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Abstract: This paper proposes a new approach to predicting the distribution of harmful substances
in the atmosphere based on the combined use of the parameter estimation technique and machine
learning algorithms. The essence of the proposed approach is based on the assumption that the con-
centration values predicted by machine learning algorithms at observation points can be used to refine
the pollutant concentration field when solving a differential equation of the convection-diffusion-
reaction type. This approach reduces to minimizing an objective functional on some admissible set by
choosing the atmospheric turbulence coefficient. We consider two atmospheric turbulence models and
restore its unknown parameters by using the limited-memory Broyden–Fletcher–Goldfarb–Shanno
algorithm. Three ensemble machine learning algorithms are analyzed for the prediction of concen-
tration values at observation points, and comparison of the predicted values with the measurement
results is presented. The proposed approach has been tested on an example of two cities in the
Republic of Kazakhstan. In addition, due to the lack of data on pollution sources and their intensities,
an approach for identifying this information is presented.

Keywords: machine learning; inverse problem; harmful substances in the atmosphere; parameter
estimation; atmospheric turbulence; finite element method

1. Introduction

Outdoor air pollution has become a serious environmental problem that has a signifi-
cant impact on public health, climate change and the health of ecosystems with the growth
of industrialization and urbanization. It has been continuously monitored through a wide
network of monitoring stations [1], which ranks the most polluted countries and regions
based on average annual PM2.5 (particulate matter) concentration. The presented rating
shows that air pollution exceeds WHO recommendations by more than ten times in many
developing countries, and this figure exceeds three–five times in Kazakhstan. Therefore,
the study of the problems caused by air pollution and predicting the spread of harmful
substances in the atmosphere is still relevant throughout the world.

Modeling the distribution of harmful substances in the atmosphere is an important
tool for studying and predicting their behavior and impact on the environment and human
health. Strategies can be developed and measures be taken to minimize the impact of
harmful substances on the environment with the help of models. Factors such as sources of
emissions (for example, industrial enterprises, vehicles), meteorological conditions (wind
velocity and its direction, turbulence, and atmospheric stability) and the chemical properties
of the substances themselves are usually taken into account when modeling the distribution
of harmful substances in the atmosphere.
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Modeling of air pollution based on the solution of partial differential equations is a
fairly reliable and well-established approach [2–4]. For example, Aydosov [5] developed a
mathematical model for dispersion and transport of pollutants from an instantaneous point
source in the atmosphere with partial absorption of surface impurities using a transport
equation with a source term. To study the diffusion model of an accidental release of
harmful substances under various conditions of atmospheric stability, the authors of [6]
used the Reynolds-averaged Navier–Stokes model. The authors of [7] developed a mathe-
matical model of mesoscale atmospheric processes, the transport and transformation of
pollutants, and also numerically implemented the finite difference method assuming that
the domain is rectangular. This technique was then improved in [8,9] in the case of a more
complex geometry of the domain. In [3], a mathematical model was developed which is
based on the equations of transfer and diffusion of aerosol emissions in the atmospheric
boundary layer taking into account the terrain, weather and climatic factors. We also refer
the reader to a comprehensive review [10] of relevant concepts, methods and models for
the atmospheric transport of chemical, biological and radiologically hazardous pollutants.
Also, the authors of [11] reviewed a number of methods for data analysis and modeling of
air pollution and environmental impact, and identified the main parameters for choosing a
method, namely the accuracy, interpretability, and spatiotemporal characteristics of the
method. It should be noted that the accuracy of these models depends on the quality and
reliability of input data such as emission data, meteorological conditions, topography and
other parameters. It is also important to consider the uncertainty and variability of these
parameters which can affect the accuracy of the model’s prediction. In practice, this is not
always possible, since data are usually only available from stationary or mobile observation
points which periodically measure the concentrations of pollutants at a few points.

Another approach for assessing and predicting the distribution of harmful substances
in the atmosphere as well as managing air pollution is the use of machine learning algo-
rithms. Machine learning analyzes a wealth of data such as meteorological conditions,
geographic features, pollutant emissions and other factors to predict the spread of harmful
substances and assess their impact on the environment and human health. Many studies
have shown that this approach is effective due to its high robustness and accuracy, and it
usually requires less labor.

The advantage of machine learning is that it helps to find patterns based on statistical
data that are inherent in a particular area, depending on climatic and geographical features
and terrain. For example, recent studies employed principal component analysis and an ar-
tificial neural network to predict PM2.5 concentrations in Urmia, Iran [12], the Harris Hawk
multiobjective optimization algorithm to predict the hourly concentrations of PM2.5 and
PM10 in Jinan, Nanjing, Chongqing [13], Lagrange and Bayesian methods to predict hourly
concentrations of PM10 and PM2.5 in Xingtai [14], a hybrid remote sensing and machine
learning approach to predict daily concentrations of PM2.5 in the Beijing-Tianjin-Hebei
region [15], XGBoost, KNN, GNB, SVM and RF models to analyze and predict air quality
in several cities in India [16], a spatiotemporal graph neural network to predict ozone
concentration based on the GraphSAGE paradigm in Houston-TX [17], and a SVR-based
model to predict PM2.5 and PM10 concentrations in Chile [18]. Feng et al. [19] used artificial
neural networks and wavelet transform to predict PM2.5 concentrations from geographic
models. Li et al. used integrated reinforcement learning to predict daily concentration of
PM2.5 [20]. Moreover, hybrid artificial intelligence models are also used to predict envi-
ronmental pollution, such as EEMD-LSSVM [21], PCA-CS-LSSVM [22], WPD-PSO-BNN-
AdaBoost [23], PSO-ELM [24], GA-RF-BPNN [25], CEMD-PSOGSA-SVR-GRNN [26], WPD-
CEEMD-LSSVR-CPSOM-GSA [27], VMD-SE-LSSVM [28], CEEMD-CS-GWO-SVM [29],
WPD-Bi-LSTM-NSGA-II [30] and many others. A comprehensive overview of deep learning
methods for predicting the concentration of air pollutants can be found in the papers [31,32].
The work [33] provides a comprehensive overview of the sources and impacts of pollutants
on the environment and human health, on methods for predicting environmental pollution.
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Some studies are aimed at a comparative analysis of machine learning algorithms in
relation to the prediction of atmospheric pollution. For example, Kumar et al. [16] showed
that the XGBoost model shows the best results among other models such as KNN, GNB,
SVM, RF and provides the highest linearity between predicted and actual data. Li et al. [15]
demonstrated that the proposed RSRF model provides better performance and relatively
high prediction accuracy than the MLR, MARS and SVR models. Liang et al. [34] concluded
that stacking ensemble and AdaBoost can outperform methods such as SVM, RF, and ANN.
Bekkar et al. [35] compared the performance of deep learning algorithms such as LSTM,
Bi-LSTM, GRU, Bi-GRU, CNN, and a CNN-LSTM hybrid model and showed through
experimentation that the CNN-LSTM hybrid method produces more accurate predictions,
and it has high precision and stability.

Note that the above approaches rely either on solving differential equations using
measurement results as input data, or on machine learning models that allow for identifying
a pattern in long-term measurement data and make a prediction of the pollutant distribution
on their basis.

In this paper, we propose a new approach that combines both of these techniques.
We assume that the process of pollutant propagation in the atmosphere is described by a
differential equation of the convection-diffusion-reaction type. In addition, we assume that
long-term measurement data of the concentration values at observation points are available,
on the basis of which it is possible to make a forecast of future concentration values at
these points by a machine learning algorithm. The essence of the proposed approach is
based on the assumption that pollutant concentrations at observation points, predicted by a
machine learning algorithm, can be used to refine the solution of a differential equation. This
approach is reduced to minimizing a penalty function which is defined as the difference
between the solution of the differential equation and the predicted values at observation
points. We propose an effective numerical method to solve the resulting problem by a
combined use of the parameter estimation technique and the finite element method.

The main hypothesis of the study is the assumption that the predicted concentration
values at observation posts may serve as a good basis for refining the forecast results that
are produced by solving differential equations.

