardening law; during unloading, the material response is
elastic; the material response during the whole deformation process is quasi-stationary,
and the material is thermodynamically stable (see Appendix A for a concise treatment of
plasticity theory).

We describe the material’s elastic response by adopting a linear Hookean model
given by

σ = Ce : εe = Ce : (ε− εp), (17)

where Ce is the fourth-order elasticity tensor defined by the bulk modulus K, and the shear
modulus G is

Ce := K 1 ⊗ 1 + 2 G
(
I− 1

3
1 ⊗ 1

)
. (18)

The elastic bulk and shear moduli, K and G, are assumed to depend linearly on the
mean stress p (see [28]). The original expression of K proposed in [28] depends on the void
ratio e, which is defined as

et :=
Vt

v
Vt (19)

Combining (2) with (19), the void ratio related to the total porosity is as follows:

et =
ϕt

1 − ϕt (20)

Thus, we rewrite the expressions proposed in [28] in terms of the total porosity as

K :=
(1 + et) p

κ
=

p
κ(1 − ϕt)

, (21)

G =
3 K(1 − 2ν)

2(1 + ν)
, (22)

where κ is the volumetric deformation recovery, ϕt is the total porosity, and ν is
Poisson’s ratio.

The coupling of elastic shear and volumetric moduli may lead to energy dissipation
under cyclic loading [28,29]. However, non-conservation is not an issue for monotonic
loading, which is the main application in this manuscript. In addition, the definitions
for K and G in (21) and (22) are widely used in practice for geoengineering applications
(see [23,26,28,29]; thus, we adopt these expressions throughout the rest of this work. Addi-
tionally, we model the porosity evolution during loading using the following state equation
in rate form:

ϕ̇ = −ψ ε̇v, (23)

where ψ represents the rock sample’s porosity degradation rate during isotropic compres-
sion (hydrostatic compaction).

The mathematical description of an elastoplastic constitutive model involves the defi-
nitions of three main components [36,37] (see Appendix B for a detailed treatment). Firstly,
the yield function describes the location of points where the material develops irrecoverable
deformation. Secondly, the flow rule characterizes the evolution of plastic deformation.
Finally, the hardening law typifies the evolution of the yield function throughout the plastic
strain evolution.

Cam-Clay models [24,25] are widely used for plasticity characterization of the stress–
strain response of cohesive-frictional materials subjected to three-dimensional stress
states [26,27]. These simple models can realistically represent the compaction and dilation
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responses of porous materials [23,28,29]. Cam-Clay models capture the typical pressure
sensitivity and hardening of cohesive-frictional materials, requiring a few parameters that
standard laboratory testing procedures can characterize (see [24,25]).

Recently, experimental data on limestone rocks that exhibit compaction and dilation
during laboratory triaxial testing was reported in [38]. The same material response was
observed in Vaca Muerta mudstone during drained triaxial testing reported in previous
sections in this work. Thus, we selected a constitutive model that captures this nonlinear
response for practical geomechanical applications. The MCC yield criterion is typically
expressed in terms of the deviatoric stress q and the mean stress p (see Figure 14 for a
schematic representation) as,

Ff (σ) : R3×3 7→ R such that Ff (σ) =
q2

M2 + p(p − pc), (24)

where the deviatoric part of the effective stress tensor is defined as

q :=

√
3
2
∥s∥, (25)

and M and pc define the critical state line (CSL) slope and the hardening parameter,
respectively. The hardening parameter describes the yield surface’s evolution as the mean
stress increases during the material’s deformation process.

Figure 14. Representation of the Cam-Clay yield criterion in the p − q plane.

Alternatively, we can express (24) in terms of the stress invariants as

Ff (σ) =
3

2M
I2(σ) + η I2

1 (σ)−
1
3

pc I1(σ), (26)

where

η =
2M − 9

18M
.

We adopt an associative flow rule (see Appendix B), which expresses the rate of plastic
deformation as

ε̇p = λ̇
∂Ff

∂σ
, (27)

where the flow direction is given by (see Appendix C.1)

∂Ff (σ)

∂σ
=

1
3
(2p − pc)1 +

√
3
2

2q
M2 n, (28)
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in which n =
s

∥s∥ and λ̇ > 0 is the plastic multiplier.

Remark 1 (Non-associativity). Although associative flow rules characterize the plastic flow of
granular materials, non-associative flow rules on the volumetric component of ε̇p could be more
suitable for some rocks. Nevertheless, assuming associative flow to capture the plastic flow in Vaca
Muerta reproduces the experimental observation without adding additional heuristics.

We adopt the hardening law in rate form (see [29]) as

ṗc = χ pc ε̇
p
v , (29)

where ε̇
p
v = ε̇p : 1 is the volumetric component of the plastic strain rate tensor and χ is

given by

χ =
[
(1 − ϕt)(γ − κ)

]−1. (30)

In (30), γ and κ are material parameters representing compaction and bulk
volumetric recovery.

3.3. Material Parameter Determination for Vaca Muerta Elastoplastic Constitutive Model

To comprehensively define a macroscopic elastoplastic constitutive model for char-
acterizing the shear-enhanced compaction response observed in Vaca Muerta mudrock
samples, we need to estimate the material parameters κ, γ, and ψ and the critical state line
slope M. All these parameters can be determined consistently by analyzing the evolution
of total porosity during the various test stages in laboratory testing. Compaction and bulk
volumetric recovery parameters were measured in the hydrostatic cycling phase. The
required number of cycles applied during testing induced a linear trend from loading and
unloading cycles. At this point, the sample was compacted to a certain level, where artifacts
from the core sample extraction are mitigated. Figure 15 depicts the evolution of total
porosity estimated as in (2) against the mean stress during hydrostatic cycling.

