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Abstract: Stochastic circuits are used in applications that require low area and power consumption.
The computing performed using these circuits is referred to as Stochastic computing (SC). The arith-
metic operations in this computing can be realized using minimum logic circuits. The SC system
allows a tradeoff of computational accuracy and area; thereby, the challenge in SC is improving the
accuracy. The accuracy depends on the SC system’s stochastic number generator (SNG) part. SNGs
provide the appropriate stochastic input required for stochastic computation. Hence we explore the
accuracy in SC for various arithmetic operations performed using stochastic computing with the help
of logic circuits. The contributions in this paper are; first, we have performed stochastic computing for
arithmetic components using two different SNGs. The SNGs considered are Linear Feed-back Shift
Register (LFSR) -based traditional stochastic number generators and S-box-based stochastic number
generators. Second, the arithmetic components are implemented in a combinational circuit for alge-
braic expression in the stochastic domain using two different SNGs. Third, computational analysis for
stochastic arithmetic components and the stochastic algebraic equation has been conducted. Finally,
accuracy analysis and measurement are performed between LFSR-based computation and S-box-
based computation. The novel aspect of this work is the use of S-box-based SNG in the development
of stochastic computing in arithmetic components. Also, the implementation of stochastic computing
in the combinational circuit using the developed basic arithmetic components, and exploration of
accuracy with respect to stochastic number generators used is presented.

Keywords: stochastic number generation; computing; arithmetic; accuracy; stochastic combinational
circuit; error analysis; VLSI design

1. Introduction

Stochastic Computing (SC) is a new computing paradigm that has evolved as an
alternative computing system that saves power and area consumption. In this type of
computing, data are represented in terms of the probabilistic appearances of zeros and ones
in a bit stream, referred to as stochastic number [1]. SC numbers are generally represented
in unipolar, bipolar or inverted bipolar formats [2]. In this work, the unipolar format has
been used because it simplifies the hardware implementation of stochastic computing
circuits and typically utilizes fewer transistors leading to low power consumption. SC
computation reduces processing time, memory requirement and the challenges of complex
intensive computations when compared to conventional computing [3]. SC has been used
for developing retiming signal processing filters using high level synthesis [4]. Lee et.al put
forth possible hardware utilization of SC networks and a methodology for implementing
an SC-based CNN using AI-based applications [5].

The design of the SC system comprises three blocks; the first block is the input to the
stochastic system, termed as stochastic number generator (SNG), which converts a binary
input to a stochastic bit stream; the second block is the stochastic computing core and
SC-based design units required to build the SC system that performs stochastic operations
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of the function required; the final block is the stochastic-to-binary converter to obtain the
output in the binary form.

A new redundancy strategy based on approximate computing adder has been de-
veloped with a greater error-tolerance enabling an acceptable output quality that is an
essential requirement in safety-critical case applications. Arithmetic functions with varying
significance attached to their output bits are implemented and find varied applications that
are inherently error-tolerant and that require higher reliability as safety-critical applications
like space. These applications are digital signal processing, neuromorphic computing, big
data mining, low-power graphics processing. Digital image, video, and audio processing
are more error-tolerant since minor variations in an image or video frames or a feeble
noise in audio may not be recognized by users due to human perception [6]. Although an
SC-based computation saves in energy/power/area in terms of resources and computation
time, the same is achieved with a trade off of accuracy.

The important parameter of efficiency is determined by the accuracy and is measured
here in this work in terms of mean square error (MSE). This paper presents the accuracy
analysis of basic arithmetic components implemented using two different stochastic number
generators. Also, important SC-based designs have been implemented and followed up
by analyzing and tabulating the results of accuracy in terms of MSE as the parameter of
efficiency of an SC system.

• We have considered two different SNGs and carried out accuracy analysis for both
namely LFSR-based SNG and S-box-based SNG. LFSR-based SNG is the traditional
method used for generating stochastic numbers. S-box-based SNG is the new method
used to develop the stochastic system performed here.

• Stochastic computing is implemented for basic arithmetic components using SC bit
streams generated using LFSR-based SNG and S-box-based SNG.

