
Citation: Kauffman, L.H.

Autopoiesis and Eigenform.

Computation 2023, 11, 247.

https://doi.org/10.3390/

computation11120247

Academic Editor: Demos T. Tsahalis

Received: 3 November 2023

Revised: 29 November 2023

Accepted: 29 November 2023

Published: 5 December 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Autopoiesis and Eigenform
Louis H. Kauffman

Mathematics Department, University of Illinois at Chicago, 851 South Morgan Street,
Chicago, IL 60607-7045, USA; loukau@gmail.com

Abstract: This paper explores a formal model of autopoiesis as presented by Maturana, Uribe and
Varela, and analyzes this model and its implications through the lens of the notions of eigenforms
(fixed points) and the intricacies of Goedelian coding. The paper discusses the connection between
autopoiesis and eigenforms and a variety of different perspectives and examples. The paper puts for-
ward original philosophical reflections and generalizations about its various conclusions concerning
specific examples, with the aim of contributing to a unified way of understanding (formal models
of) living systems within the context of natural sciences, and to see the role of such systems and the
formation of information from the point of view of analogs of biological construction. To this end, we
pay attention to models for fixed points, self-reference and self-replication in formal systems and in
the description of biological systems.

Keywords: autopoiesis; molecular substrate; cells; protocells; recursion; fixed points; fixed point
theorems; Goedelian self-reference; eigenform; infinity; finity; distinction; self-reference; recursive
distinctions; cellular automata; artificial life

1. Introduction

In their paper “Autopoiesis: The organization of living systems, its characterization
and a model”, Umberto Maturana, Ricardo Uribe and Francisco Varela [1] discuss the
meaning of self-organization in living systems, and they give a model for their ideas. The
ideas behind this model are of great generality and power. In this paper I discuss this
model of autopoiesis and how it can be generalized and understood in a multiplicity of
contexts. We place the model of autopoiesis in the context of recursions and fixed points,
and consider how this model is seen to emerge from a molecular substrate as part of how
structure is seen to emerge from a recursive background.

Consideration of autonomous structures, starting from autopoiesis, strike deeply into
the heart of issues of communication, understanding and information. This leads to new
ways to think about formal systems, incompleteness and the role of Goedelian coding in
the structure of biology, mathematics and human thought.

We mention at the outset that the core of this paper is not biological, but rather the
explication of emergence of patterns in recursive domains, among which there are key
biological examples. We will, later in the paper, discuss the formal structure of DNA
replication as such an example. This is also an example of our method, where the actual
biology is schematized in order to be compared with a mathematical model. In some
cases, this makes the biological modeling unrealistic. In others, the schematic modeling
can be applied to the actuality. This is the case in certain topological models for DNA
recombination, as we will mention in Section 3.

We also point out that the phrase “the map is not the territory” applies in spades to the
modeling of living systems. Whatever model may be devised to describe a living system,
it can never play the role of the living system itself. The imagination of the model maker
plays a significant role in forming the viewpoint that makes the model. A living system
self-creates information in the process of engaging with the environment in which it is
embedded. Nevertheless, we can see some of this process in mathematical models, and that

Computation 2023, 11, 247. https://doi.org/10.3390/computation11120247 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11120247
https://doi.org/10.3390/computation11120247
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0003-4135-8685
https://doi.org/10.3390/computation11120247
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11120247?type=check_update&version=3

Computation 2023, 11, 247 2 of 31

is one of the purposes of the present work. We are about to describe a simple autopoietic
model where self-sustaining entities arise from a more neutral background substrate. We
do not claim these models as biological models, but as formal analogs to aspects of biology.

Here is a short introduction to the concept of autopoiesis in the form of a quote from
the linguistic AI system ChatGTP, recorded on 22 February 2023:

“According to the theory of autopoiesis, living systems are characterized by a
set of processes that enable them to create and maintain their own structure and
organization. These processes involve the constant production and renewal of
the components that make up the system, as well as the interactions between
these components.

At the heart of autopoiesis is the idea that living systems are self-producing,
self-maintaining and self-reproducing, and that their organization is continually
being created and recreated through their interactions with the environment.
The theory emphasizes the importance of the system’s boundaries or membrane,
which separates it from the environment and enables it to maintain its own
identity.”

This quote is a summary of the main line of thought in the paper by Maturana, Uribe
and Varela (MUV). Note that the process of autopoiesis allows the system to create and
maintain a boundary with respect to its environment. In that regard, autopoiesis can be
thought to be a description of how the dynamics of a form or a distinction can be brought
forth into the world.

It is key that a new word, “autopoiesis”, is coined for such self-sustaining systems.
They need not be alive in the classical sense of biology, but biological systems are indeed
seen to be autopoietic. In this paper, we will think of systems as abstract as patterns arising
in a recursion to be autopoietic if the patterns satisfy those requirements in the eyes of
an observer.

Let us go directly to the model constructed by MUV. In the model there are “molecules”
in a plane space and special molecules called “catalysts”. In the presence of a catalyst, the
other molecules form bonds with one another. The catalyst cannot move past a bond. All
the molecules are in motion. Bonds join in high probability near a catalyst, but nevertheless
break with some probability as well.

The reader can imagine what will happen if a random assortment of jiggling molecules
and catalysts is placed in this plane space.

Around a catalyst, the molecules tend to bond. A catalyst will tend to become sur-
rounded by bonded molecules. Since the space is a plane space, these bonds that form
around catalysts will form boundaries that surround the catalysts. Thus, prototypical cells
arise, each containing catalysts within the cell boundary. The cells will tend to persist, even
though their constituents are changing. I say the constituents are changing because the
bonds emerge and decay, and the molecules are in continual motion.

A form of life has arisen in the plane space. The cells have emerged from the constraints
and possibilities inherent in the substrate of molecules and catalysts.

A new order has assembled itself from an order that never designed the cells that
emerged from it. Figure 1 illustrates the process, just as in the original paper.

Maturana, Uribe and Varela call an entity “autopoietic” if, by its own structure, it
maintains that structure by using the elements of a “molecular substrate”. The autopoietic
entity maintains itself through its own interactions with its environment.

In the case of the MUV model, the protocells assemble themselves from the substrate.
We may imagine such self-assembly at the base of biology, but in practice we do not

see life emerging from non-life except in the presence of life. Thus, the model suggests
more than is actually observed in biological science. We would like to know how biological
molecules such as DNA emerge in actual biology. In working with mathematical models, we
can see emergence of this kind in the patterns of models, but this is only suggestive of what
may happen in actuality. In biological studies, there is the notion of autocatalysis, pioneered

Computation 2023, 11, 247 3 of 31

by Stuart Kauffman and his collaborators (Stuart Kauffman 1986). Stuart Kauffman’s work
and the points of view in this paper will be compared in a sequel to the present paper.

How can we describe the kind of closure that was experienced in the example of MUV?
We are describing how a distinction can arise and become autonomous. The cell repairs
itself in the sense that it tends to maintain its integrity over time. Nevertheless, the cell is
not self-referential, since it has no language of reference.

Computation 2023, 11, x FOR PEER REVIEW 3 of 33

ical molecules such as DNA emerge in actual biology. In working with mathematical
models, we can see emergence of this kind in the patterns of models, but this is only
suggestive of what may happen in actuality. In biological studies, there is the notion of
autocatalysis, pioneered by Stuart Kauffman and his collaborators (Stuart Kauffman
1986). Stuart Kauffman�s work and the points of view in this paper will be compared in a
sequel to the present paper.

Figure 1. Prototypical autopoiesis.

How can we describe the kind of closure that was experienced in the example of
MUV? We are describing how a distinction can arise and become autonomous. The cell
repairs itself in the sense that it tends to maintain its integrity over time. Nevertheless, the
cell is not self-referential, since it has no language of reference.

2. Autopoiesis and Eigenforms
In the MUV model for autopoiesis, we have a space, S, in which distinctions are

possible (the plane space of the model), and there are entities called catalysts in the space.
Linkages of other entities tend to occur in the neighborhood of a catalyst. The catalyst
cannot move across the linkages. Linkages can decay with some probability. These con-
ditions lead to the possibility that a linkage may form in the neighborhood of a catalyst so
that the catalyst is captured inside a distinction (a corral) made by the linkages that occur
in the neighborhood of the catalyst.

The conditions in the space lead to the production and maintenance of distinctions
surrounding catalysts. These distinctions arise spontaneously due to the nature of the
space, and they are maintained via the dynamics of linkage in the presence of the catalyst
and decay of linkage as well.

There is a general theory of the arising of stable forms, called eigenforms [2,3]. In this
theory, one is given a transformation, T, that can act on forms, X, to make new forms, TX.
Repeated application of T on an initial form, X, will produce a concatenation of this op-
eration applied to X: G = TTTTT…TTTX. One more application of T may make little
difference to the shape of the form, so that

TG = G

where the = sign means that TG and G are indistinguishable from one another.

Figure 1. Prototypical autopoiesis.

2. Autopoiesis and Eigenforms

In the MUV model for autopoiesis, we have a space, S, in which distinctions are
possible (the plane space of the model), and there are entities called catalysts in the space.
Linkages of other entities tend to occur in the neighborhood of a catalyst. The catalyst can-
not move across the linkages. Linkages can decay with some probability. These conditions
lead to the possibility that a linkage may form in the neighborhood of a catalyst so that the
catalyst is captured inside a distinction (a corral) made by the linkages that occur in the
neighborhood of the catalyst.

The conditions in the space lead to the production and maintenance of distinctions
surrounding catalysts. These distinctions arise spontaneously due to the nature of the
space, and they are maintained via the dynamics of linkage in the presence of the catalyst
and decay of linkage as well.

There is a general theory of the arising of stable forms, called eigenforms [2,3]. In this
theory, one is given a transformation, T, that can act on forms, X, to make new forms,
TX. Repeated application of T on an initial form, X, will produce a concatenation of this
operation applied to X: G = TTTTT. . .TTTX. One more application of T may make little
difference to the shape of the form, so that

TG = G

where the = sign means that TG and G are indistinguishable from one another.
We call G the eigenform for T. At the point when there is identity TG = G for an

observer of the system, we say that we have an eigenform. If the process is complex, as
in autopoiesis, then some time steps will leave the form the same for the observer, and
some time steps will have a difference associated with them. Indeed, some time steps can
embody a disintegration of the form and a disappearance of the eigenform.

Computation 2023, 11, 247 4 of 31

Here is a typographical example using the operator TX = <X>. T puts brackets around
X. If we start with <>, and iterate T, we obtain

J0 = <>
J1 = T<> = <<>>

J2 = TT<> = <<<>>>
J3 = TTT<> = <<<<>>>>

J4 = TTTT<> = <<<<<>>>>>
J5 = TTTTT<> = <<<<<<>>>>>>

J6 = TTTTTT<> = <<<<<<<>>>>>>>
J7 = TTTTTTT<> = <<<<<<<<>>>>>>>>

Jn has n brackets around <>, and we see that Jn+1 = TJn has n + 1 brackets around <> and is
distinct from Jn.

If, however, we allow a new expression with an infinite number of brackets,

J = <<<<<<<. . .>>>>>>>,

then in the infinite nest of brackets we have <J> = J. See Figure 2 for an illustration using
nested boxes.

Computation 2023, 11, x FOR PEER REVIEW 4 of 33

We call G the eigenform for T. At the point when there is identity TG = G for an ob-
server of the system, we say that we have an eigenform. If the process is complex, as in
autopoiesis, then some time steps will leave the form the same for the observer, and some
time steps will have a difference associated with them. Indeed, some time steps can em-
body a disintegration of the form and a disappearance of the eigenform.

Here is a typographical example using the operator TX = <X>. T puts brackets
around X. If we start with <>, and iterate T, we obtain

J0 = <>
J1 = T<> = <<>>

J2 = TT<> = <<<>>>
J3 = TTT<> = <<<<>>>>

J4 = TTTT<> = <<<<<>>>>>
J5 = TTTTT<> = <<<<<<>>>>>>

J6 = TTTTTT<> = <<<<<<<>>>>>>>
J7 = TTTTTTT<> = <<<<<<<<>>>>>>>>

Jn has n brackets around <>, and we see that Jn+1 = TJn has n + 1 brackets around <> and is
distinct from Jn.