Additionally, the κ and γ material parameters were determined by analyzing the
slopes of ϕ − p plots during loading and unloading cycles. We also estimated the initial
hardening parameter p0

c from the intersection of the loading and unloading curves, which
was coincident with the onset of compaction value (refer to Figures 10–13). The initial
hardening parameter is crucial for properly integrating the hardening law. One noteworthy
observation is that during the unloading/reloading cycles, an insignificant amount of
hysteresis developed. We disregarded this effect for parameter interpretation, and only the
first unloading response was considered to define each material parameter and the initial
hardening parameter p0

c .
The porosity degradation parameter ψ, defining the porosity state Equation (23),

was estimated by analyzing the slope of the porosity evolution against the volumetric
strain during drained triaxial tests. Figure 16 shows the porosity evolution as a function
of the volumetric strain εv, illustrating a clear linear relationship in the total porosity’s
degradation while the sample continues its compaction process.

The critical state line (CSL) slope M, which fully defines the MCC yield function, was
estimated by analyzing the evolution of effective deviatoric stress q against the effective
mean stress p during drained triaxial testing. This involved identifying the mean stress at
which each sample dilated (refer to Figures 10–13). Figure 17 illustrates the evolution of
the MCC yield criterion along the experimental stress path for the Vaca Muerta mudstone
samples. The slope of the stress path was 3, the theoretical slope for triaxial conditions.
Initially, the samples were loaded to an initial state (p0, q0) within the initial yield locus
defined by the major axis p0

c , the initial hardening parameter captured by hydrostatic cycles
(refer to Figure 15). Under these stress conditions, the sample response was elastic.
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Figure 15. Compaction and bulk volumetric recovery parameters from hydrostatic cycling.

Figure 16. Porosity degradation parameter determination.

As the pair (p, q) increased, the stress path reached its critical point, initiating dilation.
At this juncture, the yield locus was defined by the critical hardening parameter p∗c . With
the onset of dilatancy, the samples progressively failed in shear, and the final Cam-Clay
ellipse was defined by the final hardening parameter pt

c. The CSL slope (M) was then
estimated by the intersection between the triaxial test stress path and the mean stress p at
which the sample increased in volumetric strain at constant pressure. This can be observed
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in the εv vs p, chart (see Figures 10–13). Thus, the CSL is a straight line from the origin to
the latter intersection on the q − p projection. We summarize the MCC material parameters
for the Vaca Muerta mudstone based on the four samples we tested in Table 3.

Table 3. Modified Cam-Clay parameters for the Vaca Muerta formation.

Properties\ID Sample 1 Sample 2 Sample 3 Sample 4 Mean Value

κ 0.00123 0.00145 0.00156 0.00167 0.00147
γ 0.00230 0.00270 0.00220 0.00250 0.00242
ψ 0.0088 0.0089 0.0090 0.0088 0.0088

p0
c [MPa] 22.06 19.91 19.91 22.06 20.985

M 2.02 1.98 1.98 2.00 1.995

Figure 17. Determination of the critical state line slope M from drained triaxial tests.

4. Numerical Integration of the Vaca Muerta Elastoplastic Constitutive Model

This section presents the numerical scheme for integrating the proposed elastoplastic
constitutive model for its implementation in finite element codes. Although many ge-
omechanically focused commercial codes include the MCC yield function to model the
materials’ non-linear response in engineering applications, we present a comprehensive
treatment of the numerical formulation as we use it later in our numerical experiments.
We based our implementation on the closest point projection mapping strategy, discussed
in detail in [36,37] and adapted by [23,28,29] for updating the constitutive model state
variables of the MCC model, relying on prediction-correction numerical methodology. We
emphasize that the strategy presented here is a finite element framework building block,
acting at the Gauss point level at a finite element.

We begin with the integration algorithm setting for the MCC elastoplastic constitutive
model. Let Ω ∈ Rd, d = 2, 3. Consider the discretization Ωh ⊂ Ω. Let us take an
arbitrary Gauss point on a finite element eh ∈ Ωh. Let t ∈ [0, T], T > 0 be a pseudo-time
and n, k ∈ N+ be the pseudo-time increment and iteration counters, respectively. The
incremental strain tensor ∆εk

n+1 is

∆εk
n+1 := εk

n+1 − εn. (31)
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Since the closest point projection mapping consists of a prediction-correction technique, we
consider the trial state (elastic predictor) defined by freezing all the internal variables as

σ̂n+1 := σn +Ce : ∆εk
n+1, (32)

p̂ :=
1
3
σ̂n+1 : 1, (33)

ŝn+1 := σ̂n+1 − p̂n+11, (34)

q̂n+1 :=

√
3
2
∥ŝn+1∥. (35)

where σn and εn are the converged effective stress and strain tensors of the previous
pseudo-time step n. The return mapping (plastic correction) tensor equations in their
general form are

σk
n+1 = σ̂n+1 −Ce : ∆εp. (36)

Integrating (A20) within [tn, tn+1] leads to the following discrete plastic-strain
increment, ∆εp:

∆εp := ∆λ
∂Ff

∂σ
, (37)

where ∆λ is the discrete consistency parameter. Consider the volumetric part of σk
n+1:

pk
n+1 =

1
3
σk

n+1 : 1 =
1
3
σ̂n+1 : 1 − 1

3
Ce : ∆εp : 1 = p̂n+1 − Kn+1∆ε

p
v , (38)

where ∆ε
p
v = ∆εp : 1 = ∆λ

(
2pk

n+1 − pc

)
. Additionally, consider the deviatoric measure of

σk
n+1 (see Appendix C.2):

qk
n+1(∆λ) =

q̂n+1(
1 + 6Gn+1

∆λ

M2

) . (39)

Combining (38) and (39) results in the following system of scalar equations on ∆λ:

pk
n+1(∆λ) = p̂n + 1 − K∆λ (2 pk

n+1 − pc),

qk
n+1(∆λ) =

q̂n+1(
1 + 6G

∆λ

M2

) . (40)

The exact integration of the hardening law (29) gives:

pc(∆λ) = (pc)n exp

(
χ ∆λ

∂Ff

∂pk
n+1

)
= (pc)n exp

[
χ ∆λ

(
2 pk

n+1 − pc

)]
.