• Also, an SC-based combinational circuit is realized using an algebraic expression for
the two different SNGs.

• The output computed for all of the SC circuits is analyzed for accuracy measurement
in terms of MSE.

• With the help of the computational analysis, accuracy is measured for the developed
stochastic arithmetic component and the stochastic combinational circuit.

2. Related Works on Stochastic Computing Elements

Stochastic computing has found applications in image processing, pattern recognition,
deep learning and AI. Based on the concept of statistically independent sequences as the
SNG, a modulator-based system that generates binary sequences has been developed [7].
Considering that the SNG needs more area and power than SC computing cores, and
also due to the importance of error measurement at the output, an error-cancelling con-
version unit [8] and even-distribution coding method have been implemented [9]. The
computational cost of the SNG in an SC system has been reduced by using a methodology
of decomposition in the design and re-use of its functional unit [10]. Error reduction by
register-based rearrangement techniques and sharing of the SNG’s sub modules have been
used to reduce the overhead cost in the design of the SNG [11]. Also, a parallel bit stream
generator designed using a single clock unit has been experimented with for reducing the
hardware cost of the SNG [12].

The various types of SC computing-based basic arithmetic components and their
various stochastic computing formats have been implemented [13]. SC-based combinational
and sequential circuits for stochastic generation units and the possible applications and
various stochastic algorithms that can solve the challenges in stochastic system have been
defined elaborately and implemented [14]. Division circuit in SC logic is developed and
used in the CORDIV method, developed based on the understanding from the Gaines and
ADDIE’s basic ratio format [15]. An architecture for stochastic division has been developed
for digital processing systems and also taking into account the correlation of SC streams for
square root computations [16,17].
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In addition to combinational circuits using SC methods, SC-based sequential circuits
have also been developed. Stochastic computing had been implemented for complex sys-
tems like exponential and Tanh functions, using finite state machines and found to have
much tolerance on soft-errors thus improving accuracy [18]. Architectures for complex
computation in the digital domain have been constructed using approximation techniques
that focus on exponential, Tanh, COS, and sinusoidal functions [19]. It has been reported
that latency in computation is a concern along with overhead in area due to which inser-
tion of flip flops has been used in stochastic circuits [20]. To perform normalization and
increase the throughput, an efficient converging normalization unit had been used [21].
A deterministic stochastic system with down sampling has been introduced to overcome
fluctuation and correlation to develop an accurate system [22]. An isolation-based method
has been developed for handling the accuracy issue in an SC system. Errors were analyzed
and mitigated by probability transfer metrics, thereby isolation and degeneration were
discussed, and found to be having a cost advantage [23].

Thus stochastic computing (SC), originally proposed in the 1960s as a new methodol-
ogy to be adapted in lieu of traditional binary computing, is an approximate computing
technique that has been researched and has found increasing interest due to its advantages
of reduced logic gates implementations. This enhances its ability to compress complex
functions and fit into a lower number of logic gates. Such characteristic has motivated the
development of different methods for the use of SC to implement Artificial Neural Network
(ANNs) in hardware and also has found significant importance in the implementation of
CNNs.

Stochastic CNNs have been facing difficulties in SC implementation and the challenges
are the cost in terms of hardware resources required to implement different Random
Number Generators (RNG), the precision degradation between layers produced by the lack
of decorrelation between signals, and the implementation of a stochastic computing based
activation function circuitry. Various CNN models have been developed such as hybrid
stochastic binary CNN architectures, where the first convolutional layer uses stochastic
computing, other layers and computations are implemented in binary conventional logic
and only multiplication units are implemented in SC for fully parallel CNN hardware [24].