The proposed methodology is tested on two cities of Kazakhstan, Ust-Kamenogorsk and
Almaty. The choice of Ust-Kamenogorsk is justified by the fact that the most unfavorable
situation was observed in this city according to the results of analysis of data obtained from
stationary atmospheric air observation posts in 26 cities of Kazakhstan [36]. Many studies have
been carried out regarding the atmospheric state of Ust-Kamenogorsk [7,37–42]. The fact that
the city is located in a mountainous area is unfavorable, which prevents dispersion, and leads
to the accumulation of harmful substances. Industrial processes in the East Kazakhstan region
include a wide range of activities that lead to the emission of various harmful substances into
the atmosphere [43]. The state of atmospheric air in the second city, Almaty, has been studied
in many works [44–49]. It is believed that the main sources of air pollution in the city are
vehicles, thermal power plants, industrial enterprises, as well as private houses with their
own heating system.

The present paper is structured as follows. Section 2 describes the proposed approach
to predicting the distribution of harmful substances in the atmosphere. Section 3 presents
the results of some numerical results to confirm the theoretical analysis. Finally, in Section 4,
we discuss the results obtained.

2. Materials and Methods
2.1. The Proposed Approach

Modeling the spread of harmful substances in the atmosphere is effectively carried
out on the basis of the differential equation jointly taking into account convective, diffusion
and reaction processes:

∂φ

∂t
+ u · ∇φ−∇ · (K∇φ) + rφ = f (x, t), (x, t) ∈ Ω× J, (1)
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where φ is the pollutant concentration, Ω is the domain in which the solution is sought,
J = (0, T] is the time interval for which the forecast is made, u is the wind velocity vector,

K is the atmospheric turbulence coefficient, f (x, t) =
Nsrc

∑
s=1

Qs(t)δ(x− xs), Nsrc is the number

of point pollution sources, xs and Qs are the coordinates and intensity of the s-th pollution
source, respectively, and r is the reaction coefficient. Equation (1) is supplemented by the
concentration distribution at the initial time

φ(x, 0) = φ0, x ∈ Ω (2)

and homogeneous first-kind boundary conditions under the assumption that the boundary
of the domain is far enough away:

φ(x, t) = 0, (x, t) ∈ ∂Ω× J. (3)

Modeling real processes with Problem (1)–(3) is generally accompanied by many
difficulties. First, a reliable determination of the atmospheric turbulence coefficient K is a
non-trivial problem. This is due to the fact that this parameter depends on local features of
the area under study and is characterized by a rapid change from point to point [50]. This
problem is especially complicated in urban areas where high-rise buildings are built up,
which can lead to the formation of turbulent movements.

Secondly, it is rarely possible to reliably determine the location and release intensity
of the pollution sources, i.e., the right-hand side of Equation (1). In practice, average
statistical annual waste rates are often accepted as sources, or this information is recovered
from the readings of stationary or mobile sensors installed at some observation points
xi ∈ Ω, i = 1, 2, . . . , Nsen. In some cases, the missing data is recovered using the specified
sensor data.

There are many factors leading to uncertainty of the contaminants movement even in
case the input parameters are identified exactly. However, if there are long-term measure-
ments data of the pollutants concentration for a certain period, it is possible to identify a
seasonal pattern of their dynamics. For example, increased distribution of a pollutant may
be typical at certain times of the year or day. Recently, machine learning algorithms have
been effectively used to identify such a pattern and extract additional auxiliary informa-
tion that is unique to a given area [18,51]. In addition, based on the found pattern, these
algorithms are able to make a fairly accurate prediction of the concentration φ̂i(t), t ∈ J at
observation points xi, i = 1, 2, . . . , Nsen for a certain period of time J in the future.

The main hypothesis of this study is the assertion that future concentration values
predicted by machine learning algorithms can be used to refine the concentration field
determined from Problem (1)–(3). Mathematically, this means that it is possible to impose a
constraint on the desired solution φ by minimizing the functional

I(K) =
Nsen

∑
i=1

∫ T

0

∣∣φ(xi, t)− φ̂i(t)
∣∣2dt (4)

in some admissible domain. This condition means that the predicted concentration values
φ̂i at observation points xi, i = 1, 2, . . . , Nsen serve as reference values and can provide
additional information about the concentration distribution while solving Problem (1)–(3).

Thus, the proposed approach to solve the problem, a flowchart of which is shown in
Figure 1, consists of two stages.
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Start

Long‑term measurements data for t ∈ [−T0, 0]

Train machine learning model
on long‑term measurements data

Predict concentration values ϕ̂i (t) at observation points
x1, x2, ..., xNsen for the time period J = (0, T ]

Determine the location and intensity of pollution sources at t = 0

Determine initial concentration distribution

j = 0

Choose an initial guess pj = (p1, p2, ...pN)

and evaluate corresponding Kj = K (pj)

Solve Problem (1)–(3) with the selected Kj

Evaluate the functional

I (K) =

Nsen∑
i=1

∫ T

0

∣∣∣ϕ (xi, t)− ϕ̂i (t)
∣∣∣2 dt

Check stopping criteria j = j + 1

Find the next vector pj

Evaluate corresponding Kj = K (pj)

ϕ (x, t), K

Stop

no

yes

Stage 1

Stage 2

Figure 1. Algorithm for solving the problem.

Stage 1. Train a machine learning model on long-term measurement data at obser-
vation points xi, i = 1, 2, . . . , Nsen to predict the concentration φ̂i(t) of a pollutant at these
points for a certain period of time J = (0, T] in future. A schematic representation of this
stage is depicted in Figure 2.
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Figure 2. Measured and predicted concentration values at observation point x = xi, i = 1, 2, . . . , Nsen.

Stage 2. Using the predicted values φ̂i, i = 1, 2, . . . , Nsen minimize the functional (4).
The essence of this stage is to find such a solution to the differential problem (1)–(3), in
which the values at the observation points xi deviate least from the predicted values φ̂i. We
assume that this can be achieved by an appropriate choice of the atmospheric turbulence
coefficient K.

Suppose that K can be unambiguously represented by a vector of several numerical
parameters p = (p1, p2, . . . , pN) to be identified:

K = K(x, p). (5)

To determine them, an iterative process is constructed starting from an arbitrarily chosen
initial estimate p0 to generate a sequence of parameters

{
pj
}∞

j=1 (Figure 1). The iterative
process consists in solving Problems (1)–(3) multiple times with the atmospheric turbulence
coefficient K

(
x, pj

)
and modifying pj with the use of an optimization algorithm. The

iterative process is interrupted when the value of the functional (4) for the next found
K
(

x, pj
)

satisfies a certain stopping condition.
The process of adapting the solution of Problems (1)–(3) to the constraint (4) within

the iterative process is schematically shown in Figure 3.

Figure 3. A one-dimensional sketch of the process of determination of the solution satisfying the
constraint (4).

The rest of Section 2 is devoted to a more detailed description of the above steps.
Note that this problem is technically difficult in the general case. Let us introduce some
assumptions to simplify the presentation of the method. First, we assume that wind flow
velocity does not change over the entire time interval. In addition, we assume that the
intensity of pollution sources is constant. These assumptions are valid when the forecast is
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made for a short period of time and can be eliminated by a slightly technical complication
of the algorithm.

2.2. Prediction of Pollutant Concentrations at Observation Points Based on Machine Learning

According to the first stage of the proposed approach, machine learning algorithms
are utilized to predict values of the pollutants concentration at observation points. Model
training is preceded by several key steps, such as missing data imputation, the detection
and removal of outliers, and feature selection based on statistical correlation. These steps
are described in detail in many papers [16,18]. Then Sklearn’s GridSearchCV library was
applied for cross-determining the optimal parameters of the model.

This study did not aim to determine the best machine learning model among all
existing ones, so the results of this section are not exhaustive. However, based on a
literature review, the choice fell on the so-called ensemble learning techniques, which
have recently become popular and are recognized as effective. In this paper, we study the
applicability of the following three ensemble machine learning models.

The first model, XGBoost [52], is an implementation of the stochastic gradient boosting
algorithm. This is an ensemble decision tree algorithm in which new trees correct the
errors of those trees that are already part of the model. Trees are added until no further
improvements can be made to the model.

The second model, LightGBM [53], is a gradient boosting framework using tree-based
learning algorithms. It is designed for distribution and efficiency and aims for a higher
learning rate and higher efficiency, lower memory usage, better accuracy, support for
parallel, distributed and graph learning, and large data processing capability. According to
recent studies [54], LightGBM shows faster training results than XGBoost while showing
similar accuracy.

The third model, Histogram-Based Gradient Boosting (HistGradientBoosting) [55], is a
LightGBM-inspired implementation of gradient boosting trees. It also has built-in support
for missing values, which avoids the need for an imputer.