The consistency parameter ∆λ in (40)–(41) is calculated by imposing the consistency
condition on Ff (∆λ) (see Appendix B):

Ff (∆λ) =

(
qk

n+1
M

)2

+ pk
n+1

(
pk

n+1 − pc

)
= 0. (41)

Since (41) couples the variables pk
n+1 and pc, Ff (∆λ) cannot be evaluated explicitly.

Therefore, pk
n+1 and pc are updated iteratively by a local Newton–Raphson iteration. Thus,

we rewrite the first equation in (40) as

pk
n+1 =

p̂n+1 + ∆λ Kn+1 pc

1 + 2 ∆λ Kn+1
, (42)
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and substituting (42) into the second equation in (40), we have the following scalar equation
on pc:

H f (pc) = (pc)n exp
(

χ ∆λ
2 p̂n+1 + ∆λ Kn+1 pc

1 + 2 ∆λ Kn+1

)
− pc = 0. (43)

In Section 3.2, we define K and G as dependent on p and ϕt. Therefore, K and G
are state variables updated at each strain increment during loading. We use an explicit
integration scheme to update ϕt, K, and G as follows:

ϕn+1 = ϕn − ψ(∆εv)n+1, (44)

Kn+1 =
pn+1

κ(1 − ϕn+1)
, (45)

Gn+1 =
3Kn+1(1 − 2ν)

2(1 + ν)
. (46)

Thus, combining (31) with (46) and the derivatives of Ff (∆λ) and H f (∆λ) with respect
to the consistency parameter ∆λ (see Appendix C.3) to fully define the Newton–Raphson
iteration scheme, we obtain the following closest point projection algorithm (see [28,37])
for updating σk

n+1, εp
n+1, and pc (see Figure 18 for a sketch of the closest point projection

algorithm detailed in Algorithm 1):

Algorithm 1 Closest point projection.

1. Given {σn, εp
n, ∆ε, (pc)n}

2. Calculate the trial state:
εk

n+1 = εn + ∆εk
n+1, σ̂n+1 = σn +Ce : ∆εk

n+1, p̂ =
1
3
σ̂n+1 : 1,

ŝn+1 = σ̂n+1 − p̂n+1, q̂n+1 =

√
3
2
∥ŝn+1∥.

3. Evaluate the modified Cam-Clay yield function in the trial state: Ff [σ̂n+1, (pc)n]
4. IF Ff [σ̂n+1, (pc)n] < 0: ▷ Elastic Step

σk
n+1 = σ̂n+1, εk

n+1 = εn + ∆εk
n+1, ε

p
n+1 = ε

p
n, (pc)n+1 = (pc)n.

5. ELSE IF Ff [σ̂n+1, (pc)n] ≥ 0: ▷ Plastic Step
i. Initialize:

σk
n+1 = σn, ε

p
n+1 = ε

p
n, (pc)n+1 = (pc)n.

ii. WHILE |Ff

[
σk

n+1, (pc)n+1

]
| > FTOL: ▷ Outer Newton–Raphson

◦ WHILE |H f [(pc)n+1]| > HTOL: ▷ Inner Newton–Raphson

⋆ (pc)n+1 = (pc)n+1 − H f [(pc)n+1]

(
∂H f

∂pc

)−1

◦ ∆λk = ∆λk−1 − Ff

[
σk

n+1, (pc)n+1

]( ∂Ff

∂∆λ

)−1

◦ pk
n+1 =

p̂n+1 + ∆λk K pc

1 + 2 ∆λk K
◦ qk

n+1 =
q̂n+1(

1 + 6G ∆λk

M2

)
6. RETURN:

∆ε
p
n+1 = ∆λk ∂Ff

∂σ
, σk

n+1 = σ̂n+1 −Ce : ∆ε
p
n+1, ε

p
n+1 = ε

p
n + ∆ε

p
n+1



Computation 2023, 11, 250 20 of 33

Figure 18. Internal variables updated by the closest point projection algorithm. The blue point is the
trial state for the internal variables (elastic prediction). The red dot is the final state for the internal
variables (plastic correction).

Triaxial Test Simulation of Vaca Muerta Samples

In this section, we evaluate the accuracy of the calibrated MCC model in reproducing
compaction induced by shear in Vaca Muerta mudrock. Dilation is not included in our
numerical framework, meaning the material response is perfectly plastic after reaching the
critical compaction point. Our benchmark is focused on numerically reproducing a drained
triaxial test using the calibrated model and comparing our simulated results against the
presented experimental data.

The numerical experiment focuses on a single Gauss point Gp, inducing a triaxial
stress state by considering an initial hydrostatic stress state at Gp of the form

σ0 =

σc 0 0
0 σc 0
0 0 σc

ei ⊗ ej. (47)

and applying the following deviatoric strain tensor:

∆εd
0 = ∆ε

1 0 0
0 0 0
0 0 0

ei ⊗ ej −
∆ε

3

1 0 0
0 1 0
0 0 1

ei ⊗ ej, (48)

where σk
n+1 is the converged stress tensor in principal components (i.e., σ1, σ2, and σ3,

where σ1 ≥ σ2 ≥ σ3). During the triaxial test, the stress components at Gp must satisfy
σ2 = σ3 = σc. Therefore, after each strain step, we iteratively enforced this condition by
increasing the volumetric component of the deviatoric strain tensor increment ∆εd

0. In
addition, we utilized a confinement pressure σc of 18 MPa. This numerical experiment
considered a strain-driven evolution considering a strain increment ∆ε of 8 × 10−5.