The most recent advances in SC computation are the extension of stochastic computing
to neural networks pertaining to various AI-based applications, and a related work in this
area is reported to be the implementation of stochastic neural computation using neural
computational elements [25,26]. In the development of handling nonlinear activation func-
tions required for CNN, a deep neural network focusing on area and parallel processing
was been designed, with the aim of developing an accurate system with stable hardware
resources [27]. In order to focus on correlation factor, an SC-based CNN has been proposed
where the hardware resource has been saved with the aim of sustaining the accuracy [28].
The computation time for SC-based CNN using MAC unit has been proposed. An ap-
proach for binarized neural networks was developed for the Modified National Institute
of Standards and Technology database(MNIST) and Canadian Institute For Advanced
Research(CIFAR) data focusing on performance of the convolutional binarized network.
This has been extended for ASIC implementations [29–32]. The authors have suggested
the importance of a CNN accelerator and the use of Python as an Algorithmic High-Level
Language, for the realization and the implementation and FPGA based accelerators for
CNNs. They can be used to perform optimal selection (in the sense of multi-objective
optimization) of the design parameters of an accelerator for trade-off study and resource
minimization. This would be a prominent background for the future work for high level
synthesis of CNN layers [33].

The main focus of our research work is to build an efficient SC system focusing on
accuracy improvement at all levels till the development of the CNN system. As a first step
towards the same an S-Box-based the SNG methodology, (where-in the S-Box [34,35] in
cryptographic algorithm) is used as the stochastic bit stream generator for building up the
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SC components. The developed components will be used for the development of CNN
layers.

Hence, the SC circuits need to be thoroughly investigated for errors in computation
for the different SNGs methods used. Therefore, the organization and contribution in this
paper are briefed as follows:

Section 3.1 describes the stochastic number generation where the two SNGs are used
LFSR-based SNG and S-box-based SNG. The contribution in the SNG part is the implemen-
tation of the SC-based arithmetic components using an S-Box-based SNG.

Section 3.2 describes the implementation of stochastic computing in the basic arith-
metic components. In this, performance is elaborated across the 4-bit length and 8-bit
lengths to analyze the accuracy. Both SNGs are used as input for computing arithmetic
components, from which a comparison will be made for accuracy analysis.

Section 3.3 describes the implementation of stochastic computing to develop combina-
tional circuit. The input considered here is both SNGs with which the accuracy verification
will be conducted. The combinational circuit is newly designed by solving the algebraic
expression. This is developed by incorporating the basic arithmetic components to form a
combinational circuit.

Section 4 presents the analysis of computation based on the error calculation. Accuracy
has been calculated from the error analysis.

Sections 4.2 and 4.3 depicts the accuracy analysis for basic arithmetic components and
combinational circuits considering all the bit lengths involved in the implementation.

3. Proposed Computing Methodology

The methodology is subdivided into three parts namely, stochastic number generation,
stochastic arithmetic computation, and stochastic combinational circuit. This is followed by
error analysis and accuracy measure. The block representation of the process involved in
the proposed methodology is depicted below in Figure 1.

Figure 1. Block diagram of the proposed stochastic system.

3.1. Stochastic Number Generation

Stochastic number generation is the main block of any stochastic system and is used
in conversion of binary input data to stochastic data. In this work, we have considered two
different stochastic number generation methods.

3.1.1. LFSR-Based SNG—Algorithm

Linear Feedback Shift register based the SNG is a traditional way of generating random
numbers as shown in Figure 2. The random values obtained from the register will be sent
to a comparator. It compares the first number and second number, if the second number is
larger than the first, it will generate the bit value ’1’ else it will generate a bit value of ’0’. In
this way, the LFSR-based SNG is used as a generator in the design. The LFSR-based SNG
has to be repeated for each input unit for the Stochastic number to be generated.
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Figure 2. Block diagram of LFSR-based SNG.

3.1.2. S-Box-Based SNG Algorithm

The S-box-based SNG Figure 3 is a new method used for stochastic number generation.
The method generates a random number which will be used for multiple inputs without
repeating the functionality for each SC stream to be generated. So a single S-box SNG
will serve as an SNG source for many computing units. The number generated from the
SNG could be directly used as a stochastic bit for computation. The number obtained from
this SNG itself is a stochastic number that could be used as an input for computing units.
Components used for converting binary to stochastic are appropriate to be used as an SNG.

Figure 3. Block diagram of S-Box-based SNG.

3.2. Implementation of Stochastic Computing in Arithmetic Operation

The second part of the proposed methodology is the implementation of stochastic
computing in arithmetic operations like multiplication, addition, subtraction, and division.
In these operations, two SNGs are used for the input of the computing system.