The fit and stability of the models are measured by the determination coefficient
(R2), mean absolute error (MAE) and root mean square error (RMSE). The value of the
determination coefficient ranges from 0 to 1; approaching extreme values, 1 and 0, implies
high and low efficiency, respectively. The RMSE evaluates the average difference between
the observed and predicted values.

2.3. Identification of the Atmospheric Turbulence Coefficient

According to Stage 2 of the proposed approach, an optimization algorithm is used to
modify the vector of parameters p. Suppose that each of pi is bounded by finite numbers
p∗ and p∗. In this work, we study the applicability of several well-known algorithms to the
parameter estimation problem. The study involved the Conjugate Gradient method, limited-
memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS), Nelder-Mead method,
Bound Optimization by Quadratic Approximation (BOBYQA), New Unconstrained Opti-
mization with Quadratic Approximation (NEWUOA). The choice of these algorithms is
based on their successful usage in previous studies on parameter estimation and related
problems [56–59].

The limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) [60] is
a quasi-Newton type algorithm that is based on calculating the inverse Hessian matrix to
find the optimum in the admissible set. Unlike the classical BFGS algorithm from which it
is derived, L-BFGS uses only a few vectors representing an approximation of the inverse
Hessian matrix. Significant advantages of the method are the use of less memory, the speed
of the algorithm and the ease of implementation. Therefore, this algorithm is widely used
in multidimensional optimization problems.

NEWUOA is an optimization algorithm which is based on constructing a quadratic
model using the values of the objective function [61]. The model is assumed to be valid in a
neighborhood, the trust region, the radius of which is refined during the iterative process.
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After this, the model is minimized in the trust region with the use of a truncated conjugate
gradient algorithm. BOBYQA is an generalization of the NEWUOA algorithm to the case
of bounded problems [62].

The Nelder-Mead algorithm solves multidimensional unconstrained optimization
problem which does not require any derivative information. This algorithm is known to be
successfully applied to solve parameter estimation and related problems with uncertain
values of the objective function.

Section 3.3 presents numerical tests to check the applicability of these algorithms to
the problem of the identification of atmospheric turbulence coefficient.

2.4. Solving the Initial Boundary Value Problem

Let us briefly describe the finite element procedure for an approximate solution of the
initial boundary value problem (1)–(3). To this end, we introduce the finite element space
Vh ⊂ H1(Ω), where the standard notation for Sobolev spaces is used. Next, we introduce a
partition {tn = nτ, n = 0, 1, . . . , Nt, Ntτ = T} in the time interval J, where τ > 0 is a time
discretization parameter. Denote by φn

j,h the finite element solution of the problem at the
time stamp t = tn.

Let the solution φn−1
j,h ∈ Vh, n ≥ 1 be known, where, in particular, φ0

j,h ∈ Vh is the

L2-projection of the initial distribution of concentration φ0. The finite element method for
solving the problem is to find φn

j,h ∈ Vh satisfying the identity

(
φn

j,h − φn−1
j,h

τ
, vh

)
+
(

u · ∇φn
j,h, vh

)
+
(
K∇φn

j,h,∇vh

)
+
(

rφn
j,h, vh

)
= ( f n

ε , vh)

for all test functions vh ∈ Vh, where ( · , · ) is the dot product in L2(Ω), f n
ε is the

ε-approximation of the right-hand side of Equation (1) at time stamp t = tn defined
as in [63].

We use quadratic finite elements on a quadrilateral mesh and applied the solution
approach described in our previous paper [64]. Using Taylor expansion, it can be shown
that the presented method converges with the first order with respect to the time step τ
which is a sufficient accuracy for our purposes. However, higher order convergence can
also be obtained using higher order approximation formulas.

2.5. Determination of the Initial Field of the Pollutant Concentration

It is assumed in most papers that there are no pollutants in the atmosphere before
the air pollution incident, i.e., φ(x, 0) = 0 for all x ∈ Ω. This assumption significantly
simplifies the solution of the problem. However, when this is not the case, determining
the initial concentration field (2) is a complex problem that requires significant research.
Moreover, in the presence of reliable data on the location and intensity of pollution sources,
there are efficient methods that allow one to fairly accurately restore the concentration field
in the entire domain.

In our case, we do not have the above information, so we relied on the following
simple approach, which allowed us to approximately restore the missing data. First, we
determine the pollution sources using the Gaussian plume model and a heuristic algorithm
based on the measured concentration values at the observation points. Then, using the
found values, we restore the concentration field in the entire domain.

To achieve this, we define the cost function as the sum of deviations between the
actually measured values at the observation points φ(xi), i = 1, 2, . . . , Nsen and their
numerical approximations φ̃(xi):

Θ =
Nsen

∑
i=1

∣∣φ(xi)− φ̃(xi)
∣∣2. (6)
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The use of the Gaussian plume model assumes that the numerical approximation φ̃ is
represented as the sum of the contributions from each of the Nsrc sources:

φ̃(xi) =
Nsrc

∑
s=1

φ̃s(xi, Qs). (7)

There are many ways to evaluate the numerical approximation φ̃s. According to one
of them, the concentration value at the point xi scattered from the s-th source is defined as

φ̃s(xi, Qs) =
Qs

2πKdi,s
exp

[
−U(di,s + (xs − xi) · e1)

2K

]
, (8)

where Qs is the intensity of the s-th source, di,s is the distance between point xi and pollution
source xs, U is the wind speed, and e1 is a unit vector along the x1-axis.

To minimize the objective function (6), we use the evolution centers algorithm [65]
which relies on fundamental laws of physics and mechanics and utilizes the definition of
the center of mass to identify new directions in order to move the worst elements in the
population to the best parts of the admissible domain based on their objective function
values. To apply the algorithm, we define a population P = {X1, X2, . . . , XN} with N
solutions, where the tuple Xs is represented by the source coordinate xs and intensity Qs.
According to the algorithm, a subset U ⊂ P with K solutions is selected. Calculating the
center of mass c from U and randomly choosing a solution ur ∈ U, we generate a direction
for finding a new solution hi:

hi = Xi + ηi(ci − ur),

where

ci =

(
∑

u∈U
Θ(u)

)−1

∑
u∈U

Θ(u) · u.

Now, using the sources found, we are able to determine the initial concentration field
in (2) by applying the Gaussian plume model (8).

3. Results

In this section, we present some numerical results to verify the method proposed
in Section 2.

3.1. Analysis of the Long-Term Measurement Data

The proposed methodology was tested on two datasets containing long-term mea-
surement data in two cities of Kazakhstan. The first dataset, which will be referred to
as Dataset A, is based on measurements from five sensors located in the industrial city
of Ust-Kamenogorsk that analyze air quality and measure concentrations of several pol-
lutants in the atmosphere. Several industries are located in the northern part of the city,
but significant pollution is believed to come from motor vehicles and the areas with a
cluster of residential buildings with their own heating systems. The location of automated
observation points in the city was chosen so as to cover the most polluted part of the city
and give an objective assessment of the air condition in different parts of the city due to the
spread of harmful substances.

The dataset covers the results of observation from 2005 to 2021 and contains the
results of measuring the concentration of seven chemical compounds in the atmosphere
with some periodicity. The frequency of measurements in the specified period was not
always the same—the interval between measurements was 4 h to a greater extent, less
often measurements were taken every 3 h, and exceptional cases were limited to only
three measurements a day. The data collected also includes the ambient air temperature,
atmospheric pressure, wind direction and its velocity, relative humidity, and an atmospheric
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phenomenon code. The atmospheric phenomenon is represented by an integer from 0 to 9,
the values and description of which are given in Table 1.

Table 1. Definition of atmospheric phenomenon codes in Dataset A.

Phenomenon Code Description of the Phenomenon

1 Clear
2 Haze: turbidity of the air due to suspended particles of dust, smoke, burning. The air has a bluish tint.
3 Haze: weak clouding of the atmosphere due to supersaturation of the air with moisture. The air has a

grayish tint; visibility is more than 1 km.
4 Rain: precipitation in the form of liquid droplets.
5 Drizzle: atmospheric precipitation in the form of small drops, their fall is almost imperceptible to the eye.
6 Dust storm: deterioration of visibility over a large area due to dust raised by strong winds.
7 Snow: precipitation in the form of ice crystals.
8 Fog: turbidity of the atmosphere with horizontal visibility less than 1 km.
9 Fog or haze with precipitation: cloudiness of the atmosphere due to fog or haze in the presence of precipita-

tion.
0 None of the above.