If, however, we allow a new expression with an infinite number of brackets,

J = <<<<<<<…>>>>>>>,

then in the infinite nest of brackets we have <J> = J. See Figure 2 for an illustration using
nested boxes.

Figure 2. Iterated F with Nested Boxes.

Note that J satisfies TJ = J. If we start with an arbitrary variable, X, then TX is differ-
ent from X, and the sequence of elements X, TX, TTX, … are all different. We do not arrive
at a solution (in general) to the equation X = TX except by taking this leap to infinity.

Remark 1. While we write J = <<<<<…>>>>>, indicating an infinite nest of brackets, we do not
give a formal definition here of the type of limit process that is intended to be performed to obtain the
infinite nest. There is no actual infinite nest of brackets in the plane. For the purpose of our informal
presentation, the reader can imagine this construction and explore how it can be compared with
mathematics, which the reader is familiar with.

Figure 2. Iterated F with Nested Boxes.

Note that J satisfies TJ = J. If we start with an arbitrary variable, X, then TX is different
from X, and the sequence of elements X, TX, TTX, . . . are all different. We do not arrive at a
solution (in general) to the equation X = TX except by taking this leap to infinity.

Remark 1. While we write J = <<<<<. . .>>>>>, indicating an infinite nest of brackets, we do not
give a formal definition here of the type of limit process that is intended to be performed to obtain the
infinite nest. There is no actual infinite nest of brackets in the plane. For the purpose of our informal
presentation, the reader can imagine this construction and explore how it can be compared with
mathematics, which the reader is familiar with.

In mathematical situations, we can often define a limit so that the limiting “value” of
the finite approximations goes to a fixed point. For example,

let Fx = 1 + 1/x. Then, nearly any non-zero starting value, x, will give you a set
of numbers

x, 1 + 1/x, 1 + 1/(1 + 1/x), 1 + 1/(1 + 1/(1 + 1/x)), . . .

Computation 2023, 11, 247 5 of 31

whose limiting value is the golden ratio Phi = (1 + sqrt(5))/2 and can be represented by the
infinite form

Phi = 1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + 1/(. . .))))))))).

Phi is a direct solution to FPhi = Phi. That is

Phi = 1 + 1/Phi.

We can create special domains so that very general recursions have formal limits.
Even in ordinary mathematics, the results are subtle. For example, Hx = 1 + x. Then,
H1 = 2, HH1 = 3, HHH1 = 4 and so on. If HG = I, then 1 + G = I. This entity, G, is not an
ordinary natural number since such numbers always increase if you add 1. Thus, finding an
eigenform for H involves extending the number system to include “infinite” numbers (as
was first done by Georg Cantor). Here, we are suggesting that one can play with these ideas
and see what be constructed. You can behave as the observer of your own mathematical
creations. For example, you could make up the “infinite number”

G = 1 + 1 + 1 + 1 + 1 +. . .

and agree that, while G cannot be any ordinary number, it makes sense to say that 1 + G = G
as a formal pattern.

The pattern of nested boxes in Figure 2 is reminiscent of the observed patterns that we
see between facing mirrors, as in Figure 3 (compare [2,4,5]).

Computation 2023, 11, x FOR PEER REVIEW 6 of 33

*
**

and let

K = *******…

be an infinite row of stars (with the same injunction to take this as a definite but
not-yet-formalized idea). Then we have * K = K exactly because there is no difference
between * K and K. There is a difference between *** and **, but when the row is infinite
then the difference disappears.

Here is another way to think about this. Suppose I tell you that I postulate an entity, K,
that has the property that K = * K. This means that whenever you see K, you are justified
in replacing it by * K. This is an instruction that we can give to a computer.

The computer does not have any fancy ideas about infinity. The computer just has
this rule that K can be replaced by * K. So the computer will write K = * K = ** K = *** K =
**** K = ***** K = …, and here the … means that the computer will not stop! If you want
the computer to stop, you will have to give it extra instructions. This is what we do in
practice when we program recursions in a computer. So one way to work with recursions
is to start at the “infinite place” where you have a similarity or eigenform equation like K
= * K and give the computer this equation and also some rules for stopping so that it does
not use up all its resources.

Figure 3. Eigenform of facing mirrors.

The facing mirrors of Figure 3 give a clue. It takes two mirrors to produce the infinity
between the mirrors. Let S denote the function, F, as an active procedure. Let SS denote
the infinite (not stopped) application of F to itself.

Then we have, as in Figure 2,

SS = F(F(F(F(F(…))))) (ad infinitum).

Thus, we have that SS is the eigenform and we can write

F(SS) = SS.

Figure 3. Eigenform of facing mirrors.

Of course, one can ask, What is the meaning of an infinite nest of parentheses or an
infinite nest of boxes? Certainly, it is not possible to actually write down on the page such
an infinity. The ellipsis of the three dots in the notation <<<<. . .>>>> indicates that we
imagine going on forever in a mathematical idealization of brackets within brackets. In
formalizing such constructions there are different choices available, and it is not the purpose
of this paper to set up such formalization. Rather we appeal to the reader’s experience of

Computation 2023, 11, 247 6 of 31

numbers and geometry to give the idea of an unending row or nest of identical objects. In
the case of the infinite nest, J, it will help to think of J as a limit of nests of boxes, as in

<>,
<<>>,

<<<>>>,
<<<<>>>>,

<<<<<>>>>>,
<<<<<<>>>>>>.

As the number of brackets in the nests increases, it becomes more and more difficult
to tell that there is a difference between one stage and the next without careful comparison.
The infinite nest can be thought of as a very large finite nest that is too big for us to count.
In that sense, the equation J = <J> is an indication that we are not able to tell the difference
between J and <J>.

Note that J = <J> is analogous to the fact that 1 = 0.9999. . . For if x = 0.9999. . . then
10x = 9.9999. . . = 9 + x, and so 9x = 9 and x = 1. When we multiply 0.9999. . . by 10 and find
that 0.9999. . . has reappeared after shifting the decimal point, it is exactly analogous to the
way J = <<<. . .>>> reappears when you put a bracket around it.

Here is another thought experiment. Consider the following rows of stars.

*
**

and let
K = *******. . .

be an infinite row of stars (with the same injunction to take this as a definite but not-yet-
formalized idea). Then we have * K = K exactly because there is no difference between *
K and K. There is a difference between *** and **, but when the row is infinite then the
difference disappears.

Here is another way to think about this. Suppose I tell you that I postulate an entity, K,
that has the property that K = * K. This means that whenever you see K, you are justified in
replacing it by * K. This is an instruction that we can give to a computer.

The computer does not have any fancy ideas about infinity. The computer just has this
rule that K can be replaced by * K. So the computer will write K = * K = ** K = *** K = ****
K = ***** K = . . ., and here the . . . means that the computer will not stop! If you want the
computer to stop, you will have to give it extra instructions. This is what we do in practice
when we program recursions in a computer. So one way to work with recursions is to start
at the “infinite place” where you have a similarity or eigenform equation like K = * K and
give the computer this equation and also some rules for stopping so that it does not use up
all its resources.

The facing mirrors of Figure 3 give a clue. It takes two mirrors to produce the infinity
between the mirrors. Let S denote the function, F, as an active procedure. Let SS denote the
infinite (not stopped) application of F to itself.

Then we have, as in Figure 2,

SS = F(F(F(F(F(. . .))))) (ad infinitum).

Thus, we have that SS is the eigenform and we can write

F(SS) = SS.

Computation 2023, 11, 247 7 of 31

Now it is important at this point to stop and examine Figure 3, the photograph of the
facing mirrors. The camera has given us the opportunity to see what we would have seen
if we had been standing there between the mirrors. Being an observer is crucial in this
experiment. There is no vision of the multiple reflections without an observer, or indirectly
a camera that can make a record. You can even imagine two facing mirrors in the dark with
no “photons” to bounce between them. So this phenomenon of the multiple nested mirrors
needs an observer and does not occur without an observer. In this case, the “reality” of
the mirror eigenform does not exist except in the presence of an observer. That this is true
quite generally in our world of observation is an insight that can begin to expand from
this example.

2.1. Producing an Eigenform

Let G be defined as an operator that duplicates x (forming xx) and places xx in a box
(indicated by the brackets).

Gx = [xx].

The adjacent xs that are duplicated can be any distinct things that can be placed next
to one another. Thus

G# = [##]
GElephant = [ElephantElephant]

G! = [!!]

and so on.
But consider GG. We can take a copy of G itself, duplicate it and put it in the box.
In this sense I can apply G to “itself”. I have to make an exact copy of G and then

apply (the first) G to the copy. This is not problematical because G embodies a very simple
rule that can be applied to any object, including itself!

It is sometimes said that there is a problem about applying a function to itself, but we
are working in an unrestricted way, and G, by definition, can be applied to anything at all
that can be duplicated. It is when you have restrictions on the domains of functions that
there can be trouble.

It follows from the equation Gx = [xx] that

GG = [GG],

and so GG represents an eigenform for the boxing operator.
We have constructed this eigenform without going to infinity, and without taking

any limits.
Since GG = [GG], we certainly have that

GG = [GG] = [[GG]] = [[[GG]]] = . . . = [[[[[. . .[GG]. . .]]]]],

and so the infinite concatenation, E = [[[[[.]]]]], and the finite composition, GG, have
the same behavior to the outside mathematical observer.

E = [E] = [[E]] = [[[E]]] = . . . = [[[[[. . .[E]. . .]]]]],

We can generalize this box fixed point by writing Gx = F(xx) for F representing
(the form of) any transformation. Then GG = F(GG). This duplication trick (Gx = F(xx))
produces any eigenform we want. More about this method occurs in Section 4 when we
discuss reflexive domains.

To see discussions of formalizations of limits for eigenforms, the reader can
examine [6–9]. The duplication trick is the approach of Church and Curry, forming the
basis for the lambda calculus [10].

Remark 2. Some eigenforms are not related to an infinite process at all.

Computation 2023, 11, 247 8 of 31

Consider FX = “the one who says X”. Then X = FX is an X that can be placed in the
sentence, so that X = “the one who says X”. This is the equivalent to the sentence, “X is the
one who says X”. Any X that makes this sentence correct and meaningful is an eigenform
for F. Since we can correctly say in English, “I am the one who says I”, it follows that “I” is
an eigenform for F. We did not find this “I” by a limiting process. Another example is seen
in the sentence, “This sentence has thirty-three letters.” The sentence is true and thirty-three
is an eigenform for the transformation

FX = |This sentence has X letters.|

where |S| is the number of letters in a sentence, S.

Just so, the achievement of autopoiesis in the MUV model does not happen by an infinite
limit. It happens by the circumstances fitting to themselves in a pattern of closure.

Returning to F(SS) = SS, we can regard this eigenform as descriptive of the MUV model.
Then S is the molecular substrate with its rules and SS is that substrate applied to itself and
running for some time, producing protocells and patterns. The statement F(SS) = SS can be
interpreted as “SS is seen as F(SS), where F is the descriptor “field of protocells”. In that
sense, SS becomes an eigenform for the behavior that converts the molecular substrate into
a field of self-generating protocells.

The idea behind eigenforms goes outside of mathematics, which has fixed or restricted
domains of operation. The production of eigenforms is often a challenge to widen these
domains. For example, if Fx = −1/x, then an eigenform, i, for F must satisfy i = −1/i,
whence i2 = −1. There are no real numbers whose square is −1. Thus, this eigenform
does not exist as a real number. In the history of mathematics, this equation (i2 = −1)
and the possible meaning of i led to a new context in which the complex numbers, of
the form a + bi, where a and b are real numbers, became the basis for a new area of
mathematics. In that context, i can be interpreted as a rotation by ninety degrees in the
two-dimensional plane. It was not obvious at the beginning of this history that i would be
related to fundamental geometry. Advances in mathematics can be accompanied by the
emergence of new eigenforms and their interpretations.

Consider any situation where there are objects of perception, or objects of thought. An
object is invariant under certain acts of the observation. We find, as we move about, that
the shapes of objects change, but we understand them, and even perceive them to be the
same object. Physically, the object can be a process such as flowing water. We make the flow
into an object. The form of the flow is unchanged under the transformation of the flow.

