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Abstract: Welded joints in metallic pipelines and other structures are used to connect metallic struc-
tures. Welding defects, such as cracks and lack of fusion, are vulnerable to initiating early-age
cracking and corrosion. The present damage identification techniques use ultrasonic-guided wave
procedures, which depend on the change in the physical characteristics of waveforms as they propa-
gate to determine damage states. However, the complexity of geometry and material discontinuity
(e.g., the roughness of a weldment with or without defects) could lead to complicated wave reflec-
tion and scatters, thus increasing the difficulty in the signal processing. Artificial intelligence and
machine learning exhibit their capability for data fusion, including processing signals originally from
ultrasonic-guided waves. This study aims to utilize deep learning approaches, including a convo-
lutional neural network (CNN), Long-short term memory network (LSTM), or hybrid CNN-LSTM
model, to demonstrate the capability in automation for damage detection for pipes with welded
joints embedded in soil. The damage features in terms of welding defect types and severity as well as
multiple defects are used to understand the effectiveness of the hybrid CNN-LSTM model, which
is further compared to the two commonly used deep learning approaches, CNN and LSTM. The
results showed the hybrid CNN-LSTM model has much higher classification accuracy for damage
states under all scenarios in comparison with the CNN and LSTM models. Furthermore, the impacts
of the pipelines embedded in different types of materials, ranging from loose sand to stiff soil, on
signal processing and data classification were further calibrated. The results demonstrated these
deep learning approaches can still perform well to detect various pipeline damage under varying
embedment conditions. However, the results demonstrate when concrete is used as an embedding
material, high attention to absorbing the signal energy of concrete could pose a challenge for the
signal processing, particularly under high noise levels.

Keywords: deep learning approaches; damage detection; ultrasonic-guided wave; welding defect;
non-destructive testing; embedment

1. Introduction

Welding is often used to connect metallic structures [1-3], including connecting metal-
lic parts for oil and gas pipelines and other civil structures [4]. Different forms of welding
faults, including partial penetration, lack of fusion, cracking, and undercut are frequently
observed due to the complicated properties of the welding procedure used in shops and on
building sites [4]. As a result, even seemingly minor welding errors frequently lead to early-
age damage in materials and structures, such as corrosion caused by cracks [4-6]. Thus, it
is essential to inspect the weldment for structural health monitoring (SHM) [7-9] during
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fabrication, construction, and afterward during the in-service phase to ensure welding
quality [10-15].

Nondestructive testing methods, including ultrasonic, dye penetration, magnetic
particle, and eddy current are widely used in pipeline damage detection [16-18]. But for
online testing, dye penetrant and magnetic particle testing typically necessitate removing
the tested portion [16]. Eddy current testing cannot be used on non-standard surfaces [16].
However, ultrasonic-guided wave testing [4,19,20] can be used to carry out large-scale and
quantitative damage detection because of its benefits of non-contact, a large working area,
and high sensitivity [16,21,22]. Table 1 compares ultrasonic-guided wave testing with other
non-destructive testing techniques for detecting pipe welding defects.

Table 1. Comparison of ultrasonic-guided wave testing with other non-destructive testing techniques
for detecting pipe welding defects.

Method Advantages Disadvantages Accuracy Cost Ease of Use
Ultrasonic-Guided Waves Non-invasive Equipment setup can be complex = High Moderate Moderate
X-ray Radiography Excellent defect visualization ;(;relzi;lg;r?jiation, requires safety Very High  High Complex
Magnetic Particle Portable and cost-effective Only detects surface defects Moderate Low Easy

Eddy Current Testing Detects surface and some Requires skilled operators Moderate Moderate Moderate

subsurface defects

Weldment is a part of pipelines and is vulnerable to damage [23-26]. Rattanawangcharoen
et al. [27] used the finite element approach and wave expansion function to simulate the
propagation of ultrasonic-guided waves with various weld shapes in thin-walled cylinders
and studied the dispersion of axisymmetric guided waves in the area where the cylinders’
bonding materials were located. The resonance peak of the reflection coefficient was more
pronounced as the joint thickness increased. The proposed method could be used to
evaluate weld faults quantitatively and without causing any damage. Zhuang et al. [28]
also simulated the propagation of a symmetrical guided wave mode in welded steel pipes
based on finite element analysis and analyzed the difference between weld joints with and
without faults in the reflection coefficient.