We considered material parameters within the range we obtained for the Vaca Muerta
mudstone samples. Therefore, we chose the average values for Poisson’s ratio (ν), com-
paction recovery (γ), bulk volume recovery (κ), porosity degradation (ψ), CSL slope (M),
and initial onset compaction parameter (p0

c ), as reported in Table 2 and Table 3, respectively.
We chose an initial porosity (ϕ0) of 12.3% and numerical tolerances for the return mapping
convergence FTOL and hardening update GTOL of 1 × 10−6.

In Figure 19, our triaxial test simulation utilizing the calibrated MCC yield function is
compared with the drained triaxial laboratory test conducted on Vaca Muerta mudstone
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samples. The calibrated constitutive model accurately reproduces the key features observed
in our experimental laboratory tests. Additionally, this model effectively captures volu-
metric strain and unrecoverable deformation due to compaction induced by shear despite
employing an associative flow rule for updating state variables.

Figure 19. Comparison between numerical simulation of a triaxial test and laboratory tests. (Left)
Deviatoric stress against axial strain. (Right) Mean stress against volumetric strain.

One limitation of this model is its inability to represent dilation response. The in-
troduced state equations fail to capture this phenomenon, as the hardening law induces
compaction as the yield function evolves. Furthermore, the model predicts perfect plas-
ticity instead of dilation after the sample’s critical deformation. Although some samples
exhibited dilation and softening, these phenomena occurred at the end of the triaxial test,
just before the shear failure of the sample. Thus, our model accurately captures the primary
plastic response attributed to compaction.

5. Discussion

The rock mechanics characterization of Vaca Muerta has predominantly focused on its
linear elastic response [7]. This assumption, applied in various engineering applications
crucial for harnessing energy from this unconventional reservoir, simplifies the analysis
of the stability at the wellbore wall during drilling [9] and the propagation of fractures
during wellbore completion [3] for hydrocarbon production. However, conclusions drawn
from such studies might be misleading, as evidenced by several field observations, in-
cluding inefficient fracture initiation, proppant misplacement during hydraulic fracture
operations, and unexpected well productivity due to under-stimulated rock volume [10,11].
These observations have often been attributed to uncertainties in determining the in situ
stress state, typically assessed using a linear elastic constitutive model, either isotropic
or anisotropic. This claim is frequently based on a lack of evidence of a mechanical re-
sponse other than linear elasticity. Therefore, the experimental results presented in this
manuscript are fundamental for advancing the characterization and modeling of Vaca
Muerta’s mechanical response.

This work is a starting point to motivate geomechanical practitioners to focus on the
mechanical study of the Vaca Muerta formation to transition to more comprehensive rock
mechanics models. This manuscript presents a thorough rock mechanics characterization of
Vaca Muerta rock samples. One limitation of our laboratory study is the restricted number
of samples, a common issue for various subsurface study groups in operator companies
involved in the multidisciplinary characterization of this reservoir. This limitation prevents
us from using more sophisticated techniques relying on machine learning regression
methods (see [32] for a comprehensive treatment of this issue) to determine and find a
generalized elastic constitutive model for Vaca Muerta. Additionally, our characterization
of irrecoverable volumetric deformation relies on the evolution of total porosity as a
function of volumetric strain. Therefore, the accurate determination of the initial porosity
of each sample is crucial for estimating compaction and dilation evolution throughout
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laboratory tests. Determining shale rock porosity is challenging due to the significantly
low permeability of such rocks. Although recent research proposes indirect determination
of porosity using saturation and buoyancy procedures (see [32] for further details), these
techniques are based on the high permeability of the rock specimens used in the study,
enabling full saturation. Unfortunately, saturating Vaca Muerta samples without altering
their original pore structure is delicate. Given this limitation, we determine the initial
porosity of each sample using NMR technology proposed in [33]. Over the last three years,
this technique has been widely adopted to measure porosity in representative U.S. and
Argentina shale rocks, becoming a standard methodology that petrophysical practitioners
heavily rely on.

Beyond laboratory observations, we present a methodology to quantify shear-enhanced
compaction properly, relying on a standard rock mechanics laboratory test program typi-
cally conducted by geomechanical practitioners and field experts. However, one possible
limitation of this methodology is the macroscopic characterization of shale rock compaction
relying on porosity degradation. Vaca Muerta is a fine-grained mudstone, and its solid
constituents can be assumed to be incompressible compared to the pore volume when
the deformation process is conducted under drained conditions at a macroscopic scale.
However, this work does not cover undrained conditions or mesoscale and microscale
modeling, which might be subjects of future studies. The degree of saturation in the pore
system can also play an essential role in the deformation processes of cohesion frictional
materials, as comprehensively treated in [34]; however, due to the drained conditions of
our laboratory tests, this effect is not considered. Despite the limitations above, this work
aims to spark discussion and expand efforts in the characterization of this unconventional
reservoir rock in the Vaca Muerta geomechanics scientific community. Therefore, the obser-
vation of enhanced compaction during drained triaxial testing is a novelty that was not
previously documented and not expected in Vaca Muerta.

After characterizing compaction enhancement driven by the shear stress path in
our laboratory measurements, we endeavor to propose a constitutive model capable of
reproducing this experimental observation. The choice of the MCC constitutive model
is inspired by the compactive response of other cohesive-frictional materials like soils
(see [24,25]). Although the MCC yield function was initially proposed for modeling wet
clays, its application was extended beyond soil mechanics to various cohesive-frictional
materials ranging from pharmaceutical powders to rocks (see [23,26,27]). In addition, the
extension of the MCC constitutive model to predict viscoplastic response in a U.S. shale
rock under long-term compressive loads is presented in [23]. The broad applicability of this
constitutive model and its widespread implementation in various finite element commercial
codes prompt us to provide a calibration procedure that involves estimating MCC material
parameters from standard rock mechanics laboratory test programs.