Table 2 lists the statistical characteristics of the pollutants in the dataset. The Count
column indicates the number of values after the removal of deliberately incorrect values
and outliers. The remaining columns characterize the mean, standard deviation, median,
extreme values, and quartiles of the measured data.

Table 2. Statistical characteristics of pollutants in Dataset A.

Pollutant Count Mean Std Min 25% 50% 75% Max

SO2 117,141 0.084804 0.081457 0.0 0.049 0.071 0.099 2.711
NO2 117,141 0.071225 0.054707 0.0 0.03 0.06 0.09 2.21
PM2.5−10 110,186 0.141301 0.204714 0.0 0.0 0.1 0.2 3.3
C6H6O 109,851 0.002830 0.003417 0.0 0.0 0.003 0.004 0.076
CH2O 94432 0.004208 0.004710 0.0 0.0 0.005 0.007 0.072
CO 93,225 0.804163 1.090474 0.0 0.0 1.0 1.0 6.0
H2SO4 87,439 0.014722 0.018283 0.0 0.0 0.01 0.02 0.5

The second dataset, Dataset B, contains the results of measurements of five chemical
compounds at 30 observation posts of an industrial city (Almaty) from 2020 to 2022 with a
period of 20 min. The statistical characteristics of the dataset are given in Table 3.

Table 3. Statistical characteristics of pollutants in Dataset B.

Pollutant Count Mean Std Min 25% 50% 75% Max

PM10 900,940 0.039232 0.057908 0.0 0.0137 0.01735 0.04413 1
PM2.5 900,730 0.030209 0.060966 0.0 0.0089 0.012 0.0315 1
NO2 858,919 0.084723 0.074921 0.0 0.01815 0.07325 0.12922 0.99947
SO2 879,765 0.060689 0.142717 0.0 0.003 0.00335 0.05005 5.2533
CO 928,077 0.412532 0.970608 0.0 0.03 0.042 0.19 18.17164

3.2. Comparison of Machine Learning Models

Let us focus on the selection of features for training the machine learning models. It
follows from the analysis of the correlation matrices presented in Tables 4 and 5 that the
values, in general, do not correlate well with each other in both datasets. However, the
influence of temperature, atmospheric pressure, and, in some cases, wind velocity and
atmospheric phenomenon is clearly traced. Therefore, these four parameters were taken as
features along with the chemical compound under study.
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Table 4. Correlation matrix for Dataset A.
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PM2.5−10 1 - - - - - - - - - -
SO2 0.16 1 - - - - - - - - -
CO 0.49 0.16 1 - - - - - - - -
NO2 0.02 0.03 0.03 1 - - - - - - -
C6H6O 0.19 0.09 0.15 0.02 1 - - - - - -
H2SO4 0.38 0.05 0.21 0.00 0.16 1 - - - - -
CH2O 0.03 −0.05 0.10 0.06 0.11 0.00 1 - - - -
Temperature 0.39 −0.18 −0.23 0.04 −0.08 −0.15 0.17 1 - - -
Pressure 0.32 0.23 0.22 0.10 0.14 0.18 0.22 0.41 1 - -
Velocity −0.16 0.00 −0.16 −0.03 −0.06 −0.06 −0.07 0.06 0.29 1 -
Phenomenon 0.17 0.06 0.09 −0.02 0.00 0.08 −0.03 −0.36 0.24 0.05 1

Table 5. Correlation matrix for Dataset B.

PM
10

PM
2.

5

N
O

2

SO
2

C
O

Pr
es

su
re

H
um

id
it

y

Te
m

pe
ra

tu
re

W
in

d
D

ir
ec

ti
on

V
el

oc
it

y

PM10 1 - - - - - - - - -
PM2.5 0.98 1 - - - - - - - -
NO2 0.21 0.16 1 - - - - - - -
SO2 0.19 0.14 0.07 1 - - - - - -
CO 0.10 0.09 −0.28 0.58 1 - - - - -
Pressure 0.20 0.19 0.01 0.09 0.12 1 - - - -
Humidity 0.27 0.26 0.22 −0.05 0.00 0.24 1 - - -
Temperature −0.41 −0.40 −0.20 0.05 −0.06 −0.36 −0.80 1 - -
Wind Direction 0.01 0.00 0.00 0.04 0.09 −0.04 0.05 −0.04 1 -
Velocity −0.08 −0.09 −0.02 −0.12 −0.13 −0.13 −0.17 0.18 −0.01 1

Note that the direct application of the three machine learning models did not give
consoling results with the selected features set. The models could not find a pattern of
concentration behavior over time, and verification on test data led to a large discrepancy
between the predicted values and actual measurements. Therefore, the time lag approach is
employed in order to better catch the pattern. In other words, target values from previous
periods were utilized as features in addition to the selected ones. Namely, three features
according to the time lags equal to 364, 728 and 1092 days were added.

The models were trained on the first dataset corresponding to the time period up
to 2020, and verification was carried out on the data of 2021. For completeness of the study,
training was carried out for each automated observation post separately.

The number of estimators varied between 500 and 1000 when training the XGBoost
model. The LightGBM model was trained with the following set of parameters: maximum
depth was chosen to be 50, the number of leaves was 512, maximum bin was 512, the
number of iterations was 200, and the boosting type was GBDT. The HistGradientBoosting
model was trained with the following parameters: maximum iterations was chosen to
be 600, and the iterations interrupted when no changes took place in the last 10 iterations.

Table 6 shows the coefficient of determination R2 obtained for the machine learning
models and chemical compounds considered. It is clearly seen from the training results
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that all three models work quite well for chemical compounds in case the initial data is
complete, and corresponding R2 scores are close to each other. In particular, for the top
three rows of Table 2, SO2 and NO2, this indicator varied in the range of 0.91–0.95, which
indicates a good trainability of the models considered.

Table 6. The coefficient of determination (R2 Score) for Dataset A.

Observation
Point SO2 NO2 PM2.5−10 C6H6O CH2O CO H2SO4

XGBoost

1 0.951 0.942 0.850 0.434 0.809 0.858 0.705
5 0.932 0.934 0.813 0.512 0.765 0.884 0.608
7 0.935 0.924 0.825 0.492 0.750 0.801 0.659
8 0.934 0.912 0.858 0.470 0.762 0.901 0.607

12 0.953 0.930 0.887 0.576 0.763 0.895 0.684

LightGBM

1 0.951 0.940 0.912 0.891 0.950 0.925 0.912
5 0.946 0.934 0.891 0.888 0.942 0.923 0.894
7 0.943 0.923 0.896 0.874 0.933 0.891 0.890
8 0.952 0.940 0.901 0.888 0.941 0.893 0.889

12 0.950 0.936 0.896 0.899 0.942 0.887 0.890

HistGradientBoosting

1 0.952 0.942 0.911 0.890 0.949 0.922 0.909
5 0.946 0.935 0.891 0.887 0.943 0.923 0.894
7 0.943 0.924 0.893 0.875 0.932 0.890 0.891
8 0.950 0.939 0.898 0.883 0.939 0.895 0.887

12 0.943 0.929 0.880 0.883 0.932 0.872 0.873

However, in the case of chemical compounds for which the data were insufficient,
Table 6 clearly shows that the XGBoost model performed worse in training. In particular,
for C6H6O and H2SO4, the XGBoost model showed the worst results where R2 was between
0.4 and 0.7. On the contrary, the LightGBM and HistGradientBoosting models trained
quite well and the R2 scores on the specified data set ranged from 0.8 to 0.9. One can
conclude that the LightGBM and HistGradientBoosting models are more resistant to data
incompleteness, and therefore these models can be used to implement this stage of the
proposed approach.

The mean absolute error (MAE) and root mean squared error (RMSE) indicators for
the XGBoost, LightGBM and HistGradientBoosting models are shown in Table 7.

Similarly, calculation results of the coefficient of determination for Dataset B are
shown in Table 8. Due to relative completeness of information, R2 score was mostly higher
than 0.95. Occasionally, the dataset contained incomplete data for PM10, PM2.5, NO2 and
SO2 on a few observation points. This was reflected in the coefficient of determination, and
all three models showed fairly close values.
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Table 7. Mean squared error (MSE), mean absolute error (MAE) and root mean squared error (RMSE)
for the XGBoost model.