Deep learning approaches have demonstrated their robustness in the signal processing
of ultrasonic-guided waves [29-32]. CNN is one of the representative deep learning
algorithms and it has the properties of local perception and parameter sharing, which
enables CNN to efficiently learn the associated features from many samples [16,33]. Xu
etal. [34] used features extracted from the guided wave on several monitoring paths to train
CNN and determined the length of the fatigue fracture. Su et al. [35] established a damage
classification model based on CNN. Frequency-domain characteristics of the ultrasonic-
guided wave were used to train the model. Feng et al. [36] developed a CNN model to detect
damage based on image detection. Kumaresan et al. [37] used CNN for transfer learning to
classify welding defects. But, the CNN model did not consider the temporal connection of
the collected signals. LSTM networks, a subset of Recurrent Neural Networks (RNNs), are
renowned for their prowess in time series analysis, adept at capturing intricate temporal
patterns. They have excelled in multiple fields: financial markets [38,39], forecasting stock
prices [40], healthcare, predicting patient outcomes from health records [41], and natural
language processing [42]. LSTM’s adaptability and ability to tackle sequential data make
them indispensable in a broad range of domains. LSTM has also been used to identify the
damage information in the vibration signal damage because it can maintain the temporal
correlation of vibration signals [16]. Zhao et al. [43] proposed the CNN and LSTM networks
to achieve early damage detection and identify the cantilever beam breathing crack. Choe
et al. [44] used gated recurrent unit neural networks with LSTM to identify damage related
to structures, which resulted in high damage identification performance. The time series
features obtained by LSTM can be used to improve the damage detection accuracy, as
demonstrated by the literature mentioned above.
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In this study, the CNN-LSTM network was used to detect pipeline damage with
different types of welding defects in a notch. Firstly, twenty-nine feature parameters were
calculated and compared based on the training performance of different deep learning
models, including CNN, LSTM, and CNN-LSTM models. The CNN-LSTM hybrid model
was expected to achieve the highest performance because of its complex structure. It
combined CNN and LSTM networks; as a result, it could help the hybrid network to extract
temporal information comprehensively, which reduces the side effects of the CNN network.
The LSTN network is followed the CNN network; the compressed information from the
CNN network could be input into the LSTM network directly, and it could improve the
training efficiency of the CNN-LSTM hybrid model. Furthermore, noise interference,
different types of defects, and different types of pipeline embedment were designed to
verify the effectiveness of the CNN-LSTM hybrid model.

2. Deep Learning Enriched Automation in Damage Detection

The structure of methodologies is shown in Figure 1, including feature extraction,
model training and testing, and classification. Different types of features were chosen,
calculated, and trained by deep learning models. The most effective features were selected
to express the signals’ information. Three deep learning approaches, including CNN, LSTM,
and CNN-LSTM models, were then used to perform the data classification for detecting
welding defects (type and severity). Noises were introduced to the original signals to
discuss the robustness of the deep learning approaches.

| Raw ultrasonic signal series |

l

Fe--=== -I Feature extraction | ----- 1
1 I
] . . |
, | Time domain Frequency 1
: features domain features :

1

1
1
loxN | [rsT™ ||
1
1
1

CNN-LSTM

Figure 1. Schematic diagram of the research methodology.

2.1. CNN Model

CNN is a widely accepted deep learning approach with a deep neural network, con-
sisting of convolutional, pooling, and a fully linked layer with a rectified linear activation
function (ReLU), for data processing [45,46]. In this study, a one-dimensional (1D) signal
was used as an input for the CNN network. The input data of the 1D signal vector is repre-
sented by x = x1, xp, x3, ..., x5, C wherex,, € R? stands for features (i.e., time series
signal data) and C stands for a class label. From a collection of features f, the following
new feature map fm is created [45].

L™ = tanh (wfmxi:i+f,1 n b), )
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where a feature map hl = |hly, hip, ..., hli+f,1:| € R*f~1 The kernel hl is applied to each

array of features f within the input data specified as { X1:fs X2if 410 X3if42s - oo s Xiigpf—1 },
and b € R signifies a bias term [45].

The average pooling layer receives the output of the convolutional layer and down
samples the data [47], which employs the ReLU activation function applying aver(0, x) to
each input to the ReLU represented by x [45]. Here, each feature map is subjected to the

—

average-pooling process using the formula hl = aver {hl}, which yields the most important
features [45]. The fully connected layer, which contains the softmax function and provides
the probability distribution across each class, receives these chosen features as input [45].
As a result, the CNN network’s fully connected layer (FC) calculates the classes that make
up its final output [45].

2.2. LSTM Model

LSTM was developed to overcome recurrent neural networks (RNNs) with consid-
eration of long-term memory of time-dependent information [45]. This implies LSTMs
possess the capacity to retain and establish connections between preceding data—often
considerably distant in time from the current moment—to the present context [45]. With
the progression of LSTM research, enhancements such as the introduction of forget gates
and peephole connections became integrated into the LSTM network [45]. The forget gate
replaces the constant error carousel (CEC) and aids in forgetting or resetting the states of
memory cells [45].

The functioning of the LSTM is as described below. The LSTM architecture receives
an input sequence of data with length x = (x1, x2, x3, ..., x;) that can be any length [45].
Within the recurrent concealed stratum of the LSTM framework, the resultant sequence
x = (x1, X2, X3, ..., X,) is computed in an iterative manner, progressing from t =1 to T.
This is achieved through consistent write, read, and reset actions executed via the memory
cell (me) of the input gate (in), forget gate (for), and output gate (out) [45,48]. The operation
sequence at the time t can be described as follows [45].

ing = 0(WyinXt + Whinht—1 + Wpeinmer—1 + b)) 2

fory = U(foarxt + Whforht—1 + Wieinmer—1 + bfor) ©)
mey = for, © mey_q + iny O tanh(WymeXt + Wypmehi—1 + bye) 4)
outy = 0(WxoutXt + Whoutht—1 + Wmeourmer + bout) @)

he = outy © tanh(me;) (6)

The forget gate is essential for removing self-recurrent values no longer useful and
maintaining them for the next time step by multiplying them with the memory cell. Ad-
ditionally, peephole connections allow each gate and memory cell to determine the exact
timings of their outputs [45]. This comprehensive LSTM architecture, with the forget gate
and peephole connections, enhances the model’s ability to capture and utilize long-term
dependencies in time series data.