There is a linkage between myself of a moment ago and myself now.
In this way, I become an eigenform for my own self-observation.
We understand certain modes of speech, such as, “I am the one who says I,” as

expressing eigenforms for object/beings, as tokens of their eigenbehaviors.
A deep connection runs between the idea of eigenforms as objects of perception and

the structure of autopoiesis. In both cases, the observer finds a structure that is unchanged
under transformations (perturbations) of the observed system. The interaction of the
system with itself can be understood as a form of self-observation. The observation of one
system by another can be understood as how an observer finds autopoietic evidence for a
living form.

Autopoiesis gives rise to eigenforms. Eigenforms can be seen as a description of
autopoiesis and as a description of how the involvement of the observer works in bringing
forth the autonomy of the autopoietic form.

The active loop of observation and description generates the eigenform, and there
seems to be no need for an external process. Nevertheless, we see in autopoiesis that an
external process can generate a condition that we are able to describe as an eigenform. The
transformations that propel an animal or plant forward in time and preserve its structure
are transformations that we observe and articulate. To the extent that we make these

Computation 2023, 11, 247 9 of 31

transformations our own, and make the distinctions our distinctions, then the autopoiesis
and the eigenform will coincide.

2.2. Catalytic Eigenforms

We return to the catalyst in the MUV model.
We construct a one-dimensional model.
Suppose we have a (molecular) entity #, so that

##←→#

with some probability, regarding this movement as a release (##→#) or a building up
(#→##) of linkage. The catalytic entity * will have the likelihood of being linked to other
molecules, #:

→#
and

→#

with some probability.
The catalyst, *, tends to acquire a neighborhood of the form #*#.
Let E denote that action of the environment on the catalyst.
Then

E*~#*#.

Since ##~# with high probability, we have that ###~# with high probability.
Thus, A = ###. . .##*###. . .### has the property that EA is approximately A for one

time-step of environmental interaction. The catalyst wants linkages while the molecules
tend to unlink by themselves. The eigenform is a balance between linkage and release.
We have produced a minimal symbolic example of catalytic autopoiesis. The state of
autopoiesis is an eigenform.

3. Self-Replication

We can regard the MUV model as reproducing itself from moment to moment, in the
sense that a protocell starts to decay and is then repaired by the action of the catalyst in
forming new bonds.

We are familiar with the abstract schema for self-replication that is instantiated by a
von Neumann “building machine”, B. The machine, B, equipped with a blueprint, x, will
produce the object, X, described by the blueprint. This can be presented as below:

B,x→B,x X,x.

Here, the arrow indicates production, and the result of the building machine’s action
is that we find the building machine, the blueprint, x, the newly built entity, X, and a copy
of the blueprint, x. When the building machine is handed its own blueprint, b, then it will
build a copy of itself.

B,b→ B,b.

This is the most abstract and fundamental pattern for self-replication.
How is it related to the self-production of the protocells in the MUV model?
Where is the blueprint in the MUV model for protocells? We see that the protocells

themselves are their own blueprints. These blueprints are not supplied beforehand. They
arise from the structure and dynamics of the substrate of the MUV model. But once a
protocell has emerged, it has the capacity to keep producing itself from the environment
with aid of the catalysts that participate in its formation. At the level of these protocells,
there is no distinction between the substrate and the coding. It is in the eye of an observer
that the protocells acquire existence as self-producing entities. Life can emerge from
molecular dynamics, and the first beginnings of code and blueprint can come into being.

Computation 2023, 11, 247 10 of 31

Consider DNA (compare [11]). The DNA molecule consists of two interwound and
bound-together helical strands, the Watson strand, W, and the Crick strand, C. We can
write schematically DNA = WC to indicate the two strands and their binding. Replication
occurs via enzymes that cut the bonds between base pairs in the two strands. Then, the
environment in the cell provides new bases to pair with the available bases in the separated
strands. The separated Watson strand is paired with a Crick strand by the environment
and the separated Crick strand is paired with a Watson strand by the environment. The
environment, E, produces C from W and it produces W from C, once they are separated.

WE→WC, EC→WC

and so we have
DNA = WC→WC→WE EC→WC = DNA.

The DNA is divided into individuated Watson and Crick strands that each are supplied
with their complementary strand by interaction with the surrounding molecular environ-
ment.

The separation of the bound strands, W and C, to individual strands that can interact
with the environment is accomplished via polymerase enzymes that act to break the bonds
between the Watson and Crick strands.

Thus, the environment in DNA replication acts as a catalyst in that process in analog
with the catalysis in the MUV model.

Note that, along with the complexity of molecular handling of the topological com-
plexity, DNA strands are never completely “separated” in the replication fork. Thus, the
actuality of DNA replication is simplified by our formalism.

See Figure 4 for a schematic illustration of DNA replication. Note that in the figure
we have included the fact that two strands (W and C) are interwound with one another in
the DNA. It is known that not only do the strands separate during replication, but also the
winding between them is reduced by the action of the topoisomerase enzymes of type I
and II. The type I enzyme can break a strand of DNA and allow the other strand to slip
through the break and then reseal the break.

Computation 2023, 11, x FOR PEER REVIEW 11 of 33

Figure 4. DNA replication.

With this schema in mind, we can ask: Where is the blueprint in the DNA replica-
tion? Where is the building machine in the DNA replication?

With the DNA, the Watson strand is the blueprint for the Crick strand and the Crick
strand is the blueprint for the Watson strand.

This statement is the exact truth of the matter. Each strand with its bases ready to be
paired with complementary bases in the environment produces its complementary
strand, building it from the environment. When the enzymes pull the strands apart, the
strands each become building machines for the complementary strands and blueprints
(via that complementarity) for the resulting combination of strands that is the DNA.

In this way, we see how the structure of a blueprint has emerged from the underly-
ing molecular interactions. Just how the DNA molecule evolved and became involved in
life processes is a mystery, but with its presence we can see how a molecular substrate
can become the support for self-replicating structures that are close to the abstract von
Neumann scheme.

The DNA participates in more complex interactions that involve the construction of
RNA molecules and other cellular architecture. We can begin to see how symbolic com-
putational descriptions such as the von Neumann self-replication are in a continuous
range of constructions that start with molecular substrates, have way stations like the
DNA and continue on upward into information processing systems that are highly dis-
crete, and relatives of the formal systems of mathematicians and computer scientists.

In the MUV model, we have a system, S, that acts on itself. We observe the
self-action SS. We find that, when the protocells have emerged, then there is a form of
invariance. SS consists in a field of protocells. If F denotes the functioning of the catalysts
and linkages that lead to the formation of protocells, then we can write SS = F(SS) in the
sense that SS is a field of protocells, and its form, while varying at the local level, is in-
variant in its collective pattern.

Assembling a Fixed Point
At this point, we reconstruct the results we have so far and pay close attention to

process. Consider Gx = F(xx). We have applied G to itself and obtained a fixed point, as in
GG = F(GG). Now let Rx denote xx. That is, R is the operation that duplicates its argu-
ment. We have

Figure 4. DNA replication.

Just as one can unhook a keyring by opening it and then closing it, the topoisomerase
enzyme performs a similar function for the interwound strands. The type II enzyme
can perform a similar job of unhooking one full DNA strand from another after they are

Computation 2023, 11, 247 11 of 31

replicated. In this way, enzymatic action handles topological information in the cell and in
particular in the course of replication and mitosis.

With this schema in mind, we can ask: Where is the blueprint in the DNA replication?
Where is the building machine in the DNA replication?

With the DNA, the Watson strand is the blueprint for the Crick strand and the Crick
strand is the blueprint for the Watson strand.

This statement is the exact truth of the matter. Each strand with its bases ready to be
paired with complementary bases in the environment produces its complementary strand,
building it from the environment. When the enzymes pull the strands apart, the strands
each become building machines for the complementary strands and blueprints (via that
complementarity) for the resulting combination of strands that is the DNA.

In this way, we see how the structure of a blueprint has emerged from the underlying
molecular interactions. Just how the DNA molecule evolved and became involved in
life processes is a mystery, but with its presence we can see how a molecular substrate
can become the support for self-replicating structures that are close to the abstract von
Neumann scheme.

The DNA participates in more complex interactions that involve the construction
of RNA molecules and other cellular architecture. We can begin to see how symbolic
computational descriptions such as the von Neumann self-replication are in a continuous
range of constructions that start with molecular substrates, have way stations like the DNA
and continue on upward into information processing systems that are highly discrete, and
relatives of the formal systems of mathematicians and computer scientists.

In the MUV model, we have a system, S, that acts on itself. We observe the self-action
SS. We find that, when the protocells have emerged, then there is a form of invariance. SS
consists in a field of protocells. If F denotes the functioning of the catalysts and linkages
that lead to the formation of protocells, then we can write SS = F(SS) in the sense that
SS is a field of protocells, and its form, while varying at the local level, is invariant in its
collective pattern.

Assembling a Fixed Point

At this point, we reconstruct the results we have so far and pay close attention to
process. Consider Gx = F(xx). We have applied G to itself and obtained a fixed point, as in
GG = F(GG). Now let Rx denote xx. That is, R is the operation that duplicates its argument.
We have

Gx = F(Rx)
and

GG = F(RG).

At this point, the process would stop unless duplication facilities were available.
There is no problem duplicating a typographical letter, but if we imagine realizing these

functions as structures that are to be connected together under the indicated compositions,
then to accomplish RG means to actually make a second copy of G and then put the two
copies together.

We imagine that two Gs just happened by and decided to interact, but we used up
one of the Gs in composing with the other, and now we are waiting for the duplicating
machine. If the duplicating machine comes along, then we can replace RG by GG and then
we would have an operation from GG to F(GG), and with GG in place we can do it again
and obtain F(F(RG)), and then we have to wait again for the duplicating machine before
we can continue; and so it goes.

If you wanted your recursions to go on without such interruptions, you would have
to devise a standard procedure for the duplication. This is what is achieved in DNA
self-replication. The W and C strands can separate, and the environment will fill in the
missing bases to form a new C for W and a new W for C. Environmental complementarity
has come to the rescue and provided the duplication. There is, however, something we
have not mentioned about DNA self-replication.

Computation 2023, 11, 247 12 of 31

It is a fact of nature that the DNA strings contain codes for all the basic molecules
and enzymes (combinations of molecules) that participate in these cellular interactions.
In principle, the DNA contains the coding for its own environment, and via the RNA
transcription processes this coding can be used to realize these molecules and enzymes and
its own replication.

Remark 3. For the purpose of this discussion, I just refer to the biological hypothesis that the DNA
encodes all essential information for producing the other biological molecules in a cell. And this is of
course with the caveat that the DNA is working in a cell to begin with. We do not attempt to solve
the obvious but mysterious circularity in this proposal.

The whole cellular process is self-sustaining at a cybernetic level more intricate than
the original autopoiesis from which we began. Here is the ultimate idea for self-replication—
that the entity would contain the coding for itself and its environment so that, in principle,
it could lift itself by its own bootstraps.

There are amazing partial examples in practice. A virus comes equipped with a
polyhedral outer shell that contains the viral DNA. Interaction of the virus with a living
cell results in the viral DNA being injected into the cell. The viral DNA then uses the
cellular environment and its own coding to produce many copies of the viral DNA and to
manufacture many polyhedral shells for this new DNA. The viral process continues until it
exhausts the cellular host, and a myriad of viral capsids have been produced. The virus
produces its own environment via its own internal codes and the hospitality of the host cell.

Within the cellular DNA are codes for building the molecular environment that can
decode that DNA and produce the very environment that is so encoded.

The key to the flexibility in coding and construction for DNA is the fact that subse-
quences in the string of base pairs can be singled out and specific proteins synthesized
from these substrings via the action of enzymes on the DNA in combination with RNA
transcription processes.

We can illustrate mathematical self-replications that are similar to DNA replication
in form, but do not involve the string complementarity. Consider an element, P, in an
associative and non-commutative algebra, such that P factors as a product of elements W
and C, so that P = WC. Assume that CW is the identity in the algebra, so that CW = 1.

If there is a process that pulls the factors apart, we will have a process of duplication
for P that is similar to DNA replication:

P = WC→ W 1 C→ W CW C = WC WC = P P.

Conversely, and algebraically, we have

PP = WCWC = W1C = WC = P.