In this work, stochastic computing is performed for basic arithmetic operations using
appropriate components. The computations to be performed for the basic components
require stochastic number generators. Hence, we use two different stochastic number
generation units for all the arithmetic operations. So, the performance of stochastic com-
puting with respect to these SNGs has been conducted by implementing both SNGs in the
arithmetic operations. This will stabilize the performance of the SC system with respect to
accuracy. The construction of these components are conducted using basic logic elements
like logical AND gate, logic multiplexer and storage flip flop.

The binary input is initially taken and the same is converted to stochastic form using
two different SNGs to perform computation in the following mentioned components and
the results are analyzed for accuracy and error.

3.2.1. Stochastic Multiplication

The logical AND gate is used for implementing multiplication operations in stochastic
computing. The inputs of AND gate are chosen as two-bit streams ‘X’ and ‘Y’, respectively,
that are stochastic. The output is ‘Z’. The inputs of the multiplier (AND gate) must be
statistically independent. The stochastic multiplication operation is performed to overcome
multiplication unwrapping or partial product generation. Considering two inputs AND
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gate having X and Y as input, mathematically stochastic multiplication is expressed as the
probability of (X = 1) multiplied by the probability of (Y = 1), producing a probability of
(Z = 1).

3.2.2. Stochastic Addition

The logical multiplexer is used to perform stochastic addition operations. In the
stochastic context, the inputs are considered as probabilities, and hence on adding any
two inputs, the resultant does not lie within (0, 1) limits. So scaled addition is performed
with the help of a multiplexer. The two input bit streams are given at the input port X
and Y, whereas select input is given as constant 0.5 because the output should have its
value between [0,1] and treated as a probability. This is how floating ranges are scaled;
this kind is referred to as scaled addition. The advantage is that there is no need for the
carry element to propagate from bit to bit. Mathematically, stochastic addition is written as,
P(Z = 1) = P(S = 1).P(A = 1) + P(1 − S = 1).P(B = 1), where A, B are the two inputs,
S is the select line and Z is the output of the multiplexer. The scaling parameter can be
expressed as Z = 0.5 (A+B).

3.2.3. Stochastic Subtraction

The Logical multiplexer with one of its inputs connected to the NOT gate is used
to perform stochastic subtraction operations. The two input bit streams are given at the
input ports X and Y, whereas the select input is given as constant 0.5 because the output
should have a value between [0,1]. In terms of probabilistic means, stochastic subtraction is
expressed as the Probability of (Z = 1) if the product of P (S = 1) and P (A = 1) & sum of the
product of Probability of (1 − S = 1) and Probability of (1 − B = 1).

3.2.4. Stochastic Division

Stochastic division takes the Jack Kilby(JK) flip flop(FF) where the FF sets states 0
and 1 for 01 and 10, respectively; eventually the 00 state is not unchanged whereas if
the FF is toggled. With this note, considering J & K to be the two inputs and mapping it
to the probability concept as Px1 and Px2, the output probability is generalized as Pz =
Px1/(Px1 + Px2). This is normalized as Pz = Px1/Px2 with the condition of Px1 to be minimal.
To implement division unipolar format is used. Mathematically, the division is carried out
based on the following rule, P(Z = 1) = (Px1 = 1)/(Px1 + Px2) = 1.

3.3. Stochastic Implementation of Combinational Circuit

In this section, the idea is to develop an algebraic expression and implement stochastic
computing using the basic arithmetic components designed above for the expression
considered. The structure developed uses both SNGs as the input for the system separately
and performs the accuracy measure for the combinational circuit system.

Consider the algebraic expression for developing a combinational circuit A2 − B2. In
order to implement the expression in the stochastic domain, the expression can be written
as, F = (A + B)(A − B)

The algebraic expression can be incorporated into a stochastic system using the stochas-
tic components addition, subtraction, and multiplication. The structure of the expression is
depicted below in Figure 4.