2.3. CNN-LSTM Hybrid Model

A CNN-LSTM model was developed, as shown in Figure 2. The proposed CNN-LSTM
model used the convolution1D and average pooling1D layers to extract features from a
number of variables affecting the categorization of defect types and to reduce the data
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distribution [49,50]. The following LSTM layer receives input from the average pooling1D
layer’s output.
yi = CNN(x;) @)

Input ——— ConvlD ——— Avg poolinglD

Features extracted by _—
CNN

Output

Figure 2. The structure of the CNN-LSTM hybrid model.

The original input vector of the CNN network, along with its corresponding class
label, is denoted as x;. The resulting output of the CNN network, represented by v;, serves
as the input for the subsequent LSTM network. In order to learn the long-range temporal
relationships, the LSTM is fed with the feature vector created by the average pooling
procedure in CNN.

In the context of detecting pipeline damage with various welding defects, the CNN-
LSTM network serves as a powerful tool, offering efficient temporal feature extraction. In
this study, a comprehensive analysis of deep learning models, including CNN, LSTM, and
the CNN-LSTM hybrid, was conducted to determine the most suitable approach. Table 2
illustrates and compares the structure of CNN, LSTM and CNN-LSTM networks. In our
MATLARB training process, the learning rate is set to 0.1, the mini-batch size is set to 16, and
the number of LSTM units is 100. The chosen activation functions are ReLU for the CNN
layers and hyperbolic tangent (tanh) for the LSTM layers.

Table 2. The structure of CNN, LSTM and CNN-LSTM networks.

Network Number of Layers Layer Types Hyperparameters
Sequence Input, Convolution, Average Filters: 16, Padding: ‘same’, Dilation
CNN 3 .
Pooling Factor: 1
LSTM 4 Sequence Input, Sequence Folding, LSTM, Number of Units: 100
Dropout
Sequence Input, Sequence Folding,
CNN-LSTM 7 Convolution, Average Pooling, Sequence Filters: 16, Padding: ‘same’, Dilation
Unfolding, Flatten, LSTM, Dropout, Fully Factor: 1, LSTM Units: 100
Connected, SoftMax

The CNN-LSTM hybrid model was expected to outperform others due to its intricate
structure. This model combines the strengths of both CNN and LSTM networks, resulting
in the comprehensive extraction of temporal information. In the CNN, LSTM, and CNN-
LSTM models, we included batch normalization layers to standardize the outputs of each
layer. This was done to reduce the chances of overfitting and enhance the robustness
of the optimization process. The effectiveness of batch normalization layers has been
supported by prior research [51]. By integrating CNN before LSTM, the hybrid network
can efficiently process spatial and sequential data. It captures essential spatial features
via CNN and subsequently feeds this compressed information into LSTM for in-depth
temporal analysis. This not only optimizes feature extraction but also reduces the potential
side effects associated with using CNN in isolation.



Computation 2023, 11, 218

6 of 22

The CNN-LSTM model was then put to the test under challenging conditions, includ-
ing noise interference, various defect types, and distinct pipeline embedment scenarios.
Its effectiveness in handling these complex and real-world situations was assessed. The
combination of CNN and LSTM, offering a balance between spatial and temporal feature
extraction, demonstrated its capability to robustly detect pipeline damage and welding
defects in notches, making it a promising approach for real-world applications.

2.4. Features Extraction
Definition of Features

To define the fault characteristics in various types of damaged pipelines, 29 time- and
frequency-domain feature parameters, comprising a total of 16 feature parameters in the
time domain and 13 feature parameters in the frequency-domain, were chosen for this
work. The detailed information is shown in Table 3. These parameters were chosen in
accordance with the findings of Chen’s study [52]. In this study, feature extraction was
used as a signal preprocessing method.

Table 3. Time-/frequency-domain feature indicators.

Time-Domain Features (16 Features)

Index of Characteristics Formulations Index of Characteristics Formulations
Mean value (X) X=1 N x; Kurtosis (8) =14 % xt
i=1 i=1
Root mean square value (Xs ) Xy = % .gl x12 Variance ((7%) (7% _ ﬁ igl (xi _ X)z
i= =
Square root amplitude (X;) X, = [ 1 l)lile m} 2 maximum value (Xyax ) Xnax = max{|x;|}
i=
absolute mean amplitude (|X|) X = 4 'gl‘x” minimum value (X, ) Xopin = min{x;}
i=
Skewness (o) o= 4 g X3 peak-to-peak value (X, p) Xp—p = max(x;) — min(x;)
i=1
Waveform Index (S ) Sf= T%”‘“ peak index <C 3 Cr= );((j’;:
pulse index (If) Iy = }%”'* margin index (CLf) CLf= X)'(%’f‘
kurtosis index (Ky ) Ky = xf”s Skewness Index (S) S= %}m
Frequency-domain features (13 features)
1 pP1= M 8 ps = \/7 %’;zgg
’ p = Elgnt ’ o= %zkzék{gk(k o
4 py = o <s1<<2—m>4 11 P (f;(;gs>35(k)
5 pg = Eé:(j;?l(cl){) 12 prp = P (f;(;gfs)%(k)
6 pe = \/W 13 S (fkgpis>°-ss<k>
7

_ 2115:1 szs(k)
P7= 1 T st
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2.5. Evaluation of Model Performances

The confusion matrix serves as a robust tool for assessing the classification perfor-
mance, enabling the quantification of overlaps in categorization [53]. This numerical
framework is pivotal in analyzing error distributions within classification tasks [54]. It
is utilized extensively in various machine learning contexts, including neural networks,
decision trees, Bayesian methods, and support vector machines [55]. Ahmad et al. applied
modularized induction techniques using the confusion matrix for pretrained CNNs [56].
This matrix can be used to determine the classification accuracy as follows:

A+D

Accuracy = BT CTD

®)
where A signifies the ratio of correct negative predictions, B stands for the ratio of incorrect
positive predictions, C denotes the ratio of precise negative predictions, and D indicates
the ratio of precise positive predictions.