Thus P is its own algebraic fixed point.
In Figure 5, we illustrate this kind of replication in a topological context.

Computation 2023, 11, x FOR PEER REVIEW 13 of 33

If there is a process that pulls the factors apart, we will have a process of duplication
for P that is similar to DNA replication:

P = WC W 1 C W CW C = WC WC = P P.

Conversely, and algebraically, we have

PP = WCWC = W1C = WC = P.

Thus P is its own algebraic fixed point.
In Figure 5, we illustrate this kind of replication in a topological context.
In that figure the reader will see an entity, P consisting in flexible strings attached to

points at a top line and a bottom line. One string undergoes a simple topological trans-
formation, making a maximum and a minimum, and then the resulting form is cut at the
midpoint. This is analogous to the splitting of DNA. In the figure, we see that this
splitting has produced two copies of P.

In Figure 6, we show the algebraic structure of this self-replication. P is seen to itself
be a composition of entities A and B, so that P = AB, while BA is identical with the wiggle
that we saw in Figure 5. Thus, we have that topologically BA ~ I, where I is the “identity”,
a simple arc. Then we have P = AB = A I B ~ A BA B = AB AB = P P.

The self-replication is produced by information that is ‘stored inside P�. The form AB
stores information that can be used in the form BA to accomplish the replication.

Notice that if we write the interaction in the opposite order, as PP = ABAB ~ A I B =
AB = P, then P is its own fixed point under the composition with itself. The
self-replication is the reverse of the fixed point structure. This topological example is not
seen directly in biology, but it illustrates aspects that are mathematically implicit in the
structure of DNA replication.

Figure 5. Topological replication. Figure 5. Topological replication.

Computation 2023, 11, 247 13 of 31

In that figure the reader will see an entity, P consisting in flexible strings attached
to points at a top line and a bottom line. One string undergoes a simple topological
transformation, making a maximum and a minimum, and then the resulting form is cut
at the midpoint. This is analogous to the splitting of DNA. In the figure, we see that this
splitting has produced two copies of P.

In Figure 6, we show the algebraic structure of this self-replication. P is seen to itself
be a composition of entities A and B, so that P = AB, while BA is identical with the wiggle
that we saw in Figure 5. Thus, we have that topologically BA ~ I, where I is the “identity”,
a simple arc. Then we have P = AB = A I B ~ A BA B = AB AB = P P.

Computation 2023, 11, x FOR PEER REVIEW 14 of 33

Figure 6. The algebra of topological replication.

In this example, we have replaced the way the environment produces extra copies of
C and W, via complementary base pairing, with an algebraic identity, 1 = WC. This is ar-
tificial with respect to the biology and it points out the power of nature�s use of string
complementarity. Nevertheless, this algebraic remark points out that we can view the
DNA as its own fixed point under the non-biological reversal process of merging two
DNA strands into one, which is implicit at the algebra level. So we see DNA as a fixed
point or eigenform, and as a structural relative of autopoiesis, as well as being a partici-
pant in the autopoiesis of the cell.

Finally, in Figure 7, we show how recombination processes in DNA are closely re-
lated to topological changes in the DNA. The figure illustrates a twisted but unknotted
loop of DNA. We have collapsed two strands into a single strand for the purpose of il-
lustration. The loop of DNA undergoes a recombination process that consists in cutting
the DNA and then rejoining it in a twisted crossover pattern, as illustrated in the first step
in the figure. The DNA becomes two linked loops of DNA (K1) in this step. A second
recombination produces K2, a figure eight knot. A third recombination produces K3, the
so-called Whitehead link. The figure illustrates the further step, producing a knot, K4. In
this way, processive recombination of DNA produces sequences of topologically knotted
and linked molecules. The details of this process can be observed via gas chromatog-
raphy and electron microscopy, and aspects of the theory of knots and links can be used
to understand corresponding aspects of molecular biology. Experiments and theory of
this kind show how information is processed topologically in the workings of the cell. It
will surely become more articulated in the future just what is the full relationship of to-
pology, geometry and fixed point and Goedelian logic in the workings of molecular bi-
ology.

Figure 6. The algebra of topological replication.

The self-replication is produced by information that is ‘stored inside P’. The form AB
stores information that can be used in the form BA to accomplish the replication.

Notice that if we write the interaction in the opposite order, as PP = ABAB ~ A I B =
AB = P, then P is its own fixed point under the composition with itself. The self-replication
is the reverse of the fixed point structure. This topological example is not seen directly
in biology, but it illustrates aspects that are mathematically implicit in the structure of
DNA replication.

In this example, we have replaced the way the environment produces extra copies
of C and W, via complementary base pairing, with an algebraic identity, 1 = WC. This is
artificial with respect to the biology and it points out the power of nature’s use of string
complementarity. Nevertheless, this algebraic remark points out that we can view the
DNA as its own fixed point under the non-biological reversal process of merging two DNA
strands into one, which is implicit at the algebra level. So we see DNA as a fixed point or
eigenform, and as a structural relative of autopoiesis, as well as being a participant in the
autopoiesis of the cell.

Finally, in Figure 7, we show how recombination processes in DNA are closely related
to topological changes in the DNA. The figure illustrates a twisted but unknotted loop of
DNA. We have collapsed two strands into a single strand for the purpose of illustration. The
loop of DNA undergoes a recombination process that consists in cutting the DNA and then
rejoining it in a twisted crossover pattern, as illustrated in the first step in the figure. The
DNA becomes two linked loops of DNA (K1) in this step. A second recombination produces
K2, a figure eight knot. A third recombination produces K3, the so-called Whitehead link.
The figure illustrates the further step, producing a knot, K4. In this way, processive
recombination of DNA produces sequences of topologically knotted and linked molecules.
The details of this process can be observed via gas chromatography and electron microscopy,
and aspects of the theory of knots and links can be used to understand corresponding

Computation 2023, 11, 247 14 of 31

aspects of molecular biology. Experiments and theory of this kind show how information is
processed topologically in the workings of the cell. It will surely become more articulated
in the future just what is the full relationship of topology, geometry and fixed point and
Goedelian logic in the workings of molecular biology.

Computation 2023, 11, x FOR PEER REVIEW 15 of 33

Figure 7. DNA recombination—topological information.

4. Reflexive Domains and Fixed Point Theorems
A reflexive domain (see [2,5,7]) is a domain, D, whose elements are each transfor-

mations of the domain. Algebraically, we define a reflexive domain as follows:
1. Given a and b in D, then there is a binary operation denoted by ab, so that ab is

another element of D. D is closed under the binary operation. This makes each element, a,
of D correspond to the mapping A: DD, defined by A(x) = ax.

The binary operation is not assumed to be either commutative (ab = ba) or associa-
tive ((ab)c = a(bc)).

2. Given an algebraic parenthesized expression E[x] with a free variable, x, involving
elements of D, then there is an element, e, of D, so that E[a] = ea for any a in D. E[a] is the
result of substituting a in the expression E[x]. In other words, algebraic operations on the
reflexive domain are represented by the action of elements of the reflexive domain.

Given a reflexive domain, D, we have the

Fixed Point Theorem. Let F be an element of a reflexive domain, D. Then there is an element, p,
of D, so that Fp = p. Thus, every element of the reflexive domain, D, has a fixed point.

Proof. Let G[x] = F(xx). Then, by property 2 above, there is an element, g, in D so that
gx = F(xx) for all x in D. Applying g to itself, we have gg = F(gg). Letting p = gg, we have
shown that p = Fp. This completes the proof. □

The key property of reflexive domains is that every element of D is also a mapping
of D to itself, and all algebraic mappings of D are represented by elements of D. This is
articulated as property 2 above. In this sense, we can write D = [D,D], where [D,D] de-
notes the algebraic mappings of D to itself that include the forms

xax

where a is some element of D.
The assumption of such a reflexive correspondence, D = [D,D], is in line with social

and cybernetic intuitions about systems that involve the participation of the individuals
who are the members of the system. The properties of the system arise from the dynamics
of its members.

Figure 7. DNA recombination—topological information.

4. Reflexive Domains and Fixed Point Theorems

A reflexive domain (see [2,5,7]) is a domain, D, whose elements are each transforma-
tions of the domain. Algebraically, we define a reflexive domain as follows:

1. Given a and b in D, then there is a binary operation denoted by ab, so that ab is
another element of D. D is closed under the binary operation. This makes each element, a,
of D correspond to the mapping A: D→D, defined by A(x) = ax.

The binary operation is not assumed to be either commutative (ab = ba) or associative
((ab)c = a(bc)).

2. Given an algebraic parenthesized expression E[x] with a free variable, x, involving
elements of D, then there is an element, e, of D, so that E[a] = ea for any a in D. E[a] is the
result of substituting a in the expression E[x]. In other words, algebraic operations on the
reflexive domain are represented by the action of elements of the reflexive domain.

Given a reflexive domain, D, we have the

Fixed Point Theorem. Let F be an element of a reflexive domain, D. Then there is an element, p,
of D, so that Fp = p. Thus, every element of the reflexive domain, D, has a fixed point.

Proof. Let G[x] = F(xx). Then, by property 2 above, there is an element, g, in D so that
gx = F(xx) for all x in D. Applying g to itself, we have gg = F(gg). Letting p = gg, we have
shown that p = Fp. This completes the proof. �

The key property of reflexive domains is that every element of D is also a mapping
of D to itself, and all algebraic mappings of D are represented by elements of D. This is
articulated as property 2 above. In this sense, we can write D = [D,D], where [D,D] denotes
the algebraic mappings of D to itself that include the forms

x→ax

where a is some element of D.

Computation 2023, 11, 247 15 of 31

The assumption of such a reflexive correspondence, D = [D,D], is in line with social
and cybernetic intuitions about systems that involve the participation of the individuals
who are the members of the system. The properties of the system arise from the dynamics
of its members.

In language, one can introduce new words and new ways of speaking. One allows
these new ways to interact with previously created language on an equal basis. The
language as a whole grows in this way. In this sense, human languages are prototypical
reflexive domains.

In computer languages and formalized languages, we can give rules for the production
of new entities. Programs can be written that call previously created programs. A complex
of programs can arise in this way, particularly if each program is given a name that is then
regarded as a new element in the expanding programming language.

Reflexive domains are an abstraction of the above-described situations. The possibility
to write an expression, E[x], in terms of a domain (created up to a given point) is analogous
to writing a program in that language.

An experiment for the reader illustrates the complexity inherent in this idea of the
reflexive domain. Start with a domain, D0, generated by one element, a. Then D0 contains
a, aa, (aa)a, a(aa), a((aa)a), (a(aa))a, . . . where these comprise all possible parenthesized
compositions of a with itself. This infinity of expressions is the simplest start. Our second
requirement adds another infinity of elements by defining functions such as

G[x] = (xx)a for x in D

with a some given element of D0. Then the axiom asserts that there is g in D1 (we introduce
D1 to allow these new elements), such that

gx = (xx)a for any x in D1.

This means that
gg = (gg)a.

So letting Y = gg, we have Y = Ya.
There is an infinity of such constructions.
We can call D1 the set generated by all the a’s and all the algebraic expressions in

one variable involving only the a’s. From D1 we can beget D2, and from D2 beget D3. An
infinite process of growth occurs. For a very remarkable formalization of this reflexive
structure as a limit process, see the work of Dana Scott [6]. Scott constructs a domain, D,
that is the limit of all the domains, Dn, so that D = [D,D] as desired.

Reflexive domains quite naturally go outside of initial domains where the construc-
tions begin. For example, suppose we are in a logical domain with only the values True and
False, so that negation has no fixed point. Then we can define E[x] = ~xx and thus there is an
R in the domain D, such that Rx = ~xx for any x in the domain. Whence RR = ~RR, and we
have produced a fixed point, RR, for negation. RR is necessarily outside the initial logical
domain. R is the direct analog of the Russell set in the context of logical reflexive domains.

This leads us to consider what it means to say that any a has a fixed point. There is an
obvious answer. Let P = a(a(a(a(a. . .)))) ad infinitum. Then formally a(P) = P.