Moreover, MCC yield function parameters relate directly to our laboratory observa-
tions, potentially enhancing its acceptance among practitioners. We focus on calibrating
the MCC model to adequately capture compaction since it is the most significant response
observed during our rock mechanics experiments. However, another possible limitation
of this constitutive model is that dilation is not included in our mathematical framework,
restricting its applicability solely to modeling compaction. Despite this limitation, the
presented model can be widely applied to various geoengineering problems inside the
compaction strain range.

The numerical framework presented in this work plays a crucial role in evaluating the
performance of the MCC model to capture experimental observations accurately. The imple-
mentation adopted in this manuscript draws inspiration from pioneering works in [28,29].
An essential characteristic of our numerical integration strategy is using the closest point
projection mapping algorithm, a standard procedure widely employed in numerical plas-
ticity, enhancing its acceptance among geomechanics practitioners. Moreover, throughout
the numerical experiments, we use an associated flow rule that perfectly aligns with the
thermodynamics of deformable solids theory. This feature makes the model straightfor-
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ward to implement and ensures thermodynamic consistency. Of particular significance is
the observation from the numerical modeling perspective that we used an associated flow
rule without over-predicting volumetric strains [36]. Typically, non-associated flow rules
are adopted to capture compaction accurately. This often involves a combination of associa-
tivity in the deviatoric component and non-associativity in the volumetric component of
the return mapping direction [36]. The latter approach might not be thermodynamically
consistent and usually requires a dedicated verification of the Clasius–Duhem inequality
(see Appendix A), leading to restrictive conditions on material parameters.

6. Conclusions and Future Work

This work presents experimental evidence of enhanced compaction response due to
shear in Vaca Muerta mudstone, a phenomenon often overlooked and not characterized
in standard rock mechanics laboratory procedures. The methodologies proposed in this
manuscript aim to establish a consistent and self-contained procedure to accurately calibrate
the MCC constitutive model, which is widely used in various geoengineering applications
and recently extended for different cohesive-frictional materials beyond soils.

We calibrate a constitutive model capable of capturing the volumetric plasticity of Vaca
Muerta mudstone using a standard laboratory testing program. The integration algorithm,
inspired by [28], effectively updates the state variables σk

n+1 and ε
p
n+1. This algorithm

employs a closest point projection strategy primarily proposed by [37], incorporating an
associative flow rule and a simple hardening law. More importantly, while adopting an
associative flow rule, the model accurately captures compaction without over-predicting
volumetric strains. Our mathematical model does not aim to describe the dilatant behavior
of this rock as the plastic load evolves and the algorithm updates the state variables.
Therefore, the material behaves as perfectly plastic after a critical compaction value. The
model effectively captures the main plastic dissipation mechanism due to compaction for
Vaca Muerta mudstone samples, even though dilatancy was not included in the constitutive
model formulation.

The calibrated MCC model and the integration algorithm we describe can be imple-
mented in standard finite element routines to accurately capture the compaction of Vaca
Muerta mudstone in more complex stress states and geomechanics applications, such
as wellbore stability problems and hydraulic fracture propagation problems. This im-
plementation has the potential to shed light on unexpected field observations related to
hydrocarbon production performance, refined allowable pressure limits during drilling,
and ineffective fracture propagation and proppant placement during hydraulic fracture
operations. Additionally, geomechanics experts can utilize the material parameters of the
calibrated MCC model in commercial finite element codes, allowing them to explore the
impact of this material response in their engineering applications within the energy sector.

While the observations in this work provide a foundational understanding of the
mechanical response of Vaca Muerta mudstone, future efforts will focus on incorporating
dilatancy into the hardening law to capture this phenomenon accurately. Potential research
avenues in this direction include implementing Rowe’s dilatancy theory [39], widely used
to capture softening in various cohesive-frictional materials. Additionally, after framing the
mathematical framework to incorporate dilatancy, a complementary research path could
extend the applicability of this model by studying localization at a constitutive level [26].
This could provide localization directions to model shear bands in Vaca Muerta shale rock
properly. Developing a compelling localization theory would enhance the understanding of
the necessary conditions for the occurrence of wellbore collapse, allowing drilling engineers
to improve their drilling fluids, significantly impacting drilling performance.
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Appendix A. Thermodynamics of Deformable Continua

This section introduces the mathematical theory of plasticity in the context of the ther-
momechanics of deformable bodies (see [40]). Let B be a continuum body with volume V
and boundary ∂B. Let us define on B the following scalar fields: ρ, θ, u, s, and R, represent-
ing the mass density, temperature, internal energy, entropy, and heat density, respectively.
We assume that small deformations adequately describe the system’s kinematics. Thus, the
first (energy conservation) and second (entropy production imbalance in the form of the
Clasius–Duhem inequality) thermodynamic laws in their local form adopt the following
differential expressions:

1. Energy conservation:
ρ u̇ = σ : ε̇−∇ · q + ρ R, (A1)

where σ, ε̇ ∈ R3×3 are Cauchy’s stress and strain rate tensors, respectively, ∇ =
∂

∂xi
ei

is the gradient operator, and q is the heat flux vector acting on ∂B.