The Area Under the Receiver Operating Characteristic Curve (AUC), a crucial as-
sessment tool in classification tasks, is also introduced. The AUC quantifies the model’s
proficiency in distinguishing between classes by measuring its capacity to assign higher
probabilities to positive instances. A higher AUC score, closer to 1, signifies superior
discrimination and overall model performance. This inclusion broadens the scope of our
evaluation, offering deeper insights into the model’s classification ability and its adapt-
ability to class imbalances, ensuring a more comprehensive analysis of its effectiveness
and reliability.

3. Datasets Generated from Lamb Wave Approaches
3.1. Model Construction from COMSOL

Figure 3 depicts the COMSOL model with soil-embedded pipelines with notch and
welding flaws. The pipeline has a 2000 mm length, an exterior diameter (D,;;) of 76 mm,
and an interior diameter of 68 mm (D;,,). Figure 4 shows four kinds of welding defects,
including lack of penetration, lack of fusion, undercut, and cracks. There are four kinds
of defects discussed in the COMSOL model, including defect 1 (welding defects of lack
of fusion with 10% severity and notch damage at 5 x D, placement), defect 2 (welding
defects of cracks with 10% severity and notch damage at 5 x D,,; placement), defect
3 (welding defects of undercut with 10% severity and notch damage at 5 x D,;; placement),
and defect 4 (welding defects of lack of penetration with 10% severity and notch damage at
5 X Doyt placement). Table 4 presents a comprehensive depiction of the dataset’s particulars.
Table 5 shows the experimental array for computational modeling. The dataset used in this
study was divided into training, validation, and test sets. Specifically, 70% of the data was
allocated for training, 15% for validation, and 15% for testing. The evaluations included
previously unseen data in the validation and test sets, ensuring the models were assessed
on data they had not been exposed to during training. This approach helped in gauging
the models” generalization capabilities to new, unseen data.

Table 4. Four kinds of pipeline defects.

Defects Description

Defect 1 Welding defects of lack of fusion with 10% severity and notch damage at 5 x D,,; placement
Defect 2 Welding defects of cracks with 10% severity and notch damage at 5 x D, placement

Defect 3 Welding defects of undercut with 10% severity and notch damage at 5 x Dy, placement

Defect 4 Welding defects of lack of penetration with 10% severity and notch damage at 5 x D,,; placement
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Excitation location (actuator)

Receivers Weldment Pipe Notch Soil

2000 mm

A
N

Figure 3. COMSOL model of pipeline under soil embedment.

(a) Lack of penetration

(b) Lack of fusion
(c) Undercut (d) Cracks

Figure 4. Four kinds of welding defects.

Table 5. Experimental array for computational modeling.

Severity of

. Damage Damage Damage Depth Welding . Noise
Case Design Label Location Size (mm) Defects Type ‘Sleldmg Interference
efects
Base State #1 / / / / /
State #2 5 X Doyt 0.1 X Doyt 4 Defect 1 10%
Case 1: vari d o From 3 dB to
ase 1: variance due  State #3 5 %X Doyt 01%x Doy 4 Defect 2 10% 15dB
to the variety of
welding defects State #4 5 X Dout 0.1 x Doyt 4 Defect 3 10%
State #5 5 X Doyt 0.1 X Doyt 4 Defect 4 10%
From 3 dB to
State #6 5x D, 0.1 x D 4 Defect 4 1%
Case 2: variance due ate % Hout * Hout elec 15 dB
to severity of State#7 5 x Dou 0.1 x Dot 4 Defect 4 5%
welding defects
State #8 5 X Doyt 01X Doyt 4 Defect 4 10%

The welding substance utilized is Ti-6Al-4V, featuring a Poisson ratio of 0.40, a density
measuring 4453 kg/m?, a Young’s modulus reaching 125.8 GPa, and a shear modulus
amounting to 40 GPa. Similarly, the embedding material, a firm soil, showcases a density
of 2600 kg/m3, a Young’s modulus registering at 20 MPa, and a Poisson ratio equivalent to
0.2. Four symmetrical receivers were circumferentially positioned at the end of pipelines
(15 mm from the left side), with the excitation nodes situated at the left side. A Hanning
window-operated 5-cycle sinusoidal signal at 100 kHz was employed for the excitation.
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The wave moved at a rate of about 5241 m/s. Figure 5 shows the excited guided wave.
The time-domain waveforms corresponding to defect 1, defect 2, defect 3, and defect 4 are
shown in Figure 6.

Displacement (mm)
=3 o
o w
1 l

;

—10 -

T ’ T T T T T T T T T
0.00000 0.00001 0.00002 0.00003 0.00004 0.00005 0.00008 0.00007
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Figure 5. Excited guided wave.
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Figure 6. Pipeline waveforms under soil embedment.