Observation
Point

Error
Measurement SO2 NO2 PM2.5−10 C6H6O CH2O CO H2SO4

XGBoost

1 MAE 7.49× 10−3 1.07× 10−2 3.36× 10−2 1.73× 10−3 1.47× 10−3 3.52× 10−1 4.44× 10−3

RMSE 1.07× 10−2 1.45× 10−2 4.32× 10−2 2.40× 10−3 1.88× 10−3 4.90× 10−1 5.79× 10−3

5 MAE 5.76× 10−3 8.80× 10−3 2.71× 10−2 1.74× 10−3 1.48× 10−3 2.11× 10−1 3.84× 10−3

RMSE 8.03× 10−3 1.24× 10−2 3.49× 10−2 2.48× 10−3 1.89× 10−3 3.17× 10−1 4.61× 10−3

7 MAE 6.26× 10−3 1.04× 10−2 4.25× 10−2 1.64× 10−3 1.58× 10−3 2.92× 10−1 5.02× 10−3

RMSE 9.59× 10−3 1.43× 10−2 5.47× 10−2 2.29× 10−3 2.02× 10−3 3.78× 10−1 6.52× 10−3

8 MAE 4.24× 10−3 6.63× 10−3 2.87× 10−2 1.35× 10−3 1.17× 10−3 5.11× 10−2 3.47× 10−3

RMSE 5.81× 10−3 9.17× 10−3 4.13× 10−2 1.54× 10−3 1.70× 10−3 9.63× 10−2 4.21× 10−3

12 MAE 4.27× 10−3 6.48× 10−3 2.13× 10−2 1.74× 10−3 1.48× 10−3 1.34× 10−1 3.51× 10−3

RMSE 5.90× 10−3 8.72× 10−3 2.83× 10−2 2.44× 10−3 1.89× 10−3 2.20× 10−1 4.23× 10−3

LightGBM

1 MAE 7.11× 10−3 8.32× 10−3 2.68× 10−2 8.26× 10−4 7.49× 10−4 2.65× 10−1 2.59× 10−3

RMSE 1.07× 10−2 1.14× 10−2 3.37× 10−2 1.06× 10−3 1.00× 10−3 3.62× 10−1 3.34× 10−3

5 MAE 4.90× 10−3 6.82× 10−3 2.15× 10−2 8.19× 10−4 7.20× 10−4 1.69× 10−1 2.06× 10−3

RMSE 7.24× 10−3 9.43× 10−3 2.72× 10−2 1.06× 10−3 9.85× 10−4 2.61× 10−1 2.60× 10−3

7 MAE 5.96× 10−3 7.89× 10−3 3.41× 10−2 8.21× 10−4 8.40× 10−4 2.20× 10−1 3.10× 10−3

RMSE 8.98× 10−3 1.10× 10−2 4.30× 10−2 1.04× 10−3 1.10× 10−3 2.87× 10−1 3.95× 10−3

8 MAE 3.57× 10−3 5.62× 10−3 2.28× 10−2 6.43× 10−4 6.18× 10−4 4.23× 10−2 1.88× 10−3

RMSE 4.99× 10−3 7.59× 10−3 3.49× 10−2 8.03× 10−4 8.86× 10−4 1.00× 10−1 2.42× 10−3

12 MAE 4.29× 10−3 6.07× 10−3 2.15× 10−2 8.02× 10−4 7.41× 10−4 1.32× 10−1 2.09× 10−3

RMSE 6.10× 10−3 8.33× 10−3 2.73× 10−2 1.04× 10−3 9.84× 10−4 2.27× 10−1 2.64× 10−3

HistGradientBoosting

1 MAE 7.22× 10−3 8.37× 10−3 2.67× 10−2 8.26× 10−4 7.57× 10−4 2.71× 10−1 2.63× 10−3

RMSE 1.06× 10−2 1.13× 10−2 3.37× 10−2 1.07× 10−3 1.00× 10−3 3.70× 10−1 3.40× 10−3

5 MAE 4.98× 10−3 6.83× 10−3 2.15× 10−2 8.26× 10−4 7.21× 10−4 1.71× 10−1 2.04× 10−3

RMSE 7.20× 10−3 9.32× 10−3 2.72× 10−2 1.07× 10−3 9.78× 10−4 2.61× 10−1 2.60× 10−3

7 MAE 5.98× 10−3 7.86× 10−3 3.46× 10−2 8.20× 10−4 8.44× 10−4 2.19× 10−1 3.08× 10−3

RMSE 9.02× 10−3 1.09× 10−2 4.36× 10−2 1.04× 10−3 1.10× 10−3 2.88× 10−1 3.93× 10−3

8 MAE 3.65× 10−3 5.72× 10−3 2.32× 10−2 6.54× 10−4 6.22× 10−4 3.92× 10−2 1.89× 10−3

RMSE 5.08× 10−3 7.70× 10−3 3.55× 10−2 8.19× 10−4 9.05× 10−4 9.90× 10−2 2.45× 10−3

12 MAE 4.52× 10−3 6.51× 10−3 2.32× 10−2 8.62× 10−4 8.15× 10−4 1.44× 10−1 2.25× 10−3

RMSE 6.44× 10−3 8.80× 10−3 2.91× 10−2 1.12× 10−3 1.06× 10−3 2.41× 10−1 2.83× 10−3

Now let us verify the predicted values on the test data over a monthly time interval
from 1 December 2021 to 1 January 2022 and depict the forecast values obtained by the
XGBoost, LightGBM and HistGradientBoosting models, as well as the actually measured
data for the same period. The results of such an analysis for the chemical variables SO2,
NO2 and PM2.5−10 at one of the automated posts are shown in Figure 4. It can be seen from
the results that all three models make it possible to predict future concentration values
quite well in cases where the data is complete.
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Table 8. The coefficient of determination (R2 Score) for Dataset B.

Observation
Point

XGBoost LightGBM HistGradientBoosting

PM10 PM2.5 NO2 SO2 CO PM10 PM2.5 NO2 SO2 CO PM10 PM2.5 NO2 SO2 CO

Alm-001 0.980 0.970 0.999 0.994 0.999 0.960 0.956 0.999 0.991 0.998 0.980 0.968 0.998 0.995 0.993
Alm-002 0.975 0.953 0.990 0.944 0.916 0.981 0.982 0.979 0.902 0.902 0.983 0.983 0.985 0.922 0.954
Alm-005 0.977 0.976 0.998 – 0.991 0.964 0.967 0.991 – 0.965 0.975 0.974 0.990 – 0.962
Alm-006 0.992 0.989 0.997 0.993 0.994 0.981 0.981 0.990 0.980 0.987 0.987 0.979 0.991 0.985 0.990
Alm-007 0.983 0.974 0.866 0.992 0.989 0.957 0.955 0.844 0.980 0.975 0.976 0.985 0.875 0.986 0.979
Alm-008 0.953 0.964 0.998 0.995 0.995 0.970 0.976 0.992 0.988 0.986 0.962 0.977 0.990 0.991 0.981
Alm-009 0.781 0.732 0.998 – 0.979 0.850 0.827 0.989 – 0.955 0.809 0.811 0.989 – 0.937
Alm-010 0.979 0.974 0.998 0.990 0.995 0.953 0.950 0.989 0.975 0.979 0.949 0.929 0.989 0.986 0.983
Alm-012 0.990 0.985 0.994 0.999 0.999 0.971 0.982 0.994 0.982 0.992 0.937 0.965 0.989 0.950 0.987
Alm-013 0.993 0.986 0.999 0.999 0.998 0.980 0.987 0.993 0.994 0.989 0.966 0.978 0.978 0.991 0.987
Alm-014 0.971 0.896 – 0.859 0.999 0.915 0.847 – 0.845 0.980 0.908 0.739 – 0.813 0.930
Alm-015 0.967 0.925 0.996 0.999 0.994 0.972 0.953 0.984 0.924 0.959 0.937 0.920 0.969 0.846 0.949
Alm-016 0.988 0.984 0.998 0.999 0.999 0.983 0.986 0.993 0.988 0.991 0.975 0.971 0.991 0.987 0.991
Alm-017 0.973 0.933 0.997 0.999 0.998 0.986 0.982 0.984 0.987 0.979 0.973 0.973 0.973 0.975 0.952
Alm-018 0.975 0.962 0.996 0.998 0.988 0.990 0.994 0.981 0.955 0.959 0.980 0.985 0.960 0.909 0.952
PNZ-1 0.997 0.996 0.999 0.547 0.999 0.986 0.987 0.996 0.714 0.991 0.967 0.966 0.981 0.620 0.976
PNZ-2 0.986 0.986 – 0.996 0.999 0.983 0.978 – 0.990 0.995 0.961 0.961 – 0.943 0.989
PNZ-3 0.999 0.999 – 0.998 0.999 0.985 0.985 – 0.996 0.994 0.976 0.979 – 0.971 0.978
PNZ-4 – – 0.997 0.963 0.999 – – 0.993 0.962 0.994 – – 0.970 0.865 0.971
PNZ-5 0.995 0.995 0.999 0.999 0.999 0.977 0.979 0.997 0.988 0.989 0.964 0.937 0.987 0.892 0.927
PNZ-6 0.997 0.996 0.998 0.996 0.998 0.992 0.991 0.996 0.998 0.995 0.958 0.956 0.985 0.990 0.976
PNZ-27 0.991 0.983 0.999 – 0.999 0.973 0.973 0.993 – 0.987 0.921 0.918 0.973 – 0.945
PNZ-29 0.996 0.996 0.999 – 0.998 0.993 0.993 0.997 – 0.993 0.973 0.962 0.971 – 0.986
PNZ-30 0.999 0.995 0.996 0.999 0.999 0.990 0.986 0.998 0.998 0.985 0.948 0.935 0.979 0.991 0.934