2. Entropy production imbalance:

ρ ṡ +∇ ·
(q

θ

)
− ρ R

θ
≥ 0. (A2)

Substituting (A1) into (A2), we obtain the Clausius–Duhem inequality,

ρ ṡ +∇ ·
(q

θ

)
− 1

θ
(ρ u̇ −σ : ε̇+∇ · q) ≥ 0. (A3)

We define the Helmholtz free energy per unit of mass as

Ψ := u − θ s. (A4)

Recalling that (by the distributive property of the ∇ operator over vector and scalar
fields),

∇ ·
(q

θ

)
=

1
θ
∇ · q − 1

θ2 q · ∇θ,

and the change of variables g = ∇θ, we rewrite (A3) as

σ : ε̇− ρ
(
Ψ̇ + θ̇ s

)
− 1

θ
q · g ≥ 0. (A5)

Assumption A1 (Thermodynamic evolution). We assume that the system’s evolution is isother-
mal, leading to a purely mechanical formulation for (A5),

σ : ε̇− ρΨ̇ ≥ 0. (A6)

Remark A1. Every mechanical system must satisfy the Clausius–Duhem inequality of (A6), where
the system’s energy in thermodynamic equilibrium is characterized by a series set of state variables.
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Axiom A1 (Local-state postulate). Given an arbitrary system evolution, the energetic state of
a continuum medium is characterized by the same state variables that are fixed at the equilibrium
state and rate-independent. Therefore, the Helmholtz free energy (A4) is given by

Ψ = Ψ̃(ε, η), (A7)

where η = ηk, ∀k ∈ N+ is an internal variable set describing the material’s dissipation, and its free
energy rate is

Ψ̇ =
∂Ψ
∂ε

: ε̇+
∂Ψ
∂η

∗ η̇. (A8)

The symbol ” ∗ ” denotes the contraction compatible with
∂Ψ
∂η

and η̇.

Appendix B. Reversible and Irreversible Thermodynamic Processes: Elastoplasticity

We characterize the deformation evolution of a material as reversible (non-dissipative)
and irreversible (dissipative) by formalizing these concepts using the following definitions:

Definition A1 (Reversibility: elasticity). A deformation process is non-dissipative, reversible,
or elastic if and only if the internal variables remain constant throughout the deformation process
(i.e., η̇ = 0). Thus, (A6) reduces to

σ : ε̇− ∂Ψ
∂ε

: ε̇ = 0. (A9)

Letting Ψ = W , where W is the strain energy density, we express the hyperelastic constitutive
models as

σ =
∂W
∂ε

. (A10)

We define dissipative thermodynamic processes by adopting an additive decomposi-
tion of the strain tensor.

Assumption A2 (Strain-tensor additive decomposition). Let ε ∈ R3×3 be the strain tensor at
a material point x ∈ B, which admits the following decomposition:

ε = εe + εp, (A11)

where εe and εp are the elastic and plastic components of the strain tensor, respectively.

Definition A2 (Dissipative Processes). A thermodynamic deformation process is dissipative,
irreversible, or plastic if the free energy u can be decomposed in a strain energy density W and a
latent energy density V . Thus, defining Ψ = Ψ̃(ε, εp, η) and considering Assumption A2,

Ψ̃(ε, εp, η) = W(ε− εp) + V(η) = W(εe) + V(η).

Therefore, the Clausius–Duhem inequality (A6) becomes

σ : ε̇− ∂W
∂εe : ε̇e − ∂V

∂η
∗ η̇ ≥ 0

where ε̇ = ε̇e + ε̇p and σ =
∂W
∂εe . Thus,

σ : ε̇p − ∂V
∂η

∗ η̇ ≥ 0. (A12)
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Remark A2 (Reversible and irreversible processes). A system’s evolution is reversible if and
only if there exists an isomorphism between the initial and the final state; otherwise, the evolution of
a system is irreversible.

For irreversible processes, the Clausius–Duhem inequality is satisfied for more than
one set of state variables. Thus, we enforce uniqueness using the maximum plastic
dissipation condition.

Proposition A1 (Maximum Plastic-Dissipation Condition). Let Dp : R3×3 ×Rn ×R3×3 7→ R
be the plastic dissipation:

Dp(σ, η̇, ε̇p) := σ : ε̇p − ∂V
∂η

∗ η̇. (A13)

Let Eσ be a closed and convex set defining the admissible state variables Eσ given by

Eσ :=
{
(τ, κ̇) ∈ R3×3 ×Rn, Ff (τ, κ̇) ≤ 0

}
, (A14)

where Ff : R3×3 ×Rn 7→ R bounds the admissible stress states (yield function). This assumption
defines a unique state variable set (σ, η̇, ε̇p) such that

Dp(σ, η̇, ε̇p) = arg max
(τ, κ̇)∈Eσ

Dp(τ, κ̇, ε̇p). (A15)

Remark A3 (Elastic Domain and Flow Surface). The set of admissible states Eσ admits a
partition Eσ = int(Eσ)

⋃
∂Eσ, where int(Eσ) is the elastic domain defined by

int(Eσ) :=
{
(σ, η̇) ∈ R3×3 ×Rn, Ff (σ, η̇) < 0

}
,

and ∂Eσ is the flow surface defined as

∂Eσ :=
{
(σ, η̇) ∈ R3×3 ×Rn, Ff (σ, η̇) = 0

}
.

Proposition A1 finds the state variables that maximize Dp subject to the constraint
Ff (σ) = 0 (consistency condition) and the complementary Kuhn–Tucker conditions [41].
We solve this optimization problem by introducing a Lagrangian (cost function) that
transforms the maximization into a minimization problem (i.e., let −Dp(τ, κ̇, ε̇p))

L(τ, κ̇, λ) := γ Ff (τ, κ̇)−Dp(τ, κ̇, ε̇p),

where L : R3×3 ×Rn ×R+ 7→ R is the Lagrangian and γ ∈ R+ is the Lagrange multiplier.
Henceforth, satisfying the maximum plastic dissipation condition is equivalent to solving
the following minimization problem:Findσ, η̇ ∈ Eσ andγ ∈ R+, such that

(σ, η̇,γ) := arg min
(τ, κ̇)∈Eσ

γ Ff (τ, κ̇)−Dp(τ, κ̇, ε̇p). (A16)

The necessary optimal condition is ∇L|(σ, η̇) = 0, and the Lagrangian is convex
(concave); thus, we can deduce

∂L
∂σ

= −ε̇p + γ
∂Ff

∂σ
= 0, (A17)
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∂L
∂η

= H ∗ η̇+ γ
∂Ff

∂η
= 0, (A18)

∂L
∂γ

= Ff (σ, η̇) = 0. (A19)

where H is the hardening modulus given by

H :=
∂2V

∂η ∗ ∂η
.