The expression is incorporated in the above diagram, where the input is binary for
all number generator units. The input binary is converted to a stochastic number using a
stochastic number generator. The traditional LFSR-based SNG and the proposed S-box-
based SNG are the SNGs used separately to convert binary inputs. After converting, the
first part is the realization of A + B. This is accomplished by using a multiplexer with the
help of stochastic streams. In parallel, A − B is realized using a multiplexer in which one of
the inputs is negated to activate subtraction. The select input in both the components is due
to the scaling of computed values between (0, 1). Finally, these two functions are combined
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and realized using AND gate to perform multiplication. The resultant is the value obtained
from the realization of the expression A2− B2.

Figure 4. Stochastic combinational circuit.

4. Experimental Analysis and Inference

In this work, four scenarios have been considered and the same has been depicted
in the block diagram. The aim of the work is to analyze the accuracy of the stochastic
system that has been developed. The stochastic system considered here requires a stochastic
number generator, and a stochastic computing component.

With these, the system is developed in two ways, first, two different stochastic number
generators are used as the SNG for stochastic computing core (basic arithmetic components).
So this stochastic system is analyzed for accuracy through error analysis from the SNGs
considered and components. The second part is the use of these two SNGs and the
developed basic components for the realization of an algebraic expression to implement in
the stochastic computing logic. This part of the system is separately analyzed for accuracy
through error measurement.

The first scenario is the development of an appropriate SNG to be used for computing
purposes. The two SNGs used here are the LFSR-based SNG and S-Box-based SNG. These
are used as SNGs for all the computing process separately. These are the primary vital
parts for the efficient development of a stochastic system.
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The second scenario considered here is the stochastic computing in basic arithmetic
operations namely SC-based multiplication, addition, subtraction and division using the
above-mentioned SNGs. Four arithmetic components are considered in order to analyze
the stochastic system based on its operation since different logic elements are used for each
operation. It is also conducted to emphasize that stochastic computing could be conducted
by basic logic elements.

The third scenario is the realization of algebraic expression and the implementation
of the same using stochastic computing. This is realized by basic arithmetic components
that are mentioned earlier. Thus, this realization involves basic components and SNGs
developed for conversion purposes. The entire part will be undergo accuracy measurement.

The fourth scenario is the accuracy measure conducted by considering all the scenarios
mentioned above. Error analysis is conducted for all cases by identifying the difference in
original value to the traditional value of the stochastic bit generated. This is conducted by
considering the binary equivalent of the stochastic number which is used for determining
the error difference.

4.1. Function Generation and Conditions

In the LFSR-based method, the experiment is carried with a 4-bit binary number as
the input. Any 4-bit binary entered in the 4-bit register is considered. Ex-oR operation
is performed for the two Least Significant Bit (LSB) of the register. The resultant value is
the first output random value and the same is passed as input to the register, thereby the
values in the register are shifted to the right. The process continues until it reaches 2n − 1
criteria. Hence for the work conducted, 15 values will be obtained after the cycle completes.
This is referred to as a random number sequence and will be used as an input value for
converting into a stochastic number.

Now, the random number obtained is compared with a random binary number using
a comparator. The random number obtained from the LFSR is considered as ‘A’ and the
binary number is considered as ‘B’. The comparator is processed with the condition values
in the ‘A’ should be less than the values in the ‘B’ to produce output as value ‘1’. This value
is the required stochastic number.

The S-Box-based method has three steps. The first step is the initialization where the
structure comprises the internal state ‘S’ and LFSR ‘L’. It should be noted that the length
of S and L should be the same. The internal state must be log(n) bits to the generated
stochastic number. The second step is the number generation, the values in L are advanced
by cycle one to perform Ex-OR with the internal state. The internal state is split into blocks
of four bits. Each block is performed with the S-box circuit comprising of four different
expressions as follows, where io, i1, i2 and i3 are the input values of the internal state.