3.2. Signals with Noise Interference

Signals collected from construction sites are contaminated with serious noise, which
is totally different from signals collected from a simulation environment. A simulation
environment is an ideal environment, which has no noise interference on signals. To better
understand the effectiveness of the method used in this study, different levels of noise
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would be added to simulation signals to better express the actual situation in real life.
Taking defect 4 with 10% severity as an example, Figure 7 depicts the signals affected
by varying levels of noise interference. The original signal is collected from a simulation
environment, and it is an ideal signal without noise interference. As shown in Figure 7,
when SNR is 3 dB, the signal is hard to differentiate from the noise. The signal becomes
much clearer and stronger as the noise levels decreased. At SNR = 15 dB, the adulterated
signal closely resembles the original signal.

1r 10° 1 %10
0.5
0 J‘ﬂ I i~ v‘JmN\JWﬁ'ﬂmmwwp.w,
~0.5

0 0.1 02 03 0.4 05 06 0.7 08 0.9 1

0 0.1 0.2 0.3 0.4 0.5 06 07 08 09 1

time/s <1072 time/s %1072
» x10°%
15
1
0.5 \
L
0 1 2 3 4 5 6 7 8 9 10
frequence/Hz %10° frequence/Hz =10°
(a) Original signal (b) SNR=3 dB
4 x10° 4 x0°
0.5 0.5
0J1WMWMMJWWWM JJ‘ [T—
—0.5 l ' —0.5
0 01 02 03 o4 05 o6 07 08 09 1 410 01 02 03 04 05 06 07 08 09 1
time/s x10 time/s x10°
3 x10"° 5 x10'3
FFT FFT
15 1.5
1 1
0.5 0.5
b | bbb
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(c) SNR =6 dB (d)SNR=9 dB
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o *fk m .'\yﬁ’l'. y A ".'.‘MW‘MW‘\MW{W, 0 ‘le WL " ""WUWMWWMWWW
—0.5 ( -0.5 ‘
—1
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0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

time/s %103 time/s %107
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FFT FFT
1.5 15
1 1
0.5 \ 0.5
0 Il bl Lt " bt 0 Nyt
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(¢)SNR=12dB

(f) SNR = 15 dB

Figure 7. The signals with varying degrees of noise disturbance.
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Accuracy (%)

4. Results and Discussion
4.1. Impacts of Features on the Performance of the Deep Learning Models (Case 1)

To evaluate the influence of feature selection on the training performance of deep learn-
ing models, time-domain features, frequency-domain features and time- and frequency-
domain features were used as input to train CNN, LSTM, and CNN-LSTM models. The
training data is from Case 1. Accuracy was used as the evaluation index, as shown in
Figure 8. Firstly, it is clear the classification performance keeps rising as the noise levels
reduce for three deep learning models (CNN, LSTM, and CNN-LSTM models). When
the noise levels reduce to 15 dB, the classification performance is up to 100%. It is also
demonstrated in Figure 7, when the noise level is 15 dB, the signal is clear without noise in-
terference, which is why the accuracy is the highest. It means eliminating noise interference
can improve the training performance of deep learning models.
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Figure 8. Accuracy of three deep learning models with different features.

In addition, the accuracy of three models with time- and frequency-domain features
is much higher than models with time-domain features and frequency-domain features
when the noise level is from 3 dB to 15 dB, as shown in Figure 8. For example, when
SNR is 3 dB, the accuracies of three models with time- and frequency-domain features
improve by 38-45% compared to models with time-domain features and improve by
26-39% compared to models with frequency-domain features. The results demonstrated
time- and frequency-domain features have much more comprehensive information about
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signals than time-domain features and frequency-domain features and they can help in-
crease the classification performance of deep learning models. However, when SNR is
15 dB, the accuracies of three models have the same value (100%), which has no relation-
ship with feature types. It reflects that when noise interference is eliminated, three types
of features can express signals’ information uniquely and can achieve the best classifica-
tion performance.

Comparison of the Performance of Three Deep Learning Models (Case 1)

To demonstrate the superiority of the CNN-LSTM model, CNN and LSTM models
were selected and trained with the same inputs. Accuracy and the confusion matrix were
used as evaluation indices, as shown in Figures 8 and 9. Figure 8 shows the accuracies
of the CNN-LSTM model are always higher than those of the CNN and LSTM models.
When the SNR level is equal to 3 dB, the CNN-LSTM model has an increase in accuracy by
19% compared to the LSTM model and an increase of 22% compared to the CNN model
when time-domain and frequency-domain features were used as input. Meanwhile, the
accuracies of the CNN-LSTM model are improved by 26% compared to the LSTM model
and by 34% when time- and frequency-domain features were used as input. The results
prove that time- and frequency-domain features can express more signals information than
time-domain features and frequency-domain features, and that the CNN-LSTM model has
better prediction performance than the CNN and LSTM models. The CNN-LSTM model
can extract temporal features better compared to the CNN model, and the input data is
first processed and compressed by the CNN and then input into the LSTM model, which
can improve the processing efficiency of the LSTM. That is the reason why the CNN-LSTM
model can achieve better performance than the CNN and LSTM models.

Furthermore, when SNR is equal to 12 dB, the accuracies of the CNN-LSTM model has
a 3% improvement over the LSTM model and a 5% improvement over the CNN model. The
results demonstrate the reduction of noise interference can narrow the difference between
different feature inputs.