The infinite composition of a with itself usually leaps out of the given domain. But it
is this possibility of infinite repetition that informs language at all times and is related to
our fascination with mirrors and self-reflective structures and recursions of all kinds. In
behaving politely and finitely in language, we nevertheless skirt at all times the possibilities
of infinite repetition and infinite recursion. It is the presence of this edge in language that
brings it into the realm of the reflexive domain.

One can think of the three dots as indicating infinity, as in (((((((. . .))))))).
S = a(a(a(. . .))) is via notation a fixed point for a. There is no infinity on the page. The

curious property of the fixed point theorem is that it gives us a method to construct the

Computation 2023, 11, 247 16 of 31

notation that shall be fixed. We write gx = a(xx) and find that gg = a(gg). A fixed point
arises from a context through the application of an operator, g, to itself.

5. Decorating the Fixed Point Theorem

The idea of the von Neumann building machine is generalized in formalisms by
thinking of the machine, B, with blueprint, x, as a special machine, Bx, that can be applied
to various inputs, y. We do not specify what Bx(y) will be, but we do specify that Bx(x) = X
is the entity described by the blueprint x. Here we distinguish between the blueprint as
lower case x and the actuality as upper case X.

Bx is a special machine that will produce the entity described by the blueprint x.
With its special index, b, Bb(b) will build itself.
An indexed machine applies itself to its own index. This is a relative of the DNA using

itself to produce itself. The self-relation continues up into the symbolic world.
This curiously profound simplicity of fixed point and self-replication has reflections

in a number of domains. First of all, suppose that we articulate the mapping from the
reflexive domain to its self-maps. Then we can write

Z: D→[D,D].

Suppose we are given F:D→D. Then define C:D→D via

Cx = F(Zxx).

Now we have articulated aspects of the process, with Zx as the operator associated
with x in the reflexive domain. This operator can be applied to x. This is the full articulation
of “applying x to itself”.

If C = Za, as in the second axiom for a reflexive domain, then

Zax = F(Zxx)

for all x in D.
Whence

Zaa = F(Zaa).

If we think of Za as a function with code name a, then the fixed point arises via the
application of Za to its own code.

This is the Goedelian fixed point [12] and it corresponds indeed to the Goedelian
reference where the arrow is an arrow of reference from a code number to the statement
that it encodes.

g→~B(uu)
gg→~B(gg)

Here, ~B(gg) is a Goedelian sentence that denies its own provability by referring to its
own code. The statement ~B(x) asserts, in the given formal system, that there is no proof of
the statement whose code number is x. Code numbers act on themselves. If g→F(u) (with
free variable u in F(u)), then gh→F(h), where gh means the code number of F(h), the result
of substituting h for the free variable u in F(u). The formal system can speak about these
compositions of code numbers. Thus, there is a code number for F(uu).

We can have
g→F(uu)
gg→F(gg)

and then F(gg) is a statement that refers to itself via its own code. Self-reference and fixed
points are two sides of the same coin.

We can imagine that in a biological situation the action of Zg on g represents the
production of Zg itself from its own code, g. Here one should regard Zg as a building
machine that will produce Zuu when given the code u. In order to produce itself, it needs to

Computation 2023, 11, 247 17 of 31

be given it its own code. Then Zgg produces Zgg. In this logical sense, all the productions
of molecular entities from DNA codes are in the form of the production of Goedelian
fixed points.

What about the negation? When we make ~B(gg), referring to its own code, we are in
fact encoding a flag about the limitations of consistency in the system. The statement ~B(gg)
carries its own markers pointing to its own unprovability within the system. We may regard
~B(gg) as located and coded, so that it points to what in the system must be eliminated by
the system’s “immune system”. The idea of Goedelian sentences as fundamental to formal
biological immune systems is due to Markose [13].

Thus, negative Goedelian sentences can become the indicators of attempts to change
or make inconsistent the base code of the system. The system’s stability depends on these
Goedelian sentences.

We see that, above the level of initial and emergent recursions, the interactions of an
autopoietic or living system are necessarily Goedelian and recursive. There is really no
choice in this matter. To the extent that the system operates via codes and reference, this
structure must emerge.

In the case of simple autopoiesis and cellular automata, we see the beginning of the
emergence of Goedelian loops in the eigenform of the system itself.

In examining the relationships between our own understandings and those that come
from mathematics and formal systems, it becomes apparent that we, as observers, are
a composition of Goedelian entities of the form Zgg, combining program, reference and
self-action. It should not be surprising that our careful excision of such structures (when
self—contradictory) from the mathematical formal systems leads to sharp differences
between our apparent understanding and the image of understanding that can happen in a
formal system. One must turn this situation on its head to make it right.

6. Algorithms and Exiting the Box

One can consider algorithms and their actions by thinking about a sequence of algo-
rithms A1, A2, A3, . . ., so that each algorithm can be applied to any index, k, to compute
some number, An(k).

Now, make from this list a new algorithm by the equation

Z(n) = An(n) + 1.

Suppose that Z = Ak for some k.
Then we have

Ak(n) = An(n) + 1 for any n.

We can let n = k and then we obtain

An(n) = An(n) + 1.

This implies 0 = 1, a definite contradiction.
This means that Z(n) = An(n) + 1 is not on the list of algorithms with which we began.

Any list of algorithms is incomplete. Each list can be used to produce an algorithm that is
not on the list.

The process of evaluating the algorithms at their own indices has led to something
new. It is not just self-replication that is at stake here, but novelty. The act of evaluating on
one’s own code leads out of the box of already made structures.

We have returned to the autopoiesis and the MUV model in another way. It is a
prerequisite for life that it move out beyond the molecular substrate to new structures and
self-supporting dynamics. The key for this to happen is by the application of processes to
themselves, as in the MUV model originally, and in the molecular substrates that produced
the DNA. The application of algorithms to their own codes is the most abstract form of
this possibility.

Computation 2023, 11, 247 18 of 31

It is seems unsatisfactory that any list of well-defined and halting (reaching a conclu-
sion after a finite number of steps) algorithms should be incomplete. The problem is that
one cannot make a mechanical procedure to decide whether a given algorithm will always
halt. In both mathematical worlds and biological worlds, processes go on, and we do not
always insist that they stop. In fact, we study them for the patterns that they produce as
they run or live.

Partial Recursive Functions

In this subsection, we consider the meaning of partial recursive functions and give
examples. We show how the domain of partial recursive functions can be regarded as a
reflexive domain and so as a natural domain for the theory of biological processes. In that
way, the Kleene fixed point theorem, proved below, is a centerpiece for theoretical biology.

The idea of ongoing recursions leads to the idea of listing not just halting algorithms,
but all algorithmic procedures that can be written in the grammar of a given language.
Then we can imagine a list of procedures

A1, A2, A3, . . .

that expresses all the algorithms in a given (formal) language. It is no longer the case
that we know that Ak(n) will halt when we set it to compute. It is an algorithm and it
will compute, but it may not stop and give us a specific answer. One says that the Ai are
partial recursive functions. They have the advantage that their list is complete and that
they represent all the processes that can be defined in a given language. A complete list of
partial recursive functions is possible in principle, because one can judge, without running
the list, whether a program is grammatically correct. Therefore, list them all in order of size.

Remark 4. Partial recursive functions (equivalently, partial recursive algorithms) include all
grammatically correct algorithms that we know how to write down in a given language. Here is an
example. Define the following procedure:
Start with a natural number n from {1,2,3,4, . . .}.
If n is even divide it by 2 to obtain n/2.
If n is odd multiply it by 3 and add 1 to obtain 3n + 1.
Repeat this process.
If in the course of the repetition the number 1 is obtained, stop and notify the operator that the
process has halted.
Otherwise, continue the process.

We can call this process C(n) = Collatz(n) after its inventor. The question is:
Does Collatz(n) halt for every natural number, n?
It is conjectured that this is so. To investigate, one programs C(n) on a computer and

tries different values of n. So far, the process comes to a halt for every number, n, that has
been tried. But so far (since the 1940s), there is no known mathematical proof that C(n)
must halt for every n.

C(n) is an example of an algorithm that is in the list of all partial recursive algorithms.
We do not know whether it halts, but it is a well-defined algorithm and must be listed.
Without the problem of knowing whether algorithms halt for every n, one can in principle
list all the partial recursive algorithms in a given language.

As we have indicated, it makes sense to consider Ak(n) that do not necessarily halt
(partial recursive functions). Here we consider partial recursive functions, so that, when the
algorithm does halt, it produces a natural number that can be considered as the function
value for the given input, n. Thus, a given Ak will produce definite natural number outputs,
Ak(n), for some input values, n. But, for some values, no output may happen.

Under such circumstances, one can assume a 1-1 correspondence

A: N→[N,N]

Computation 2023, 11, 247 19 of 31

where N is the natural numbers and [N,N] is the set of partial recursive functions from N
to N, defined relative to a given formal language. This is another way of saying that we can
list all the partial recursive functions. This is because it is a mechanical matter to determine
if an algorithm is partial recursive. It just needs to be grammatically well-defined. The
problem of whether it halts for a given input, n, is not under question. It may halt or it may
not halt.

Remark 5 (on notation). In the following, we shall write A_{B} to stand for AB. This allows
iterated subscripting to be typographically visible.

When we say that a function is recursive or that an algorithm is recursive, we mean
that it does halt for every natural number, n, and hence gives us a definite answer for every
input, n.

We now examine the fixed point theorem for reflexive domains in the context of partial
recursive functions as a reflexive domain. As we shall see, this yields naturally a version of
the Kleene fixed point theorem.

For a given natural number, z, we can write

A_{A_{z}(z)} = A_{g(z)}.

Here, A_{A_{z}(z) } is partial recursive, but it has a definite index, g(z), since every
partial recursive function is listed by its index.

Thus, we have g:N→ N as a recursive function describing these indices.
If f:N → N is also recursive, then we can consider f(g(z)), and we have that

f(g(z)) = A_{v}(z)

for some special v in N and A_{v} is recursive. This means that

A_{f(g(z))} = A_{ A_{v}(z)}

and hence
A_{f(g(v))} = A_{ A_{v}(v)} = A_{g(v}}

Letting k = g(v), we have
A_{f(k)} = A_{k}.

We have proven the

Kleene Fixed Point Theorem. Given a recursive function, f, there is a natural number, k,
such that

Af(k) = Ak.

Here, {Ak} k = 1,2,3,. . . denotes a listing of all the partial recursive functions in a given
formal language (see [14]).

By considering partial recursive functions with definite indices, we can project the
fixed points to live on the indices of the recursive functions. We have a fully reflexive
domain to work with via the partial recursive functions. Markose [13] has pointed out that
this gives powerful access of recursive function theory to biological and, indeed, autopoietic
structures. The Kleene fixed point theorem is the right level for the recursions of computer
science and also for biology, where the ongoing functions are open-ended and partial
recursive.

Remark 6. The reader may wonder why we do not invoke the usual fixed point procedure for
reflexive domains that we have already described earlier in the paper.

Computation 2023, 11, 247 20 of 31

Consider what would happen if we tried that. Let f: N→N be a given recursive
function. Define Cn = f(Zn(n)). Then Zn is partial recursive and so C is partial recursive.
Therefore, C = Zg for some natural number, g. Hence

Zg(n) = f(Zn(n))

and we can let n = g and conclude that

Zg(g) = f(Zg(g)).

However, Zg(g) may not halt, in which case we have not found a numerical fixed
point for f. The strategy in the Kleene fixed point theorem that uses the well-definedness of
the indices of partial recursive functions makes it possible to have an effective fixed point
theorem for partial recursive functions.

Now the relationship with autopoiesis comes back into view. It is the chemistry of the
operator Sx = F(xx) that can produce the autopoietic SS = F(SS). But S must be allowed
to combine with itself. Just so, in the realm of the protocells produced by a catalyst, the
cells act on themselves. The action of the molecular field S on itself can be seen by us, as
observers, as happening at a different level from S acting on other entities. In the reflexive
domain and indeed in the chemical domain, the actions just go on without halting. It is our
singularity of vision that we concentrate on SS. In that domain there are the many catalysts
and molecules. When a protocell occurs, it is possible for it to persist through the support
of the environment.

This means that, in thinking about recursions in relation to biology, we should be
sensitive to the fact that distinctions we make for the sake of logical analysis are not
necessarily fundamental for the process itself, and yet they serve our understanding.