(a)

(b)

Figure 4. Cont.
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(c)

Figure 4. Forecast and actual values of SO2, NO2 and PM2.5−10 concentrations for last months of
2021 at Observation Point 5. (a) Concentration of SO2; (b) concentration of NO2; (c) concentration of
PM2.5−10.

3.3. Identification of the Atmospheric Turbulence Coefficient

There are many atmospheric turbulence diffusion coefficients commonly used in
modeling of propagation of impurities in the atmosphere. In this study, we consider a few
slightly modified models [66,67]:

K1(x) = p0 +
Nsrc

∑
s=1

ps($(x, xs))
2, (9)

K2(x) =
M

∑
n=0

n

∑
j=0

pn(n+1)/2+j+1xn−j
1 xj

2, (10)

K3(x) =
KDL

1 + B
(

k
km

)α , (11)

K4(x) = k0 +
U
2

Nsrc

∑
s=1

σ2
s

$(x, xs)
, (12)

where x = (x1, x2), pi, i = 0, 1, . . . are some real parameters, M is a positive integer, $ is
the distance function respresenting the downwind distance, KDL is the diffusivity of the
long-term diffusion limit, k is the wave number, km is the wave number corresponding to
the largest turbulent eddies, α is a positive real number and B is a dimensionless constant
which were chosen to be α = 4/3 and B = 0.87 in [66], σs is the crosswind dispersion, and
U is the wind speed.

The aim of this computational experiment is to compare optimization algorithms in relation
to the identification of atmospheric turbulence coefficient parameters based on the parameter
estimation technique. To this end, consider Problem (1)–(4) in Ω = (0, 1)2 with u = (0.02, 0.02),
T = 1, r(x) = 0 and a known exact solution φ(x, t) = x1x2(1− x1)(1− x2)(1 + t) in the
following four cases depending on the atmospheric turbulence coefficients (9)–(12).

Case 1. Consider the model (9) with Nsrc = 1 and let P = (0, 0) be the pollution source.
In this case, K1 depends on two unknown parameters p = (p0, p1) to be identified. In this
numerical test, the right-hand side of Equation (1) is chosen as

f (x, t) = x1x2(1− x1)(1− x2) + 2(t + 1)
(

x1 − x2
1

)(
0.5− 0.1

(
x2 − 3x2

2 − x2
1

))
+ 2(t + 1)

(
x2 − x2

2

)(
0.5− 0.1

(
x1 − 3x2

1 − x2
2

))
+ 0.02(t + 1)

(
(1− 2x1)

(
x2 − x2

2

)
+
(

x1 − x2
1

)
(1− 2x2)

)
.
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Thus, the atmospheric turbulence coefficient to be identified is K1(x) = 0.5 + 0.1
(

x2
1 + x2

2
)
.

The initial estimate for the parameters was chosen to be p0 = (0.25, 0.25). Then a
series of initial boundary value problems (1)–(3) with different coefficients K1(x, pk),
k = 1, 2, . . . was solved according to Stage 2 of the proposed approach presented in Figure 1,
where the subsequent values pk were determined by optimization algorithms listed in
Section 2.3. The values of the exact solution at points x(1) = (0.35, 0.35), x(2) = (0.5, 0.5),
x(3) = (0.85, 0.85) and time stamps t = 0.2, 0.4, 0.6, 0.8, 1.0 were utilized as the values of
φ̂(t) in the functional (4). Thus, the functional was evaluated with the use of 15 observation
points in total.

Case 2. Consider the model (10) where we restrict ourselves to the case M = 2 for sim-
plicity of presentation. Then K2 depends on six unknown parameters p = (p1, p2, . . . , p6).
The right-hand side of Equation (1) was chosen as follows:

f (x, t) = x1x2(1− x1)(1− x2)

+ 0.2(1 + t)
[
((1− x1)x1 + (1− x2)x2)

(
(x1 − x2)

2 + 2(x1 + x2) + 5
)

+ (x1 − x2 − 1)(1− x1)x1(1− 2x2)− (x1 − x2 + 1)(1− x2)x2(1− 2x1)

+0.1((1− x1)(1− x2)(x1 + x2)− x1x2(2− x1 − x2))].

Therefore, the atmospheric turbulence coefficient to be identified is

K2(x) = 0.5 + 0.2(x1 + x2) + 0.1(x1 − x2)
2.

The problem was solved with an initial estimate p0 = (0.3, 0.3, . . . , 0.3). The rest of the
computational experiment was carried out in the same way as in Case 1.

Case 3. Consider (11) with an unknown parameter α. The rest of the parameters are
chosen as follows: B = 0.87, kDL = 5, km = 5, k = 3. The initial estimate for the parameter
was chosen as α = 1, then the computational experiment is continued as described in Case
1. The desired value of the parameter α is 4/3.

Case 4. Consider (12) with unknown parameters p = (σ1, . . . , σNsrc), where we assume
that the pollution sources are located at points (0, 0) and (1, 1), U = |u| and p0 = 0. The
computational experiment started with the initial estimate for the parameters p0 = (0.5, 0.5)
and continued as described in Case 1. The vector of the parameters to be identified is
p̂ = (0.1, 0.9).

Numerical solution of the initial boundary value problem (1)–(3) was performed with
the use of quadratic finite elements on a quadrilateral mesh consisting of 400 elements
and 1681 nodes according to Section 2.4. The algorithm was implemented in the Julia
programming language [68] with the use of the Ferrite package [69]. The time discretization
parameter was chosen to be τ = 0.05. The solution of one initial boundary value problem
on a 10 core computer with the Intel Core i9 processor and 64 GB of RAM took less than 1 s.

Optimization algorithms were compared according to three criteria:

(1) Number of iterations: since each iteration leads to the solution of the initial bound-
ary value problem (1)–(3), choosing an algorithm with fewer number of iterations
is preferable.

(2) The error of the identified parameters which was estimated using the formula

E = max
i=1,2,...,Np

|pi − p̂i|, where p̂ =
(

p̂1, . . . , p̂Np

)
is vector of exact parameter values.

(3) Total execution time.

The result of the computational experiment is summarized in Table 9.
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Table 9. Comparison of optimization algorithms in the parameter estimation problem.

Cases Parameters BOBYQA Conjugate
Gradient NEWUOA L-BFGS Nelder-Mead

Case 1
Iterations 332 481 124 326 268
Error 9.91× 10−8 1.48× 10−7 9.91× 10−8 9.82× 10−8 6.94× 10−8

Time (s) 144.8 231.7 54.1 142.5 116.3

Case 2
Iterations >20,000 >20,000 >20,000 1165 1858
Error 3.70× 10−1 7.22× 10−3 5.45× 10−1 7.34× 10−3 1.76× 10−1

Time (s) ∞ ∞ ∞ 663.7 969.5

Case 3
Iterations 123 179 163
Error 1.33× 10−14 3.42× 10−8 N/A 1.20× 10−10 No convergence
Time (s) 65.9 91.5 83.0

Case 4
Iterations 284 334 105 260 189
Error 6.92× 10−4 6.92× 10−4 6.92× 10−4 6.92× 10−4 7.04× 10−4

Time (s) 197.6 233.4 70.2 181.6 134.3

It can be seen that all the considered optimization algorithms make it possible to
accurately identify the atmospheric turbulence coefficient when its parameters are positive
multipliers (Cases 1 and 4). NEWUOA demonstrated an excellent result in terms of both
iterations count and the execution time which allows it to be effectively used in this class of
problems. The BOBYQA, L-BFGS, and Nelder-Mead algorithms required two–four times
more iterations and time. In Case 3, when it was necessary to identify the degree of an
expression, the Nelder-Mead algorithm failed to achieve convergence and NEWUOA is
not applicable to identifying one parameter, while the BOBYQA, Conjugate Gradient and
L-BFGS algorithms showed comparable results.