4.2. Classification Performance of CNN, LSTM and CNN-LSTM Models (Case 2)

To verify the robustness of the CNN-LSTM model, the CNN, and LSTM models were
trained, and the training data came from case 2. Time- and frequency-domain features
were used as the models’ input, as it had been testified in Case 1 that time- and frequency-
domain features included the most comprehensive information of signals. Accuracy and
the confusion matrix were used as evaluation indices, as shown in Table 6 and Figure 10.
Table 6 shows the same trend as in Case 1, the CNN-LSTM model has the best classification
performance, the LSTM model is the second, and the CNN model is the worst. For instance,
when SNR is 3 dB, the CNN-LSTM model has a 2.5% improvement over the LSTM model
and a 3.7% improvement over the CNN model. The difference among the three models is
decreasing as the noise interference is reduced. When the SNR level reaches 15 dB, there is
no difference among the three models; all of them can achieve 100% accuracy. The results
demonstrate the effectiveness of the proposed CNN-LSTM model.

Table 6. Performance of three models on different levels of noise interference.

Accuracy
Input SNR (dB)
CNN LSTM CNN-LSTM
Time- and frequency-domain features NAN 100.0% 100.0% 100.0%
3 32.8% 34.2% 36.7%
51.0% 53.0% 55.0%
Time- and frequency-domain features 9 71.0% 73.0% 75.0%
12 89.3% 90.5% 93.3%

15 100.0%  100.0%  100.0%
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Figure 9. The confusion matrix of the CNN-LSTM model with time- and frequency-domain features

on different noise levels.
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Figure 10. The confusion matrix showing the CNN-LSTM model with different noise levels.

For the CNN-LSTM model, when SNR is equal to 3 dB, its accuracy is 36.7%, where
the misclassification is mainly on the labels of base, 5% and 10%, with 86.7%, 80.0%, and
86.7% misclassification rates, respectively. When SNR is equal to 12 dB, the classification
performance is 93.3%, where the misclassification is mainly on the labels of 5% and 10%,
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with 6.7% and 20.0% misclassification rates, respectively. When SNR is equal to 15 dB, there
is no misclassification. In our experimental setup, all pipelines have multiple faults, both
with damage and welding defects. The confusion matrix results show the efficacy of the
CNN-LSTM model has no clear relationship with damage categories in this study.

The area under the curve (AUC) values for all three models across various levels of
noise interference were utilized to further elucidate our findings, as summarized in Table 7
and Figure 11. The AUC values were pivotal for assessing a model’s ability to distinguish
between classes, with higher values indicating enhanced discriminatory power. These AUC
values reinforced the consistency of the CNN-LSTM model’s performance as they increased
with decreasing noise levels. Notably, at an SNR of 15 dB, the AUC reached 1.000. And, at
an SNR of 3 dB, the AUC value of 0.369 was lower than the threshold (0.750) suggested by
Fan’s research [57], which indicated unacceptable classification accuracy. The increasing
AUC values alongside accuracy further validated the robustness of our CNN-LSTM model
in handling varying noise levels.

Table 7. The AUC values of three models on different levels of noise interference.

Accuracy
Input SNR (dB) CNN LSTM CNN-LSTM
Time- and frequency-domain features NAN 1.000 1.000 1.000
3 0.330 0.345 0.369
6 0.515 0.530 0.555
Time- and frequency-domain features 9 0.710 0.725 0.755
12 0.896 0.910 0.935
15 1.000 1.000 1.000
ROC for signal clasfication by CNN ROC for signal clasfication by LSTM

-

—

True positive rate
o
o
~
True positive rate
o
o

——— Original signal AUC=1

0.3 ~——— QOriginal signal AUC=1
SNR=3dB AUC=0.33 SNR=3dB AUC=0.345
SNR=6dB AUC=0.515 0.2 SNR=6dB AUC=0.53
SNR=9dB AUC=0.71 SNR=9dB AUC=0.725
SNR=12dB AUC=0.896 0.1 SNR=12dB AUC=0.91

SNR=15¢B AUC=1 SNR=15dB AUC=1
0 0
0 0.1 02 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1
False positive rate False positive rate
(a) CNN (b) LSTM
ROC for signal clasfication by CNN-LSTM

—

09
08 [

0.7+

True positive rate
o o
o o

=}
i

=)
w

Original signal AUC=1
SNR=3dB AUC=0.369
SNR=6dB AUC=0.555
SNR=9dB AUC=0.756
SNR=12dB AUC=0.935
SNR=15dB AUC=1

=)
[N}

=}

o

0 01 02 03 04 05 06 07 08 09 1
False positive rate

(c) CNN-LSTM

Figure 11. ROC curve for three models on different noise levels.
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5. Further Discussion of Pipelines under Different Embedment

To further evaluate the robustness of the effectiveness of the CNN-LSTM model, CNN
and LSTM models were trained, and more complex models were constructed in COMSOL
to produce more training data. The established parameter of the COMSOL model was
kept the same as in Case 1, as shown in Figure 3. The only difference was the pipeline
embedding materials. The soil embedding materials [34] were changed to soft clay, stiff
clay, loose sand, dense sand, and concrete [58-60]. Table 8 shows the properties of the
embedding materials.

Table 8. The properties of embedding materials [34].