Output1 = ī2 · (i3) + (i0 · ī1 · ī3) + (i0 · i1 · i2)
Output2 = (i0 · ī1 · i2 · ī3) + (i1 · ī2) + (ī0 · ī2 · ī3) + (io · ī2 · i3) + (ī0 · i1 · ī3)
Output3 = (ī0 · i1 · ī2 · i3) + (ī1 · ī3) + (i2 · ī3) + (i0 · ī1 · i2)
Output4 = (io · ī1 · ī2) + (ī0 · i1 · ī3) + (ī1 · i3) + (ī0 · ī2 · i3)
The result obtained is rotated and is the required stochastic number. The same is

further Ex-oR with LFSR in the next cycle.
The accuracy measurement and error analysis of the conventional LFSR and developed

S-Box bit stream generation method are compared. The two methods are used in the
implementations of arithmetic components and combinational circuits for an algebraic
expression. The experimental computational results have been performed and detailed
accuracy measure that includes analysis from computation followed by error calculation.

The comparison for conventional SC generation and S-Box-based SC is conducted in
all the above to determine which method is better in accuracy and hence leading to error
minimization which is the main focus in our work.
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4.2. Experimental Results of Stochastic Arithmetic Components
4.2.1. Error Analysis for Stochastic Arithmetic Components

The error analysis table represents the error values of each computing component of
4-bit and 8-bit computations. The table comprises LFSR-based computing and S-Box-based
computing in which the stochastic output and actual binary input of the sample have been
shown for error calculation. The same has been performed and tabulated for stochastic
combinational circuit design.

Tables 1 and 2 represent the error calculation for the computational values obtained
from 4-bit and 8-bit lengths computation for various stochastic arithmetic components, the
values have considerable differences in the two SNGs’ performance for multiplication. It
has been found that the S-Box-based implementation gives better accuracy and reduced
error.

The following sections provide comparison of the two SC-based techniques used in
arithmetic components and combinational circuits. A comparison is conducted for the
accuracy and error analysis for the 4-bit implementations of the above type and then scaled
up to 8-bit implementations.

Table 1. Error analysis of stochastic arithmetic computation—4 bit.

Stochastic
Output (A)

Actual
Output (B) ERROR Stochastic

Output (A)
Actual

Output (B) ERROR

Stochastic Multiplication

LFSR-based
stochastic multiplication—4 bit

S-Box-based
stochastic multiplication—4 bit

2 168 160.09 2 110 106.036

1 96 94.010 2 77 73.05

1 80 78.01 0 48 48

1 64 62.01 1 24 22.04

2 35 31.11 1 20 18.05

1 20 18.05 0 8 8

Stochastic Addition

LFSR-based
stochastic addition—4 bit

S-Box-based
stochastic addition—4 bit

2 26 22.15 4 29 21.55

1 20 18.05 2 21 17.19

2 18 14.22 2 16 12.25

2 17 13.23 1 14 12.07

1 12 10.083 1 10 8.1

2 12 8.33 1 9 7.11

Stochastic Subtraction

LFSR-based
stochastic subtraction—4 bit

S-Box-based
stochastic subtraction—4 bit

1 11 9.09 1 10 8.1

3 1 4 2 7 3.57

1 4 2.25 1 4 2.25

4 2 2 2 1 1

2 10 1.6 1 2 0.5

2 4 1 2 3 0.33
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Table 1. Cont.

Stochastic
Output (A)

Actual
Output (B) ERROR Stochastic

Output (A)
Actual

Output (B) ERROR

Stochastic Division

LFSR-based
stochastic division—4 bit

S-Box-based
stochastic division—4 bit

2 0.125 28.125 1 0.0714 12.077

2 0.166 20.262 3 0.55 10.91

2 0.25 12.25 1 0.0833 10.088

2 0.333 8.345 1 0.1 8.1

2 0.375 7.041 2 0.636 2.925

3 12 6.75 2 0.75 2.083

Table 2. Error analysis of stochastic arithmetic computation—8 bit.