In Case 2, when the vector of unknown parameters contained both positive and nega-
tive coefficients, the BOBYQA and NEWUOA algorithms could not achieve convergence
and the computational experiments were interrupted when the number of calls exceeded
20,000; the column “Error” indicates the best error indicator for the performed iterations in
this case. In contrast, the Conjugate Gradient and L-BFGS algorithms were able to identify
coefficients with almost the same accuracy. The obvious disadvantage of the conjugate
gradient method in this test was the extremely slow convergence of the iterations.

In real atmospheric turbulence models, the parameters can take both positive and
negative values. Therefore, this criterion was critical when choosing an algorithm. Overall,
the L-BFGS algorithm turned out to be the most stable and successfully identified unknown
parameters in a wide class of functions while achieving greater accuracy. Therefore, this
algorithm was employed in subsequent numerical tests.

3.4. Forecasting the Spread of a Contaminant in the Atmosphere

We are now ready to apply the proposed approach to a more realistic problem. The goal
of the first computational experiment is to predict the dynamics of the SO2 concentration
field in the city of Ust-Kamenogorsk during one day, 31 December 2021.

As previously stated in Section 3.1, there are five observation points in Ust-Kamenogorsk.
According to the first step of the algorithm presented in Figure 1, we first train a machine
learning model to predict the SO2 values at the observation points. We utilized the Light-
GBM model based on the analysis of the R2 score evaluated in Section 3.2.

Further, according to the second step of the algorithm, the location and intensity of
pollution sources of SO2, NO2 and PM2.5−10 are determined which are shown in Table 10.
We considered two cases in which the maximum sources count in (7) was set to Nsrc = 2
and Nsrc = 6, respectively. Overall, the coordinates found correspond to the real sources of
air pollution in the city. For example, sulfur oxides are emitted to the atmosphere when coal,
oil and natural gas are burned in thermal power plants, residential heating using wood
and coal in the areas with a cluster of residential buildings, and metal smelting and sulfuric
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acid production. Indeed, most of the found points are close to the areas with a cluster of
residential buildings, so in these areas there is territorial pollution from heating systems. In
addition, the point with coordinates (49.977935, 82.643055) is located in close proximity to
the Ust-Kamenogorsk metallurgical complex of Kazzinc LLP and Ulba Metallurgical Plant
JSC. The point with coordinates (50.008971, 82.725308) is located near Ust-Kamenogorsk
titanium-magnesium plant JSC and AES Sogrinskaya thermal power station LLP. In the
area of the point with coordinates (50.008625, 82.576470) there is indeed a railway station,
which is one of the sources of air pollutants. In addition, the source of formation of nitrogen
oxides are the products of combustion of thermal power plants, vehicle exhausts, and waste
from metallurgical industries.

Table 10. Recovered sources of contaminants as of 31 December 2021 at 1 AM.

SO2 NO2 PM2.5−10

Restored Sources, xs

Intensity, Qs

Restored Sources, xs

Intensity, Qs

Restored Sources, xs

Intensity, QsNorthern
Latitude

Eastern
Longitude

Northern
Latitude

Eastern
Longitude

Northern
Latitude

Eastern
Longitude

Case 1

49.998685 82.583863 0.005576 50.001699 82.582107 0.012850 49.900459 82.668751 0.158584
49.900459 82.721145 0.070000 49.900459 82.695813 0.072490 49.978519 82.605362 6.13× 10−11

Case 2

50.005053 82.718237 0.004461 49.935020 82.695454 0.004502 49.978371 82.617189 0.023229
49.977935 82.643055 0.000118 50.022399 82.646333 0.005266 49.943034 82.664383 0.017857
50.008971 82.725308 0.003063 49.975589 82.641627 0.004903 49.923757 82.728565 0.031494
49.905393 82.719093 0.010069 50.021737 82.668109 0.004611 49.910073 82.624015 0.033249
50.028881 82.519130 0.005391 49.946660 82.684314 0.002150 49.982468 82.701915 0.006905
50.008625 82.576470 0.008755 49.944469 82.637671 0.002719 49.988594 82.605876 0.004412

To check the correctness of the sources found, we calculate the concentration values at
the observation points again based on these sources and compare the obtained values with
the actual values at the same points as described in Section 2.5. Overall, one can conclude
that the proposed method is able to quite accurately determine the sources of pollution
based on the results of the comparison presented in Table 11. However the identification
error varied between 10−9 and 10−14 under an assumption of six pollution sources, and the
error increased considerably when the maximum pollution sources count was set to two.

In addition, the initial concentration was approximated as described in Section 2.5.
Further, a finite element mesh was introduced in the domain Ω, and in the neigh-

borhood of observation points and identified sources, the mesh was refined for a more
detailed study of the solution near these points. Then, scattered interpolation by Shepard’s
method was used to interpolate wind vector field in each element using information about
the direction and velocity of the wind at the observation points.

In order to verify the adequacy of the proposed approach, we conduct the algorithm
presented in Figure 1 on the base of four observation points with internal numbers 5, 7,
8 and 12 to obtain the solution of Problem (1)–(3) satisfying the constraint (4). Then we
compare the obtained solution with a real measurement value at the fifth observation point
with an internal number 1 which will serve as a control point. Assessing the proximity of
these values will allow us to evaluate the correctness of the resulting solution. The reason
for choosing the location of the control point was to verify the concentration in the inner
part of the city near industrial facilities.
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Table 11. Verification of the correctness of the found sources through comparison.

Observation Points

Contaminant

Case 1 Case 2

No. Northern
Latitude

Eastern
Longi-
tude

Actual
Values

Restored
Values Error Actual

Values
Restored
Values Error

1 50.009347 82.565520
SO2 0.055 0.05486 1.40× 10−4 0.055 0.055 8.33× 10−17

NO2 0.09 0.089956 4.36× 10−5 0.09 0.09 1.26× 10−14

PM2.5−10 0.1 0.090429 9.57× 10−3 0.1 0.1 3.91× 10−10

5 49.978519 82.605362
SO2 0.061 0.059994 1.01× 10−3 0.061 0.061 1.46× 10−16

NO2 0.08 0.079424 5.76× 10−4 0.08 0.08 2.97× 10−14

PM2.5−10 0.3 0.3 6.39× 10−8 0.3 0.3 1.81× 10−9

7 49.900459 82.622824
SO2 0.07 0.066449 3.55× 10−3 0.07 0.07 2.22× 10−16

NO2 0.09 0.088404 1.60× 10−3 0.09 0.09 1.08× 10−15

PM2.5−10 0.3 0.295431 4.57× 10−3 0.3 0.3 1.26× 10−9

8 49.946028 82.624389
SO2 0.059 0.064164 5.16× 10−3 0.059 0.059 2.71× 10−16

NO2 0.08 0.082715 2.71× 10−3 0.08 0.08 4.13× 10−14

PM2.5−10 0.2 0.213348 1.33× 10−2 0.2 0.2 8.82× 10−10

12 50.027369 82.740023
SO2 0.051 0.050457 5.43× 10−4 0.051 0.051 7.63× 10−17

NO2 0.05 0.049315 6.85× 10−4 0.05 0.05 1.55× 10−14

PM2.5−10 0.1 0.093218 6.78× 10−3 0.1 0.1 1.28× 10−9

The model (12) with Nsrc = 2 was accepted as the atmospheric turbulence coefficient.
Therefore, the coefficient depended on three unknown parameters—k0 (m2 · s−1), σ1 (m) and
σ2 (m), which we represent by a vector p = (p0, p1, p2). It was assumed that pi ∈ [0, 10,000]
and the vector p0 = (6000, 0, 0) was taken as the initial estimate. This value was reported
by the authors of [7] who studied propagation of contaminants in the atmosphere of Ust-
Kamenogorsk based on photochemical reactions. Based on the conclusions of Section 3.3,
subsequent vectors pj, j = 1, 2, . . . in the iterative process of Stage 2 were found using the
L-BFGS optimization algorithm.