Embedding Materials Young’s Modulus Poisson 3(;7;:;;'
Soft clay 3.5MPa 0.42 1.4 x 10°
Stiff clay 20 MPa 0.20 2.6 x 108
Loose sand 10.35 MPa 0.30 1.5 x 10
Dense sand 50 MPa 0.40 1.6 x 10°
Concrete 32.5 GPa 0.16 25 x 103

5.1. Signal Characteristics of the Pipes under Different Embedment Materials

Figure 12 shows the pipeline waveforms with defect 4 with 10% severity under soft
clay, stiff clay, loose sand, dense sand, and concrete embedment. It can be seen the signals
of soft clay, stiff clay, loose sand, and dense sand have the most obvious defect reflection
area and boundary reflection area, while the signals of concrete embedment have no such
trend. It was mostly due to the concrete’s substantially higher attenuation of sand and
concrete, which results from the directed waves” higher energy leakage to the embedment
and energy loss absorbed by concrete and sand in comparison to soil. Leinov’s research
also confirmed this [61].

0.0000 0.0005 0.0010 0.0000 0.0005 00010
0.00102 Defect 4 T - 0.00102 Defect 4 T =
3 | ) o T
S oo00st ) . S 000051 -h A
= il ' = I .
ENOODD L O | YO | e e E‘m"m _1\‘,‘,_ vt "
’ H ||' ’
| L |
—0.00051 —{! 4 000051 {‘ i
1 L 1 "
0.00102 Defect 3 7 000102 | Defect 3 R
()] | ) @
S oooost | 4 S 000051 -|‘ _
B | ) A, = H ‘ MM
E 0.00000 [ lweresemsnrfmstinsecomtpnmmsnemmm st A E 0.00000 4 h'.'.'»---/x.w--.““\“,' A AArss et A “\ ‘H”:'I‘ M3
i I L
Wil
| i | |
—0.00051 {l 4 —0.00051 4‘ i
1 1
0.00102 DEfeCt 2 o 000102 | Defect 2 —
® o
S 000051 L 4 S 000051 -|‘ |
5 | i, s I I
E 0.00000 | {hamsersamsat| | fomrrritmsnpnen | AW~ <E: 0.00000 [ \‘u-vr -~ \“ I ”,‘f, - el
gl A
| I
—-0.00051 -{! . —0.00051 {‘ _
1 1
0.0010 Defect 1 R 00010 Defect 1 T
L] . [
g 0.0005 -A\ . 3 0.0005 -“ |
£ l Al = ‘\ \‘”‘“1‘\.,
g 0.0000 | |/lwe-r | AWy QE: 0.0000 h [PESSSEEY ¥ SO SV SY | 1“\‘ \H \““v,‘s"«_ A~
| e | T
—-0.0005 -h - —0.0005 {‘ _
1 1
0.0000 0.0005 0.0010 0.0000 0.0005 0.0010
Time Time
(a) Soft clay (b) Stiff clay

Figure 12. Cont.



Computation 2023, 11, 218

17 of 22

0.0000 0.0005 00010 0.0000 00005 00010
0.00102 Defect 4] T 3] . 000102 | Defect 4 ! B
§oooos1 L | 3 o000st —} i
g rm g ” ;
Ny IIRRPYY | LT £ 000000 |4 [fmmeamsimt[pmmernnt e
Fown [ et S
‘
I
—0.00051 -‘ i —0.00051 -. i
1 i 1 i
0.00102 Defect 3 E . 000102 | pefect 3 E
®
S 0.00081 | | S 000051 —} 4
s . i g o
E 0.00000 |+ "«»-».u, (il ""‘U‘l UU.lfU"(‘\J\’.;.IA“.J\“‘K.(‘"Uyl"v.." g 0.00000 [+ \V.M.w'rul\ ‘\IV‘ I I W
[ |
—0.00051 4 i —0.00051 -. 4
1 1
0.00102 Defect 2 k 000102 | Defect 2 .
o ) —
S ooo0st 4 S 000081 —} 4
2 m = |
" [l ITTTTTITIN U A L pan Al -
E 0.00000 -"Lm.,m»ﬁ-mr, AN At 4“\»‘\\1 NW"'W’ A 5: 0.00000 b+ lm_ﬂmw.,l\lwlr',gm@.._,m.,,,‘... R—— \ o -
[ il !
—0.00051 .l 4 —0.00051 -. 4
1 1
00010 Defect 1 R 00010 | pefect 1 :
o g © —
S oco0s |- 4 S oows -‘ 4
a a 1
E 00000 |l fttismon - £ 00000 -.! [ PERUSRPYRY | PP S il ‘WI I'f'fus. A
< ' W < \ Wi ,\‘ l‘w\u W
\ i
—0.0005 4 4 —0.0005 -. i
1 1 i
0.0000 0.0005 0.0010 0.0000 0.0005 0.0010
Time Time
(c) Loose sand (d) Dense sand
0.0010

plitude

Am
I
g
o

1

Defect 3

Amplitude
L
g
L ——
L

—~0.0010 |- . ) B

0.00052 fI ' -
I
|

plitude

—0.00052

Am

8888 | L -

0.00045

0.00000

Amplitude

—0.00045

—0.00090 L
0.0000 0.0005 0.0010
Time

(e) Concrete

Figure 12. Pipeline waveforms of four kind of defects with 10% severity under different kinds of
embedment (Case 1).