The system must interact with itself. SS is just the simplest symbolic expression of
this action. Wittgenstein [15] says that a sign is that part of the symbol that is available to
the senses. Here we see the relation of the observer and the world, meeting at the nexus of
sign and symbol. Here we verge on ontopoiesis [16].

In mathematics proper, we see that it is often the case that assuming a reflexive
correspondence asks many systems to go beyond their usual boundaries. We are very
familiar with our own participatory stance. We make boundaries to avoid what would
appear to be logical contradictions. The very fact that, in order to separate and reason about
a mathematical object, we succeed in isolating it from being fully in a reflexive domain
makes certain aspects of our understanding more mysterious than need be. It is hoped that
the story of structures emerging from a molecular substrate can be used to reorient our
vision for much of science, biology, language and mathematics.

7. Fixed Points, Fractals and Describing

The fixed point is a point of self-assembly of a form or organism.
It is useful to see examples of this and to see how the unfolding of a complex form can

be encoded in the simplicity of a fixed point for a transformation.
We can view a fixed point as the summary of a recursion.
Thus, if we write

J = {{{{{. . .}}}}},

then it is apparent that J = {J}. The fixed point property is a description of the way in which
J is seen to reenter its own indicational space. This is a description from the point of view
of an observer.

Thus, we may examine the Koch fractal, as in Figure 8, and see that Koch appears as
four reduced copies of itself within itself. We may write an abstract schema such as

K = {K{KK}K}

to indicate how two of the copies are above the baseline for the other two.

Computation 2023, 11, 247 21 of 31Computation 2023, 11, x FOR PEER REVIEW 22 of 33

Figure 8. Koch fractal.

In the case of the Koch fractal, observation leading to the description of its reentry is
quite different from the production at the coded or symbolic level of the fixed point. Yet
these operations are dual. We can describe the Koch fractal by the recursion that gener-
ates it. The coded language that we use arises from the recursive dynamics of the systems
that we are.

Another example of description in relation to recursion is the Mark [4] fractal of
Figure 9. Here, the final fractal can be seen to consist of two reduced copies of itself at
ninety degree angles to one another (i.e., one is rotated ninety degrees to the other). The
two copies overlap, and so it takes a special observation to see this pattern. The sequences
of recursions that yield that fractal all proceed by replacing segments by two segments at
ninety degrees to one another, with endpoints at the same positions as the original seg-
ments.

Figure 8. Koch fractal.

In the case of the Koch fractal, observation leading to the description of its reentry is
quite different from the production at the coded or symbolic level of the fixed point. Yet
these operations are dual. We can describe the Koch fractal by the recursion that generates
it. The coded language that we use arises from the recursive dynamics of the systems that
we are.

Another example of description in relation to recursion is the Mark [4] fractal of
Figure 9. Here, the final fractal can be seen to consist of two reduced copies of itself
at ninety degree angles to one another (i.e., one is rotated ninety degrees to the other).
The two copies overlap, and so it takes a special observation to see this pattern. The
sequences of recursions that yield that fractal all proceed by replacing segments by two
segments at ninety degrees to one another, with endpoints at the same positions as the
original segments.

Computation 2023, 11, x FOR PEER REVIEW 23 of 33

(a) (b)

Figure 9. (a) Mark fractal recursion pattern. (b) The Mark fractal.

The diagrammatic formula in Figure 9a is an abstract description of this fixed point.
It requires the actual playing out of the recursion, as in Figure 9b, to see the complexity
and beauty of the final form that is implicate in the order indicated by the fixed point.

In Figure 10, we illustrate three sequences, A, B, C, such that, with certain conven-
tions, C describes B, B describes A and A describes C. The convention for description is
like this: if we have a sequence, such as 1112331, then its description is “three ones, one
two, two threes, one one.” And then we transcribe this description into a sequence of
digits by replacing number words by the corresponding digits, and removing the com-
mas and punctuation. Thus the coded description is 31122311. It is in this sense that the
three sequences, A, B, C, describe one another. At this point, the reader may like to ex-
amine Figure 10 carefully, and see that our claims are true. It is, of course, of interest to
find out how to produce the sequences and to see that they can be extended as far as one
likes.

Figure 9. (a) Mark fractal recursion pattern. (b) The Mark fractal.

Computation 2023, 11, 247 22 of 31

The diagrammatic formula in Figure 9a is an abstract description of this fixed point. It
requires the actual playing out of the recursion, as in Figure 9b, to see the complexity and
beauty of the final form that is implicate in the order indicated by the fixed point.

In Figure 10, we illustrate three sequences, A, B, C, such that, with certain conventions,
C describes B, B describes A and A describes C. The convention for description is like
this: if we have a sequence, such as 1112331, then its description is “three ones, one two,
two threes, one one.” And then we transcribe this description into a sequence of digits
by replacing number words by the corresponding digits, and removing the commas and
punctuation. Thus the coded description is 31122311. It is in this sense that the three
sequences, A, B, C, describe one another. At this point, the reader may like to examine
Figure 10 carefully, and see that our claims are true. It is, of course, of interest to find out
how to produce the sequences and to see that they can be extended as far as one likes.

Computation 2023, 11, x FOR PEER REVIEW 24 of 33

Figure 10. Describing describing.

Note that one can start with something very simple and make a sequence of de-
scriptions. For example, if we start with 1, then we find 1 11 21 1211 111221 312211 13112221 1113213211 …

This is sometimes called the “look and say” sequence. It was studied by John Horton
Conway [17]. Conway tells the story that he was given the sequence as a puzzle (find the
next row) at a party and that he did not solve it! Upon being told the solution, he was so
fascinated that he worked out a great deal of structure about this recursion, resulting in
the research paper we have mentioned. It is remarkable how much complexity can arise
in the process of successive description.

You can notice that if we take 3 as the initial element to be described, then Row_{n +
3} is an exact extension of Row_{n}, where Row_{n} denotes the n-th row in the sequence.
Here is this look and say sequence below, starting with 3. 3 13 1113 3113 132113 1113122113 311311222113 13211321322113 1113122113121113222113 …

Figure 10. Describing describing.

Note that one can start with something very simple and make a sequence of descrip-
tions. For example, if we start with 1, then we find

1
11
21

1211
111221
312211

13112221
1113213211

. . .

This is sometimes called the “look and say” sequence. It was studied by John Horton
Conway [17]. Conway tells the story that he was given the sequence as a puzzle (find the
next row) at a party and that he did not solve it! Upon being told the solution, he was so
fascinated that he worked out a great deal of structure about this recursion, resulting in the
research paper we have mentioned. It is remarkable how much complexity can arise in the
process of successive description.

Computation 2023, 11, 247 23 of 31

You can notice that if we take 3 as the initial element to be described, then Row_{n + 3}
is an exact extension of Row_{n}, where Row_{n} denotes the n-th row in the sequence.
Here is this look and say sequence below, starting with 3.

3
13

1113
3113

132113
1113122113

311311222113
13211321322113

1113122113121113222113
. . .

The sequence uses only the digits 1, 2 and 3. We can construct A, B, C by extending
the first three rows by using later rows. Thus we start with

3
13

1113

and extend to
3113

132113
1113122113

and then extend this to
311311222113

13211321322113
1113122113121113222113

and continue in this fashion.
With that idea in mind, we see the following pattern:

3.
13.

1113.

Then go back to the top and extend it so that it defines the third row.
Extend the second row to describe the first row and extend the third row to describe

the second row. I have put periods in the sequences to show the new additions to the rows.

3.113.
13.2113.

1113.122113.

Now go back to the top and continue.

3.113.11222113.
13.2113.21322113.

1113.122113.121113222113.

As you can see, the very first period placement, 3.113, is to be read “three ones,
one three.” After that, we write descriptions of each packet as it comes down. Thus, the
description of 3.113. is 13.2113.

We can now continue this process as far as we like.

Computation 2023, 11, 247 24 of 31

We can symbolize it as
3 = X

13 = DX
1113 = D2X

where DX denotes “the description of X”.
If we let 3.113 = 3 “+” 113 = X + Y, then we see that we have

D3X = 3113 = 3.113 = X + Y.

Our process takes the form

A = X + Y + D3Y + D6Y + D9Y + . . .

B = DX + DY + D4Y + D7Y + D10Y + . . .

C = D2X + D2Y + D5Y + D8Y + D11Y + . . .

And we see that DA = B, DB = C and DC = A. This works because D3X = X + Y. We see
that it is because D3 3 = 3113 that the entire A, B, C structure arises. With that beginning,
the sequences A, B, C assemble themselves via the recursion and produce the three-fold
fixed point (A, B, C) for the transformation

T(R, S, U) = (DU, DR, DS) so that T(A, B, C) = (DC, DA, DB) = (A, B, C).

The way in which this fixed point assembles itself depends on the particular properties
of the forms of description. It is striking that the exact forms of the infinite sequences arise
from a simple recursive process.

The simplest question in this context is the problem:

Find a string S so that DS = S.

“Two twos” describes itself. Thus, D(22) = 22.
The look and say sequences have extraordinary complexities, and in the quiet center

of all of that sits the sequence 22, a fixed point of the process of description.

8. Recursive Distinctions

Here we describe another version of distinguishing and describing where the alphabets
that are generated only indicate states of difference or sameness in rows of characters [18].

I will use a minimal alphabet, where * indicates that the characters on either side of a
given character are different. Thus, if we have ABC, then B is described by *.

I use] to indicate that the left character is equal but the right character is not equal.
Thus, in BBC, the middle B is described by].
I use [to indicate that the right character is equal to the middle, but the left character

is not equal. Thus, in ABB, the middle B is described by [.
Finally, if both characters are equal to the one in the middle, I use an empty character to

describe the middle. Thus, in BBB, the middle character is described by an empty character.
Now, if you start with a row of characters, you can replace it by their descriptive

characters. This is again a row of characters, and so the game can continue recursively.
For example, suppose we start with the sequence . . .BBBBBBABBBBBB. . .
Then we will find the replacement, as shown below.

. . .BBBBBBABBBBBB. . .
. . .]*[. . .

Note the appearance of the blank characters. Doing this twice more, we see
the following.

. . .BBBBBBABBBBBB. . .

Computation 2023, 11, 247 25 of 31

. . .]*[. . .

. . .]***[. . .

. . .]*[]*[. . .

At the first description, a protocell in the form]*[appears where the boundaries of the
cell denote the places of partial difference in the initial character string. The next description
opens up the protocell with more indication of difference in its interior. And the next
description sees two partial difference characters appear from the environment, and a blank
character appears, yielding two protocells. The original protocell has undergone mitosis!
Thus, this recursive distinction process has produced a protocell and then witnessed its
reproduction. There is clearly a dialogue in this process between sameness and difference,
with the appearance of the partial difference characters marking the boundaries in this
process. Here we have an example of elementary dialectics arising from a process of
recursive distinction. The analogy of this process with our abstract description of DNA
reproduction should be clear. In that process, we had the DNA as a composite of the Watson
and Crick strands (analogs of the left and right characters). The Watson and Crick strands
are separated in the environment, and then the environment conspires to replace new Crick
and Watson strands to form the two new DNA structures. Our diagrammatic for this has
the form

DNA

<W|C>

<W| Environment |C>

<W|C> <W|C>

DNA DNA

The formal analogy with the recursive distinguishing process is remarkable.
Figure 11 shows how the recursive distinguishing process continues.

Computation 2023, 11, x FOR PEER REVIEW 27 of 33

replace new Crick and Watson strands to form the two new DNA structures. Our dia-
grammatic for this has the form DNA <W|C> <W| Environment |C> <W|C> <W|C> DNA DNA

The formal analogy with the recursive distinguishing process is remarkable.
Figure 11 shows how the recursive distinguishing process continues.

Figure 11. RD pattern.

After the first protocell division, there is a separation with a wider environment.
Then another production of two cells. Then, in two steps, four cells are produced.
These join and then there will be eight cells, and so on.
What are we to make of this recursive distinguishing structure?
We see self-assembly and reproduction starting from only the situation of characters

that indicate distinctions between adjacent characters. The notion of adjacency is more
general than the representation of characters in a linear array, but the use of the linear
array allows an elementary demonstration of the principle. In principle, one can imagine
a network of entities with a concept of adjacency among them (a graphical network, for
example), and recursively these entities are replaced by “letters” that describe the dis-
tinction or lack of distinction in their adjacency relations. The recursion goes from one
network of entities to the next, with each successive network a description of the previ-
ous network.