In the time interval corresponding to 24 h, a uniform partition was introduced which
contained 3200 time layers with a step of τ = 27 s. The integrals in (4) were evaluated by
the trapezoidal rule; the value of the functional was calculated at four observation points
every 6 h, which led to the minimization of a sum consisting of 16 terms. Moreover, in
contrast to the problems considered earlier, we have replaced the boundary condition of
the first kind with a homogeneous boundary condition of the second kind [70].

The value of the functional I(K(p0)) was approximately equal to 1.449949 for the
chosen initial estimate vector. The value of the solution at the control point was equal to
0.067981 which differs from the actually measured value by 0.014019. The iterative process
within Stage 2 was conducted until the objective function satisfied the condition

I
(
K
(
pj+1

))
− I

(
K
(
pj
))

I
(
K
(
pj
)) < ε (13)

with ε = 10−12. This condition was achieved at the 1287th iteration, and the following
values of the parameters were identified: p̂ = (1426.1102878, 4.953423, 5.092003). The
value of the objective function for these coefficients was approximately equal to 0.026079.
The value of the solution at the fifth observation point was approximately equal to 0.081435
which differs from the actually measured value by 0.00281612 (Table 12). However, the
obtained result can be considered acceptable despite the simplicity of the adopted model of
the atmospheric turbulence coefficient.
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Table 12. Comparison of actual measured values, the values predicted by the machine learn-
ing algorithm and the values identified by the proposed algorithm in Ust-Kamenogorsk as of
31 December 2021 at 7 PM.

Observation Point Actual Measured
Value

Predicted by
LightGBM Machine
Learning Algorithm

Identified by the
Proposed Algorithm

1 0.082 0.081435 0.079183
5 0.081 0.080046 0.080297
7 0.073 0.076499 0.074831
8 0.075 0.075379 0.075304
12 0.080 0.081420 0.081190

Verification of the proposed approach was conducted on Dataset B in a similar way.
The goal was to predict PM2.5 concentration on 1 November 2022. First, we set the maxi-
mum sources count Nsrc = 6. The median identification error evaluated as in Table 11 was
equal to 4.188393× 10−3.

Then we considered a subset of 10 observation points located in the center part of the city:
Alm-002, Alm-005, Alm-007, Alm-008, Alm-010, PNZ-1, PNZ-2, PNZ-3, PNZ-5 and PNZ-6.
The comparison of the solution was performed at Alm-002 and Alm-008, and the algorithm
was conducted on the rest of the observation points. The sought coefficient depended on
seven unknown parameters p = (k0, σ1, . . . , σ6). Unfortunately, the literature review did not
reveal studies aimed at determining the value of the turbulence coefficient for the city of
Almaty. However, the surface roughness of the outskirts of the cities of Ust-Kamenogorsk
and Almaty is identical, since both cities are surrounded on one side by the Altai and Alatau
mountain ranges, respectively, and on the other side are plains. Therefore, it was expected
that the nature of turbulent mixing of atmospheric air was approximately the same. In this
regard, we took the vector p0 = (k0, σ1, . . . , σ6) with k0 = 1426.1102878 as defined above for
the city of Ust-Kamenogorsk and σi = 0 as the initial estimate for Dataset B. The value of the
functional was approximately equal to 1.199794 for the chosen initial estimate.

The stopping criterion (13) was satisfied at the 1784th iteration; the resulting parame-
ters vector was p = (984.827741, 4.289480, 6.415792, 5.250199, 2.290402, 6.492729, 4.268890),
and the corresponding value of the objective function was equal to 0.068131. The values
of the obtained solution at the two control points, Alm-002 and Alm-008, were equal to
0.008950 and 0.067400, respectively, which deviate from the actually measured values by
0.013 and 0.028, respectively. The result of the calculations made for Dataset B are presented
in Table 13.

Table 13. Comparison of actual measured values, the values predicted by the machine learning algorithm
and the values identified by the proposed algorithm in Almaty as of 1 November 2022 at 8 PM.

Observation Point Actual Measured
Value

Predicted by
LightGBM Machine
Learning Algorithm

Identified by the
Proposed Algorithm

Alm-002 0.021950 0.014918 0.008950
Alm-005 0.029700 0.056926 0.060700
Alm-007 0.003935 0.001613 0.001935
Alm-008 0.039400 0.070663 0.067400
Alm-010 0.054800 0.052026 0.055800
PNZ-1 0.083731 0.080957 0.090731
PNZ-2 0.000713 0.001261 0.005713
PNZ-3 0.235911 0.219314 0.192631
PNZ-5 0.030706 0.047932 0.040906
PNZ-6 0.015140 0.043237 0.040140
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4. Conclusions

Let us provide a few comments about the results obtained and outline future research
directions.

(1) In general, the problem of determining the coefficient of atmospheric turbulence
is quite complex, and the presence of a large number of different models of atmospheric
turbulence indicates that there is still no unified method for its determination. Our work
proposes one of the approaches that allows one to refine the parameters included in these
models. In particular, in comparison with paper [7], a refined value of the atmospheric
turbulence coefficient was obtained. In the computational experiment carried out, the
error in determining the concentration at the control point was reduced from 0.014019
to 0.002816.

(2) Ensemble models can be effectively used when training machine learning models
in the problems of predicting the distribution of harmful substances in the atmosphere.
It can be concluded from the analysis made that all three considered models, XGBoost,
LightGBM and Histogram-Based Gradient Boosting, can effectively make a prediction
of the concentration at observation points. This observation is also consistent with the
conclusions of the papers [71–74]. Additionally, it has been observed that the LightGBM
and Histogram-Based Gradient Boosting models are more resistant to data incompleteness,
therefore it is recommended to use these models in this case.

(3) A more realistic problem of the spread of a harmful substance in the atmosphere
has been solved on the example of the city of Ust-Kamenogorsk, Kazakhstan using the
proposed approach. Due to the methodological nature of the work, the results of the
forecast can be considered quite acceptable. Note that the relatively large value of the
target functional obtained in Section 3.4 may indicate that more significant factors were not
taken into account when modeling the spread of a harmful substance. These may include
orographic features of the area and high-rise buildings. In addition, the study uses data
from a fairly small number of observation points. Another important factor is the use of a
two-dimensional convection-diffusion-reaction model at a fixed height, as well as the use
of the simplest Gaussian plume model in determining the initial distribution field.

(4) Since the approach is proposed for the first time, the technical methods used can be
improved without significant difficulties. For example, a three-dimensional generalization
of the governing equation with a more complex turbulence coefficient can be used, which
can more accurately describe the motion of the harmful substance. Another possibility
for improving the results is taking into account the terrain, high-rise buildings and other
features of the area under study. These issues deserve a separate study, which will be the
subject of a subsequent paper.

In general, despite many simplifying assumptions, the developed algorithm showed a
plausible dispersion of the pollutant. Hence, we concluded that this algorithm can be taken
as a basis when considering more complex models that take into account more factors.
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Abbreviations
The following abbreviations are used in this manuscript:

AdaBoost Adaptive Boosting
BNN (or BPNN) Backpropagation Neural Network
CEEMD Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
CEMD Complementary Empirical Mode Decomposition
CNN Convolutional Neural Network
CPSWOM Chaotic Particle Swarm Optimization Method
CS Cuckoo Search
EEMD Ensemble Empirical Mode Decomposition
ELM Extreme Learning Machine
GA Genetic Algorithm
GNB Gaussian Naive Bayes
GRNN Generalized Regression Neural Network
GSA Gravitation Search Algorithm
GWO Grey Wolf Optimizer
HistGradientBoosting Histogram-Based Gradient Boosting
KNN k Nearest Neighbor
L-BFGS Limited-Memory Broyden–Fletcher–Goldfarb–Shanno Algorithm
LightGBM Light Gradient-Boosting Machine
LSSVM Least Square Support Vector Machine
LSSVR Least Squares Support Vector Regression
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MDPI Multidisciplinary Digital Publishing Institute
MSE Mean Squared Error
NSGA-II Non-dominated Sorting Genetic Algorithm II
PCA Principal Component Analysis
PM Particulate Matter
PSO Particle Swarm Optimization
RAM Random-Access Memory
RF Random Forest
RMSE Root Mean Squared Error
SE Sample Entropy
SVR Support Vector Regression
VMD Variational Mode Decomposition
WHO World Health Organization
WPD Wavelet Packet Decomposition
XGBoost eXtreme Gradient Boosting
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