Stochastic
Output (A)

Actual
Output (B) ERROR Stochastic

Output (A)
Actual

Output (B) ERROR

Stochastic Multiplication

LFSR-based
stochastic multiplication—8 bit

S-Box-based
stochastic multiplication—8 bit

3 46,256 46,253 2 39,872 39,868

3 37,636 37,630 2 37,286 37,282

3 28,836 28,830 2 11,685 11,681

3 17,577 17,571 1 11,534 11,532

3 11,800 11,794 1 10,251 10,249

2 5313 5309 1 4648 4646

Stochastic Addition

LFSR-based
stochastic addition—8 bit

S-Box-based
stochastic addition—8 bit

4 432 424.03 3 402 396.02

3 388 382.02 4 387 379.04

4 340 332.04 5 262 252.09

4 298 290.05 1 252 250

5 218 208.11 4 207 199.07

2 194 190.02 4 194 186.08

Stochastic Subtraction

LFSR-based
stochastic subtraction—8 bit

S-Box-based
stochastic subtraction—8 bit

6 136 124.26 1 107 105

5 132 122.18 5 106 96.23

4 128 120.12 3 85 79.10

3 65 59.13 4 46 38.34

5 65 55.38 4 25 17.64

8 40 25.6 4 23 15.69
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Table 2. Cont.

Stochastic
Output (A)

Actual
Output (B) ERROR Stochastic

Output (A)
Actual

Output (B) ERROR

Stochastic Division

LFSR-based
stochastic division—8 bit

S-Box-based
stochastic division—8 bit

5 0.086 280.32 6 182 170.19

3 97 91.09 3 0.1686 47.53

4 0.2857 48.28 6 0.8437 31.5

5 0.625 30.625 5 0.7946 22.252

6 33.66 22.729 6 1.101 21.79

5 1.18 12.36 4 0.8786 11.089

4.2.2. Accuracy Measure for Stochastic Arithmetic Components

The accuracy measure for stochastic arithmetic components (stochastic multiplication,
stochastic addition, stochastic subtraction, stochastic division) for the two SNGs across
4-bit and 8-bit lengths is depicted in Figure 5, Figure 6, Figure 7 and Figure 8, respectively.
In the accuracy graph, the X-axis represents the number of samples on computation and the
Y-axis represents the error values of each computation. It is inferred that 4-bit computation
of stochastic multiplication shows good performance differences between LFSR-based SNG
and S-Box-based SNG from Figure 5. However, across all bit lengths, S-box SNG gives
reduced error in computation and hence, is more accurate.

Figure 5. Error analysis in Stochastic multiplication.

Figure 6. Error analysis in Stochastic addition.

Figure 7. Error analysis in Stochastic subtraction.
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Figure 8. Error analysis in Stochastic division.

Figure 6 details the accuracy of stochastic addition performed with LFSR-based SNG
and S-Box-based SNG. It is inferred that S-Box-based SNG works well for stochastic addition
showing that this type of SNG has less errors when performing stochastic computation.

Accuracy is determined from error analysis and depicted in Figure 7 for stochastic
subtraction. S-Box-based shows less error compared to LFSR-based SNG with respect to
stochastic subtraction. This computation stays better for accurate stochastic components.

The accuracy measure is depicted in Figure 8 showing the performance of SNG’s with
respect to stochastic division. It is inferred that the computation of stochastic division
shows good performance differences between LFSR-based SNG and S-Box-based SNG.

4.3. Experimental Results of Stochastic Combinational Circuit
4.3.1. Error Analysis for Stochastic Combinational Circuit

A stochastic computing based combinational circuit has been constructed and comput-
ing has been performed for the same. The computational results pertaining to LFSR-based
SNG and S-Box-based SNG are used for determining accuracy and error calculation, re-
spectively.

The error analysis for stochastic combinational circuit has been mentioned in the
Table 3. The involvement of basic arithmetic components in this construction has shown a
lower error rate for S-Box-based computation compared to traditional LFSR-based SNG.

Table 3. Error analysis of stochastic combinational circuit.