9. Cellular Automata
In this section, we discuss cellular automata in the light of autopoiesis. In a cellular

automaton there is no fixed number of particles. The background changes synchronously
(all at once) and has rules for creation and destruction of particles on the lattice of a
board, B. With this choice of background, it is the rules that make all the difference. In
this sense, the rules of the automaton are the environment for its productions. If X is the
state of the cellular automaton board at the beginning, and R stands for the rules, we can
write RX for the new board after the rules have been applied. Then we have a sequence of

Figure 11. RD pattern.

After the first protocell division, there is a separation with a wider environment.
Then another production of two cells. Then, in two steps, four cells are produced.
These join and then there will be eight cells, and so on.

Computation 2023, 11, 247 26 of 31

What are we to make of this recursive distinguishing structure?
We see self-assembly and reproduction starting from only the situation of characters

that indicate distinctions between adjacent characters. The notion of adjacency is more
general than the representation of characters in a linear array, but the use of the linear
array allows an elementary demonstration of the principle. In principle, one can imagine
a network of entities with a concept of adjacency among them (a graphical network, for
example), and recursively these entities are replaced by “letters” that describe the distinction
or lack of distinction in their adjacency relations. The recursion goes from one network of
entities to the next, with each successive network a description of the previous network.

9. Cellular Automata

In this section, we discuss cellular automata in the light of autopoiesis. In a cellular
automaton there is no fixed number of particles. The background changes synchronously
(all at once) and has rules for creation and destruction of particles on the lattice of a board,
B. With this choice of background, it is the rules that make all the difference. In this sense,
the rules of the automaton are the environment for its productions. If X is the state of the
cellular automaton board at the beginning, and R stands for the rules, we can write RX for
the new board after the rules have been applied. Then we have a sequence of boards: B, RX,
RRX, RRRX, and so on. It is the pattern and evolution of these boards that is our concern.
From a mathematical point of view, we are studying the recursion

Xn = Rn (X).

In this section, we illustrate aspects of autopoiesis, replication and self-assembly
associated with cellular automata.

The rule of HighLife, a variant of Conway Life, is B36/S23. This means that we work
on a rectangular grid, and a square on that grid is said to be ‘alive’ if it is colored white
and ‘dead’ if it is colored black. The rule says that a square can give birth if it has either
3 neighbors or 6 neighbors (the total number of neighbors of a given square is 8). In order
to survive, a white square has to have either 2 or 3 neighbors. These rules are followed
sequentially, where the contents of the entire board are changed according to the rules. This
means that one checks each square for birth or death and then simultaneously converts all
the squares at once.

We begin this section with HighLife because it has a “replicator” that has the same
pattern as the sequence of productions of protocells in the recursive distinctions of the
previous section. See Figure 12 for an illustration. The details of the pattern in HighLife are
more complex than in the recursive distinguisher. It would be an interesting and significant
project to analyze the relationships between these two recursions.

Computation 2023, 11, x FOR PEER REVIEW 28 of 33

boards: B, RX, RRX, RRRX, and so on. It is the pattern and evolution of these boards that
is our concern. From a mathematical point of view, we are studying the recursion

Xn = Rn (X).

In this section, we illustrate aspects of autopoiesis, replication and self-assembly
associated with cellular automata.

The rule of HighLife, a variant of Conway Life, is B36/S23. This means that we work
on a rectangular grid, and a square on that grid is said to be ‘alive� if it is colored white
and ‘dead� if it is colored black. The rule says that a square can give birth if it has either 3
neighbors or 6 neighbors (the total number of neighbors of a given square is 8). In order
to survive, a white square has to have either 2 or 3 neighbors. These rules are followed
sequentially, where the contents of the entire board are changed according to the rules.
This means that one checks each square for birth or death and then simultaneously con-
verts all the squares at once.

We begin this section with HighLife because it has a “replicator” that has the same
pattern as the sequence of productions of protocells in the recursive distinctions of the
previous section. See Figure 12 for an illustration. The details of the pattern in HighLife
are more complex than in the recursive distinguisher. It would be an interesting and sig-
nificant project to analyze the relationships between these two recursions.

Figure 12. HighLife replicator.

In the rest of this section, we work with a variant of Conway Life that I call Life7.
The rule for Life7 is B37/S23. This differs from Conway Life, where the rule is

B3/S23.
In Conway Life, a prolixity of patterns are produced, but most configurations settle

down to oscillatory states. In Life7, the productions are more volatile and configurations
often grow without bounds.

Note that in the MUV model we used an asynchronous environment. In the cellular
automaton, ‘particles� (the white squares) are created and destroyed according to the
rules. In the MUV model, particles move about and can link up with one another.

Within each board, the observer finds patterns and organizes them into descriptions
of interactions related to the recursive evolution of these forms. While the substrate is
different from the MUV model, the observational process is very similar.

In Figure 13, we see a configuration of 5 points (I will refer to white squares as
points) that is called a glider. When the recursion is applied twice, the glider is trans-
formed into a mirror image version of itself, and in two applications of the recursion the
glider is transformed into a copy of itself that is shifted diagonally down the board by one
vertical step and one horizontal step. Thus, the glider reproduces itself and “moves”
down the board.

Figure 12. HighLife replicator.

In the rest of this section, we work with a variant of Conway Life that I call Life7.
The rule for Life7 is B37/S23. This differs from Conway Life, where the rule is B3/S23.

Computation 2023, 11, 247 27 of 31

In Conway Life, a prolixity of patterns are produced, but most configurations settle
down to oscillatory states. In Life7, the productions are more volatile and configurations
often grow without bounds.

Note that in the MUV model we used an asynchronous environment. In the cellular
automaton, ‘particles’ (the white squares) are created and destroyed according to the rules.
In the MUV model, particles move about and can link up with one another.

Within each board, the observer finds patterns and organizes them into descriptions
of interactions related to the recursive evolution of these forms. While the substrate is
different from the MUV model, the observational process is very similar.

In Figure 13, we see a configuration of 5 points (I will refer to white squares as points)
that is called a glider. When the recursion is applied twice, the glider is transformed
into a mirror image version of itself, and in two applications of the recursion the glider
is transformed into a copy of itself that is shifted diagonally down the board by one
vertical step and one horizontal step. Thus, the glider reproduces itself and “moves” down
the board.

Computation 2023, 11, x FOR PEER REVIEW 29 of 33

Figure 13. A glider in Life7.

In Figure 14, I illustrate an entity that I call the rotor. The rotor after 10 steps turns by
90 degrees (going through different intermediate forms). After 40 steps, the rotor returns
to its original position. The rotor is a very rare configuration. The glider is highly likely to
appear from any random starting configuration.

Figure 14. The rotor in Life7.

In Figure 15, we show at the top a mirrored pair of entities. After ten steps (iterations
of the recursion), the mirrored pair reappears in mirrored form, with created material to
its left. After 20 steps, the mirrored pair reappears in its original form, trailed by even
more new material. This generation process continues unheeded, apparently forever on a
sufficiently large board. The mirror pair is robust in terms of its own production and also
occurs (with low probability) on the boards of its own accord.

Figure 15. Mirrored generator pair in Life7.

In Figure 16, we illustrate a configuration that started from a smaller and randomly
chosen beginning. It has now evolved to the point where this observer judges that it will
continue to live and grow. Note the glider that has emanated in the upper right.

Figure 13. A glider in Life7.

In Figure 14, I illustrate an entity that I call the rotor. The rotor after 10 steps turns by
90 degrees (going through different intermediate forms). After 40 steps, the rotor returns to
its original position. The rotor is a very rare configuration. The glider is highly likely to
appear from any random starting configuration.

Computation 2023, 11, x FOR PEER REVIEW 29 of 33

Figure 13. A glider in Life7.

In Figure 14, I illustrate an entity that I call the rotor. The rotor after 10 steps turns by
90 degrees (going through different intermediate forms). After 40 steps, the rotor returns
to its original position. The rotor is a very rare configuration. The glider is highly likely to
appear from any random starting configuration.

Figure 14. The rotor in Life7.

In Figure 15, we show at the top a mirrored pair of entities. After ten steps (iterations
of the recursion), the mirrored pair reappears in mirrored form, with created material to
its left. After 20 steps, the mirrored pair reappears in its original form, trailed by even
more new material. This generation process continues unheeded, apparently forever on a
sufficiently large board. The mirror pair is robust in terms of its own production and also
occurs (with low probability) on the boards of its own accord.

Figure 15. Mirrored generator pair in Life7.

In Figure 16, we illustrate a configuration that started from a smaller and randomly
chosen beginning. It has now evolved to the point where this observer judges that it will
continue to live and grow. Note the glider that has emanated in the upper right.

Figure 14. The rotor in Life7.

In Figure 15, we show at the top a mirrored pair of entities. After ten steps (iterations
of the recursion), the mirrored pair reappears in mirrored form, with created material to
its left. After 20 steps, the mirrored pair reappears in its original form, trailed by even
more new material. This generation process continues unheeded, apparently forever on a
sufficiently large board. The mirror pair is robust in terms of its own production and also
occurs (with low probability) on the boards of its own accord.

In Figure 16, we illustrate a configuration that started from a smaller and randomly
chosen beginning. It has now evolved to the point where this observer judges that it will
continue to live and grow. Note the glider that has emanated in the upper right.

Computation 2023, 11, 247 28 of 31

Computation 2023, 11, x FOR PEER REVIEW 29 of 33

Figure 13. A glider in Life7.

In Figure 14, I illustrate an entity that I call the rotor. The rotor after 10 steps turns by
90 degrees (going through different intermediate forms). After 40 steps, the rotor returns
to its original position. The rotor is a very rare configuration. The glider is highly likely to
appear from any random starting configuration.

Figure 14. The rotor in Life7.

In Figure 15, we show at the top a mirrored pair of entities. After ten steps (iterations
of the recursion), the mirrored pair reappears in mirrored form, with created material to
its left. After 20 steps, the mirrored pair reappears in its original form, trailed by even
more new material. This generation process continues unheeded, apparently forever on a
sufficiently large board. The mirror pair is robust in terms of its own production and also
occurs (with low probability) on the boards of its own accord.

Figure 15. Mirrored generator pair in Life7.

In Figure 16, we illustrate a configuration that started from a smaller and randomly
chosen beginning. It has now evolved to the point where this observer judges that it will
continue to live and grow. Note the glider that has emanated in the upper right.

Figure 15. Mirrored generator pair in Life7.
Computation 2023, 11, x FOR PEER REVIEW 30 of 33

Figure 16. A living configuration in Life7.

One can carry out the experiment and see that, indeed, this configuration continues
to live and grow. At this point, it would be appropriate to call it autopoietic, as its “life” is
not affected by small perturbations (adding or removing some points).

Note that the configurations in Figure 16 appear to have a number of clusters that
can be regarded as protocells. These clusters change shape and are seen to interact with
one another as the recursion goes forward. They coalesce, emit gliders and generally
engage in complex dynamics. One can experiment with the dynamics by changing the
rules. For example, Conway Life has rule B3/S23. If we remove the rule of (born on) 7 in
Life7, we obtain Conway Life. Then a configuration such as the above will lose its dy-
namism and become a collection of separate small entities that are either unchanging or
periodic.

Life7 affords the possibility of (generalized) autopoiesis by the dynamics that are
added through the rule that gives birth on 7 neighbors. In this dynamic, one observes
local structures that interact with one another and a global structure that is relatively
impervious to perturbation. The reasons why the larger structure is maintaining its form
are no longer obvious just from the base rules. More work is needed to understand how
autopoiesis has been achieved.

More generally, we ask the question: How is autopoiesis achieved in cellular auto-
matic systems? Such systems are characterized in our modeling by a recursive rule, R,
that takes boards B to boards RB. The rules for evolution create many local changes in the
board but the rules can be described very simply, just as we have described Life7 by the
rule B37/S23.

Autopoiesis is a condition that can be assessed by an observer of the boards. The
observer notes that a pattern on the board is persisting across intervals of time and judges
that this pattern is an intrinsic property of the dynamics of the boards. Note that, without
observers, these recursive systems would not be interpreted via the concepts of internal
dynamics and autopoiesis.