From (A17) and (A18) and considering the following change of variable γ = λ̇, the
generalized associative flow rule and the generalized hardening law are as follows[36]:

• Generalized Associative Flow Rule:

ε̇p = λ̇
∂Ff

∂σ
. (A20)

• Generalized Hardening Law:

η̇ = −λ̇H−1 ∂Ff

∂η
. (A21)

Remark A4 (Non-Associative Flow Rules). Proposition A1 is a sufficient condition that is
too restrictive in general, but it inherently induces a generalized hardening law and a generalized
associative flow rule. The associative plastic flow rule appropriately characterizes materials with
crystalline micro-structural composition. Although associative flow rules characterize the plastic
flow of granular materials, non-associative flow rules could be more suitable. Therefore, the Clausius–
Duhem Inequality in its local form should be verified independently when using non-associated
plastic flow rules. Typically, a non-associated flow rule is defined as

ε̇p := λ̇G(σ, η) where G(σ, η) ̸=
∂ Ff

∂σ
. (A22)

These heuristic definitions seek to reconcile experimental observations with simulations by relaxing
the overly restrictive Proposition A1, while their major weakness is their ad hoc nature.

Appendix C. Complementary Calculations

Appendix C.1. Derivatives of the Modified Cam-Clay Yield Function

We use a modified Cam-Clay yield function with the following form:

Ff (σ) =
q2

M2 + p(p − pc),

where q =
√

3
2 ∥s∥ measures the deviatoric effective stress, p is the hydrostatic stress, and

M and pc are material parameters. We calculate the derivative of Ff with respect to σ,
which, by the chain rule, results in

∂Ff (σ)

∂σ
=

∂Ff (σ)

∂p
∂p
∂σ

+
∂Ff (σ)

∂q
∂q
∂σ

. (A23)

We obtain the derivatives of Ff with respect to p, q, and pc directly if we reformulate
Ff as

Ff (σ) =
q2

M2 + p2 − p pc.
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Thus,

∂Ff (σ)

∂p
= 2p − pc, (A24)

∂Ff (σ)

∂q
=

2q
M2 , (A25)

∂Ff (σ)

∂pc
= −p. (A26)

The derivative of p with respect to the effective stress tensor is collected in the following
complementary results.

Lemma A1. Let σ ∈ R3×3 be a second-order tensor and σij, i, j = 1, 2, 3 be its components.
Then, the following result holds:

∂σij

∂σkl
= δikδjl , i, j, k, l = 1, 2, 3.

Proof. The result follows from the index inspection

∂σij

∂σkl
=

{
1, for i = k and j = l.
0, otherwise.

Additionally,

δikδjl =

{
1, for i = k and j = l.
0, otherwise.

Proposition A2. Let p be the trace of Cauchy’s effective stress tensor; thus, the following holds:

∂p
∂σ

=
1
3

δij ei ⊗ ej =
1
3

1. (A27)

Proof. Since p =
1
3
σ : 1 and using index notation, the derivative with respect to the

effective stress tensor is

∂p
∂σ

=
1
3

∂

∂σ
(σ : 1)

=
1
3

∂

∂σkl

(
σij δij

)
ek ⊗ el

=
1
3

∂σij

∂σkl
δij ek ⊗ el

=
1
3

δik δjl δijek ⊗ el (by Lemma A1)

=
1
3

δij ei ⊗ ej.

The derivative of q with respect to the effective stress tensor is collected in the
following results.
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Lemma A2. Let σ, s ∈ R3×3 be a second-order tensor and its deviatoric part. Let σij and sij,
i, j = 1, 2, 3 be the components of σ and s, respectively. The following holds:

∂sij

∂σkl
= δik δl j −

1
3

δij δkl .

Proof. Recall that sij = σij −
1
3

pδij; thus,

∂ sij

∂σkl
=

∂

∂σkl

(
σij −

1
3

pδij

)
.

By Lemma A1 and Proposition A2 and expanding the left-hand side of the
previous equality,

∂ sij

∂σkl
=

∂σij

∂σkl
− 1

3
∂ p
∂σij

δkl

= δikδl j −
1
3

δijδkl .

Proposition A3. Let q =

√
3
2
∥s∥ =

√
3
2

s : s be a measure for the deviatoric stress tensor; thus,

the following holds:
∂q
∂σ

=

√
3
2

s
∥s∥ .

Proof. We expand the left-hand side of the equality using index notation, the definition of
the norm, and double contraction for second-order tensors, as follows:

∂q
∂σ

=
∂q

∂σij
ei ⊗ ej

=
∂

∂σij

(√
3
2

skl skl

)
︸ ︷︷ ︸

(A)

ei ⊗ ej.

Applying the chain rule for derivatives in (A), we obtain

∂

∂σij

(√
3
2

skl skl

)
=

√
3
2

∂

∂σij

(
skl skl

) 1
2

=

√
3
2

[
1
2
(
spq sqp

)− 1
2 ∂

∂σij

(
skl skl

)]

=

√
3
2

{
1
2
(
spq spq

)− 1
2

[
∂ skl
∂σij

skl + skl
∂ skl
∂skl

]}

=

√
3
2
(
spq spq

)− 1
2

(
δik δl j −

1
3

δij δkl

)
skl (by Lemma A2)

=

√
3
2
(
spq spq

)− 1
2
(
σij −

1
3
σll δij

)
=

√
3
2
(
spq spq

)− 1
2
(
σij − p δij

) (
since p =

1
3
σll =

1
3

tr(σ)
)

.



Computation 2023, 11, 250 30 of 33

Replacing (A) and contracting the indexes, we obtain the desired expression.