Stochastic
Output (A)

Actual
Output (B) ERROR Stochastic

Output (A)
Actual

Output (B) ERROR

LFSR-based
stochastic combinational circuit—4 bit

S-Box-based
stochastic combinational circuit 4 bit

1 96 94.0104 2 77 73.051

1 80 78.012 1 48 46.020

1 72 70.0138 0 45 45

1 64 62.0156 0 24 24

0 36 36 0 15 15

LFSR-based
stochastic combinational circuit 8 bit

S-Box-based
stochastic combinational circuit 8 bit

2 5120 5116 1 4648 4646

1 5313 5311 3 3456 3450

2 3636 3632 1 1043 1041

3 2960 2954 2 1035 1031

1 2744 2742 5 182 172.13

4.3.2. Accuracy Measure for Stochastic Combinational Circuit

It is inferred from Figure 9 that the S-Box-based SNG is accurate with respect to
the stochastic combinational circuit, as it is less prone to error in comparison with the
LFSR-based SNG. Hence, the basic stochastic arithmetic components also evidence that the
S-Box-based method is better for constructing an accurate stochastic system.
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Figure 9. Error analysis in Stochastic combinational circuit.

4.4. Difference in Performance with Respect to SNG

The accuracy analysis could be performed by analyzing the error from the above
computation, and its table is discussed below. The error measurement is conducted to de-
termine the accuracy of the stochastic system for the stochastic number generator. The error
calculation has been performed for the arithmetic components shown and combinational
circuit. This is attempted for 10 calculations. Sample calculation of error is shown below.

Consider stochastic addition; the computation is conducted for a 4-bit bit stream.
The first input is 0111, the second input is 0101, and the stochastic output is 0101. The
corresponding values of the input are 7 and 5, respectively. The traditional addition value
is 12. The stochastic output value is 2, as the number of 1’s in the output sequence is
considered as per the condition. So the error is calculated as the difference in the obtained
value with the original value divided by the original, which gives the error of 8.33 in this
case. In this way, the error is calculated for every value, and error analysis is conducted to
measure the accuracy for LFSR and S-box-based SNG, respectively.

Table 4 summarizes the performance of stochastic computing in various arithmetic
components. Accuracy can be determined from the table and it is inferred that the S-
Box-based SNG method shows better in accuracy. While considering the bit length of
various components, 4 bit length and 8 bit length sequences are considerably equal in
accuracy determination.

Table 4. Accuracy comparison of various stochastic arithmetic components.

S. No Component LFSR
Based SNG

S-Box
Based SNG Accuracy

1.

Stochastic
Multiplication 4 bit 73.88 45.86 S-box

stochastic multiplication
Length—4 bit

Stochastic
Multiplication 8 bit 24564.5 19209.66

2.

Stochastic
Addition 4 bit 14.34 13.045 S-box

stochastic addition
Length—8 bit

Stochastic
Addition 8 bit 304.378 277.05

3.

Stochastic
Subtraction 4 bit 3.323 2.625 S-box

stochastic subtraction
Length—8 bit

Stochastic
Subtraction 8 bit 84.445 58.666

4.

Stochastic
Division 4 bit 13.795 73697 S-box

stochastic division
Length—4 bit

Stochastic
Division 8 bit 80.9006 50.725

5.

Stochastic
Combinational circuit 4 bit 68.01 40.6142 S-box

stochastic combinational
system 4 bit and 8 bit

Stochastic
Combinational circuit 8 bit 3951 2068.026
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5. Conclusions

In this paper, two different stochastic number generator methods are used to imple-
ment basic arithmetic components and a combinational arithmetic circuit for an algebraic
expression. The above SC-based arithmetic components and stochastic combinational
circuits for 4 and 8 bit streams are analyzed by error measurement for both types of SNGs
namely LFSR-based SNG and S-box-based SNG to compare for accuracy. It is inferred from
the analysis that the S-Box-based SNG method shows lower error across all bit streams—4
and 8 bit for SC-based arithmetic and combinational circuits developed.

The S-box SNG method will be used in the development of SC-based CNN, and the
conventional LFSR will also be implemented for comparison. This will allow the design
space exploration of the scaling of CNN layers to conduct trade-off analysis of accuracy
versus power/energy scaling, computational time and hardware/resource utilization using
the different SNGs used here.

6. Future Scope

The future scope of this work will be to determine the area overhead of the respective
SNGs and design space exploration. Also, the measure of randomness of the SC data
stream generated by the SNGs will be attempted by measuring the correlation of the bit
stream generated by each. The increase in reliability can be attempted by bringing the
redundancy of the architecture by appropriate parallelism in the implementation.
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