The observer of the cellular automaton is involved in making discriminations at
multiple levels. On the one hand, the observer is aware of the global recursion and is

Figure 16. A living configuration in Life7.

One can carry out the experiment and see that, indeed, this configuration continues to
live and grow. At this point, it would be appropriate to call it autopoietic, as its “life” is not
affected by small perturbations (adding or removing some points).

Computation 2023, 11, 247 29 of 31

Note that the configurations in Figure 16 appear to have a number of clusters that can
be regarded as protocells. These clusters change shape and are seen to interact with one
another as the recursion goes forward. They coalesce, emit gliders and generally engage
in complex dynamics. One can experiment with the dynamics by changing the rules. For
example, Conway Life has rule B3/S23. If we remove the rule of (born on) 7 in Life7, we
obtain Conway Life. Then a configuration such as the above will lose its dynamism and
become a collection of separate small entities that are either unchanging or periodic.

Life7 affords the possibility of (generalized) autopoiesis by the dynamics that are
added through the rule that gives birth on 7 neighbors. In this dynamic, one observes local
structures that interact with one another and a global structure that is relatively impervious
to perturbation. The reasons why the larger structure is maintaining its form are no longer
obvious just from the base rules. More work is needed to understand how autopoiesis has
been achieved.

More generally, we ask the question: How is autopoiesis achieved in cellular automatic
systems? Such systems are characterized in our modeling by a recursive rule, R, that takes
boards B to boards RB. The rules for evolution create many local changes in the board but
the rules can be described very simply, just as we have described Life7 by the rule B37/S23.

Autopoiesis is a condition that can be assessed by an observer of the boards. The
observer notes that a pattern on the board is persisting across intervals of time and judges
that this pattern is an intrinsic property of the dynamics of the boards. Note that, without
observers, these recursive systems would not be interpreted via the concepts of internal
dynamics and autopoiesis.

The observer of the cellular automaton is involved in making discriminations at
multiple levels. On the one hand, the observer is aware of the global recursion and is aware
of its definition. On the other hand, the observer sees a nearly fractal array of substructures
and sub-recursions in action as the boards are surveyed. This double level is analogous to
that of a molecular biologist who is aware on the one hand of the complex chemistry that
drives the dynamics of organisms, and is also aware on the other hand of the self-sustaining
nature of the complex of interactions that constitute the existence of living things.

Eigenforms appear via the interaction of the observer and the board.
Thus, we have the situation of a recursion going on, RnX = Xn, and observers noting

how entities and patterns occur on the board. Observers can intervene by finding new
initial states and combinations.

Eigenforms in this discussion are not just fixed points. They are fixed points for some
levels of observation. In this way, objects become identified as tokens for eigenbehaviors
(von Foerster 2002).

In observing recursive systems, one is continually confronted with the possibility
that the algorithms will or will not halt. The observer can contemplate questions of
computational decidability and computational undecidability in the context of recursive
autopoiesis. In observing the dynamics of a cellular automaton, like Life7, one sees the
evolution of the large-scale structure in terms of the interactions of its parts. These parts,
like the protocells in the MUV model, have independent action and they can interact with
one another. One can investigate those parts just as we investigated the glider, the rotor
and the large board configurations. One finds that the parts are continually constructed
and reconstructed from the substrate of the board and the recursive rules. By looking at
autopoiesis in this way, we open the door to the vastness of the whole structure of recursion
as a generator of process, dynamics and the forms of the living.

10. Summary

We began with the MUV model for autopoiesis, pointing out that the state of au-
topoiesis can be regarded as an eigenform that is a stability for an observer of the system
and a stability for the system itself when this can be defined. We raise the question of
understanding the relationship in autopoiesis of the observer and the observed. We extend
this discussion by using the concept of eigenforms, and we suggest that autopoiesis can be

Computation 2023, 11, 247 30 of 31

generalized to include stabilities for an observer of a general recursive system, including
the observation of cellular automata. The paper includes an exposition of the properties
of Life7, a relative of the Game of Life of John Horton Conway. Life7 has the property
that many starting configurations yield dynamically stable configurations in the eye of
the beholder. We see that autopoiesis, in this generalized sense, can be observed in the
successive boards of a recursion, in an unlimited sequence of recursive forms.

In the end, it is not surprising that recursions and fixed points are seen to be funda-
mental to biological observation. DNA reproduces by the structure of its own self-reference.
The MUV model of autopoiesis must act on itself and achieve a fixed point, SS = F(SS).

We have the general fixed point obtained from gx = F(xx), giving gg = F(gg). Variants
of this fixed point construction include the Kleene fixed point theorem and the Goedelian
sentence: g→~B(uu) yielding gg→~B(gg), whereupon the system has a sentence that
states its own unprovability. That sentence, ~B(gg), constructs its own meta-assertion. The
building machine inherits its pattern from the fixed point construction as well: B,x→B,x
X,x whence B,b→B,b B,b.

Anything that ‘returns to itself’ is a fixed point, just as anything that returns the
negation of itself is a ‘paradox’. Recall also now that DNA does not just reproduce itself, it
also produces RNA by controlled enzyme action, and the RNA participates in production
of protein in the cell. So the DNA as a fixed point, as self-replicating, is also productive and
uses its code for much more than self-replication.

It is in studying the actual contexts of recursions such as cellular automata that we see
such intricacies happen as a consequence of geometry of computational space interacting
with rule structures. Thus, gliders appear in the Life automata, and these gliders both move
and reproduce themselves. The emergence of forms under recursion has been a theme
of this paper and it is part and parcel of the structure of all systems that involve process,
biological, linguistic and mathematical.

We end with references to other literature on autopoiesis that also starts in simplicity
and extends the ideas in many directions. The paper by Rao Mikkilineni [19] faces the
questions: How did intelligence evolve? What is the relationship between mind and body?
Therefore, it asks the questions about how simple autopoiesis can evolve to become complex
living structures. We ask these same questions. It is worth continuing the exploration in the
direction of understanding complex structures. The paper by Stuart Kauffman [20] suggests
autocatalysis as the basis of the evolutionary structure of molecular biology. Here, there
is the direct suggestion that a form of autopoiesis is fundamental to biological evolution.
Furthermore, the full work of Stuart Kauffman is highly relevant to the present discussion,
as he is concerned with how mechanisms arise in the development of biology and how
these mechanisms often participate in many inter-connected roles. Such structuring goes
beyond the 18th and 19th century ideals of predictive mathematics, but is not beyond the
more architectural work of studying formal systems, recursions and cellular automata that
we have described here. Thus, there is potential for the present work to contribute to these
ideas about the evolution of multiple roles.

Mathematics, topology recursion and graph theory can come together in interdis-
ciplinary studies such as [21], This sort of work relating molecular biology, non-locality,
music and poetry finds its fulcrum in the formal mathematics that we have used to examine
autopoiesis. We can expect new ideas about the fundamental questions of evolution of
structure to emerge from this kind of approach.

Finally, we mention the concept of ontopoiesis [16], a philosophical concept that
involves the communicative engagement of self with the world and the world with the
self. Ontopoetics is a view of reality and understanding of the world as a communicative
whole. Just as in our concerns with distinction and recursion, we have seen that systems
arise from wholes by dividing into a part that sees and a part that is seen. How autonomy
and autopoiesis, or indeed poiesis, are described depend crucially on this opening of a
world observed and a world that acts to observe. Autopoiesis is enfolded in ontopoiesis in
the creation of the universe from itself.

Computation 2023, 11, 247 31 of 31

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Maturana, U.; Uribe, R.; Varela, F. Autopoiesis: The Organization of Living Systems, Its Characterization and a Model. Biosystems

1974, 5, 187–196.
2. Kauffman, L.H. Eigenform. In Kybernetes; Emerald Group Publishing Limited: Bingley, UK, 2005; Volume 34, pp. 129–150,

No. 1/2.
3. von Foerster, H. Objects—Tokens for (eigen) behaviours. In Understanding Understanding; Springer Publishing Company: New

York, NY, USA; Berlin/Heidelberg, Germany, 2002; pp. 261–272.
4. Spencer-Brown, G. Laws of Form; George Allen and Unwin Ltd.: London, UK, 1969.
5. Kauffman, L.H. Laws of Form, a survey of ideas. In Laws of Form—A Fiftieth Anniversary; Kauffman, L.H., Cummins, F., Dible, R.,

Conrad, L., Ellsbury, G., Crompton, A., Grote, F., Eds.; Series on Knots and Everything; World Scientific Pub Co.: Singapore, 2022;
Volume 72, pp. 1–88.

6. Scott, D. Continous Lattices; Springer Lecture Notes in Mathematics; Springer: New York, NY, USA, 1972; Volume 274.
7. Varela, F.J. Principles of Biological Autonomy; The North Holland Series in General Systems Research; Klir, G., Ed.; Elsevier North

Holland Pub.: New York, NY, USA, 1979.
8. Varela, F.J.; Goguen, J.A. The arithmetic of closure. J. Cybern. 1978, 8, 291–324. [CrossRef]
9. Kauffman, L.H.; Varela, F.J. Form dynamics. J. Soc. Bio. Strs. 1980, 3, 171–206. [CrossRef]
10. Barendregt, H. The Lambda Calculus—Its Syntax and Semantics; North Holland Pub.: Amsterdam, The Netherlands, 1984; 642p.
11. Kauffman, L.H. Biologic. In AMS Contemporary Mathematics Series; Northeastern University: Boston, MA, USA, 2002; Volume 304,

pp. 313–340.
12. Nagel, E.; Newman, J.R. Goedel’s Proof ; New York University Press: New York, NY, USA; London, UK, 2001.
13. Markose, S.M. Genomic Intelligence as Über Bio-Cybersecurity: The Gödel Sentence in Immuno-Cognitive Systems. Entropy 2021,

23, 405. [CrossRef] [PubMed]
14. Machtey, M.; Young, P. An Introduction to the General Theory of Algorithms; North Holland: New York, NY, USA, 1978.
15. Wittgenstein, L. Tractatus Logico-Phiolsophicus; Routledge and Kegan Paul Ltd.: London, UK; New York, NY, USA, 1922.
16. Tymieniecka, A.-T. Imaginatio Creatrix: The Pivotal Force of the Genesis/Ontopoiesis of Human Life and Reality; Springer Science &

Business Media: Dordrecht, The Netherlands, 2004.
17. Conway, J.H. The weird and wonderful chemistry of audioactive decay. In Open Problems in Communication and Computation;

Cover, T.M., Gopinath, B., Eds.; Springer: New York, NY, USA, 1987; pp. 173–188.
18. Isaacson, J.D. Autonomic String-Manipulation System. U.S. Patent No. 4,286,330, 25 August 1981. Available online: https:

//www.isss.org/2001meet/2001paper/4286330.pdf (accessed on 1 November 2023).
19. Mikkilineni, R. A new class of autopoetic and cognitive machines. Information 2022, 13, 24. [CrossRef]
20. Kauffman, S. Autocatalytic sets of proteins. J. Theor. Biol. 1986, 119, 1–24. [CrossRef]
21. Planat, M.; Aschheim, R.; Amaral, M.M.; Fang, F.; Irwin, K. Graph coverings for investigating non local structures in proteins

music and poems. Sci 2021, 3, 39. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/01969727808927587
https://doi.org/10.1016/0140-1750(80)90008-1
https://doi.org/10.3390/e23040405
https://www.ncbi.nlm.nih.gov/pubmed/33805411
https://www.isss.org/2001meet/2001paper/4286330.pdf
https://www.isss.org/2001meet/2001paper/4286330.pdf
https://doi.org/10.3390/info13010024
https://doi.org/10.1016/S0022-5193(86)80047-9
https://doi.org/10.3390/sci3040039

	Introduction
	Autopoiesis and Eigenforms
	Producing an Eigenform
	Catalytic Eigenforms

	Self-Replication
	Reflexive Domains and Fixed Point Theorems
	Decorating the Fixed Point Theorem
	Algorithms and Exiting the Box
	Fixed Points, Fractals and Describing
	Recursive Distinctions
	Cellular Automata
	Summary
	References