5.2. Impacts of Embedment Conditions on Classification Performance of Deep Learning Models

As shown in Figure 13, the performance for the cases with embedding soil, soft clay,
stiff clay, loose sand, and dense sand is almost the same. It can be also demonstrated in
Figure 12, the waveforms of embedding soil, soft clay, stiff clay, loose sand, and dense
sand are almost the same. And, the CNN-LSTM model has the best training performance
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and the highest accuracy in comparison with the CNN and LSTM models under high
noise interference for the cases of embedding soil, soft clay, stiff clay, loose sand, and
dense sand. For instance, when the noise level rises to 6 dB for the cases with embedding
sand, the performance of the CNN-LSTM model improves by 12.2% compared to the CNN
model and 17.9% compared to the LSTM model. At the same noise level for the cases with
embedding concrete, the CNN-LSTM model outperforms the CNN and LSTM models by

12.1% and 6.1% higher, respectively. The results show the CNN-LSTM hybrid has the best
classification performance.

(e) Dense sand

9
SNR (dB)

CNN CNN
1001 LSTM 100 1 LSTM
[_JCNN-LSTM [_JCNN-LSTM
80 80
g g
z 601 = 60
g g
=1 =1
g g
40 40
20 20 -
0 04
3 6 9 12 15 3 6 9 12 15
SNR (dB) SNR (dB)
(a) Soil (b) Soft clay
[_ICNN [_ICNN
1004 ] LST™ 1004 ] LST™
[ JCNN-LSTM [ JCNN-LSTM
80 80
g g
o 60 = 60
g g
3 3
< 40 < 40
20 20
0 - 0
3 6 9 12 15 3 6 9 12 15
SNR (dB) SNR (dB)
(c) Stiff clay (d) Loose sand
CNN [ JCNN
100 4 E LSTM 100 T JLsT™
[_JCNN-LSTM [_JCNN-LSTM
80 80
g g
'g- 60 :J>’- 60
g g
3 3
Q
< 40 < 40
20 - 20
0= 04
3 3 3 5

9
SNR (dB)

(f) Concrete

12

Figure 13. Accuracy of three deep learning models with different pipeline embedment.
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Furthermore, the accuracies of the three models for the cases with embedding soil,
soft clay, stiff clay, loose sand, and dense sand are much higher than the accuracies of the
three models for the cases with embedding concrete. When SNR is equal to 12 dB, the
performance of the three models for the cases with embedding soil improves by 8-11%
compared to that for the cases with embedding concrete, which is consistent with Zhang’s
early findings [4].

5.3. Further Discussion about the Applicability to Different Metallic Materials

Our proposed ultrasonic-guided wave testing method has shown promise for the
detection of welding defects in pipelines. While the study primarily focuses on a spe-
cific material, Ti-6Al-4V, which is commonly used in pipelines, it is essential to consider
the broader applicability of this method to a range of metallic materials, including steel,
aluminum, and copper, which are frequently employed in various industrial settings.

Advantages of the Proposed Method for Different Metallic Materials: firstly, the
method’s non-destructive nature makes it adaptable to a variety of metallic materials
without causing damage [62]. Secondly, ultrasonic-guided waves have demonstrated
sensitivity to material variations, enabling the detection of defects in different metals.
Thirdly, the method’s ability to operate at various frequencies allows for versatility when
dealing with different materials, each having its own acoustic characteristics.

However, there are still limitations and challenges with non-ferrous metals. Non-
ferrous metals, such as aluminum and copper, have distinct acoustic properties that may
require specific calibration and signal processing techniques. Furthermore, materials with
high electrical conductivity, like copper, can affect the propagation of ultrasonic waves.
Mitigating this influence is an ongoing challenge. Last but not least, non-ferrous metals
may exhibit higher signal attenuation compared to ferrous materials, impacting the range
and quality of defect detection.

As a result, to broaden the scope of our method’s applicability, further research is
needed to investigate and address the specific challenges associated with non-ferrous
metals. This includes the development of material-specific calibration techniques and
signal processing algorithms to enhance the accuracy and reliability of defect detection.

6. Conclusions

This study demonstrated the effectiveness of the developed CNN-LSTM hybrid model
for damage detection. The training data was collected from different cases based on
COMSOL models. Different types of features were used as the input to testify the CNN-
LSTM model. Different levels of noise interference were used to evaluate the robustness of
the CNN-LSTM model. The following conclusions can be drawn:

(@) Time- and frequency-domain features have the most comprehensive information
about signals. In this study, for most of the cases (noise levels from 3 to 15 dB), the
accuracies of the three models (CNN, LSTM and CNN-LSTM models) with time-
and frequency-domain features are much higher than the three models’ time-domain
and frequency-domain features. It means time-frequency features have more signal
information than time difference features.

(b) When the noise interference can be ignored (e.g., 15 dB), three types of features,
including time-domain features, frequency-domain features, and time- and frequency-
domain features, can be used to express signals’ information and can achieve the best
classification performance.

() The CNN-LSTM hybrid model has a better performance for automated damage
detection than the CNN and LSTM models, because the hybrid model can make up
the shortcomings of CNN and combine the advantages of LSTM to better process the
time series signal.

(d) Embedding materials could impact signal processing, and results reveal variances
in different types of soil or sand did not affect the accuracy of the deep learning ap-
proaches significantly. However, when concrete is used as an embedding material, all
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deep models (CNN, LSTM, and CNN-LSTM models) have much lower classification,
particularly with an increase in noise interference.
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