∂ q
∂σ

=

√
3
2
(
spq spq

)− 1
2
(
σij − p δij

)
ei ⊗ ej

=

√
3
2

sij

∥s∥ ei ⊗ ej

=

√
3
2

s
∥s∥ .

Therefore, the derivatives of the modified Cam-Clay yield function are collected in
the following.

Proposition A4 (Cam-Clay Yield Function Derivative). Let Ff (σ) : R3×3 7→ R be the Cam-
Clay yield function. Then,

Ff (σ) :=
q2

M2 + p (p − pc), ∀M, pc > 0.

Thus, the derivative of Ff with respect to the effective stress tensor adopts the
following expression:

∂Ff (σ)

∂σ
=

1
3
(2p − pc) 1 +

√
3
2

2q
M2

s
∥s∥ .

Proof. The result follows by applying the chain rule for derivation,

∂ Ff (σ)

∂σ
=

∂ Ff (σ)

∂ p
∂ p
∂σ

+
∂ Ff (σ)

∂ q
∂ q
∂σ

,

and replacing the corresponding terms with (A24), (A25), and the results from Proposi-
tions A2 and A3.

Appendix C.2. Discrete Deviatoric Measure

Let σk
n+1 be the updated effective stress update of (36). The updated deviatoric

effective stress tensor is
sk

n+1 = σk
n+1 − pk

n+1 1. (A28)

Replacing (36) and (38) in (A28), the following holds:

sk
n+1 = σ̂n+1 −Ce : ∆εp − p̂n+11 + K ∆ε

p
v1

= ŝn+1 −Ce : ∆εp︸ ︷︷ ︸
(A)

+K∆ε
p
v1. (A29)

(A) can be written as

Ce : ∆εp =

[
K1 ⊗ 1 + 2G

(
I− 1

3
1 ⊗ 1

)]
: ∆εp

= K 1 ⊗ 1 : ∆εp︸ ︷︷ ︸
(B)

+ 2G I : ∆εp︸ ︷︷ ︸
(C)

−2
3

G1 ⊗ 1 : ∆εp.

Now, expanding (B),
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∆εp : 1 ⊗ 1 = ∆ε
p
ij ei ⊗ ej : δkl ek ⊗ el ⊗ δpq ep ⊗ eq

= ∆ε
p
ij δikδjl δpqep ⊗ eq

= ∆ε
p
kk δpqep ⊗ eq

= ∆ε
p
v 1.

Considering the definition of I in (6), (C) admits the following expansion:

2G I : ∆εp = 2G
[

1
2

(
δik δjl + δil δjk

)
∆ε

p
ij

]
= 2G

[
1
2

(
∆ε

p
kl + ∆ε

p
lk

)]
= 2G ∆εp (thanks to the symmetry of ∆εp).

Replacing (B) and (C) in (A) and then replacing in (A29), we obtain the
following expression:

sk
n+1 = ŝn+1 −����K ∆εv 1 − 2G ∆εp +

2
3

G∆ε
p
v1 +����K∆ε

p
v1

= ŝn+1 − 2G
(

∆εp − 1
3

∆ε
p
v1
)

= ŝn+1 − 2G ∆ε
p
d, (A30)

where ∆ε
p
d = ∆εp − 1

3
∆ε

p
v 1. By the definition of the updated deviatoric measure qk

n+1, the
following holds:

qk
n+1 =

√
3
2
∥ŝn+1 − 2G ∆ε

p
d∥. (A31)

From the discrete flow rule (37) and the derivative of Ff (σ) with respect to σ, we
deduce that ŝn+1, sk

n+1, and ∆ε
p
d are co-linear. Thus,

qk
n+1 =

√
3
2
∥ŝn+1∥ − 2G

√
3
2
∥∆εp∥

= q̂n+1 − 3G∆εp, (A32)

where ∥∆εp∥ = ∆λ

√
3
2

2qk
n+1

M2 .

Appendix C.3. Derivative of Modified Cam-Clay Yield Function and Hardening Function with
Respect to ∆λ

We fully define the iterative scheme for determining the discrete consistency parameter
∆λ using the following.

Proposition A5 (Derivative of Ff with respect to ∆λ). Let Ff (∆λ) be given by (41) and
consider (39), (41), (42), (A24), (A25) and (A26). Then, the following result holds:

∂Ff

∂∆λ
= −K

(2 p − pc)2

1 + (2K + χ pc)∆λ
− 2q

M2
q

∆λ + M2

6G

− χ p pc
(2p − pc)

1 + (2K + χ pc)∆λ
. (A33)
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Proof. By the chain rule, we obtain

∂Ff

∂∆λ
=

∂Ff

∂p
∂p

∂∆λ
+

∂F
∂q

∂q
∂∆λ

+
∂pc

∂∆λ
. (A34)

The derivatives of Ff with respect to p, q, and pc are given by (A24), (A25), and (A26).

Thus, we only need to calculate
∂p

∂∆λ
,

∂q
∂∆λ

, and
∂pc

∂∆λ
. Considering (39), (41), and (42), we

have

∂p
∂∆λ

= −K
(2p − pc)

1 + (2K + χ pc)∆λ
, (A35)

∂q
∂∆λ

= − q

∆λ + M2

6G

, (A36)

∂pc

∂∆λ
= χpc

(2p − pc)

1 + (2K + χpc)∆λ
. (A37)

The result follows after substituting (A24)–(A26), (A35), (A36), and (A37) into (A34).

Proposition A6 (Derivative of H f with respect to ∆λ). Let H f (∆λ) be given by (43). Then,
the following result holds:

∂H f

∂∆λ
= − (pc)n χ ∆λ

1 + 2 ∆λ K
exp

[
χ (2 p̂n+1 − pc)

1 + 2 ∆λ K

]
− 1. (A38)

Proof. Obtain (43) and perform the chain rule for derivation with respect to ∆λ.
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