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Abstract: The retrospective inverse problem for evolution equations is formulated as the recon-
struction of unknown initial data by a given solution at the final time. We consider the inverse
retrospective problem for a one-dimensional parabolic equation in two disconnected intervals with
weak solutions in weighted Sobolev spaces. The two solutions are connected with nonstandard
interface conditions, and thus this problem is solved in the whole spatial region. Such a problem,
as with other inverse problems, is ill-posed, and for its numerical solution, specific techniques have
to be used. The direct problem is first discretized by a difference scheme which provides a second
order of approximation in space. For the resulting ordinary differential equation system, the positive
coerciveness is established. Next, we develop an iterative conjugate gradient method to solve the
ill-posed systems of the difference equations, which are obtained after weighted time discretization,
of the inverse problem. Test examples with noisy input data are discussed.

Keywords: parabolic equation on partitioned domain; weighted Sobolev spaces; retrospective inverse
problem; finite-difference scheme; iterative conjugate gradient method

1. Introduction

Interface problems have many applications in biology, applied mechanics, heat and
mass transfer, etc. [1–5]. Regularity of linear inhomogeneous parabolic interface transmis-
sion problems was investigated in [1]. In [2], the author considered two-phase parabolic
free boundary problems and established a monotonicity formula for heat functions in dis-
joint domains. The existence and uniqueness of strong solutions for linear parabolic partial
differential equations in two adjoining domains connected through nonlinear Neumann-
type interface conditions was studied in [4]. In [5], the advantages of exact representation
of the solution in the interface in numerical schemes is discussed.

In this work, we consider a parabolic transmission problem on disjoint domains with
exact interface conditions. The derivation of this conditions is discussed in [6,7].

Problems in disjoint domains can be considered a specific instance of interface prob-
lems. Mathematically, interface problems result in partial differential equations featuring
discontinuities in both the input data and solutions across one or more hypersurfaces with
dimensions lower than the domain in which the problem is defined. Different types of
conjugation conditions that link domain solutions and their derivatives are known.

The direct parabolic transmission problem in disjoint domains is well studied in the
literature. The existence and uniqueness of the weak and strong solutions and the a priori
estimate in an appropriate Sobolev-like space were proven in [6,8–11]. Numerical methods
for solving such problems were constructed and analyzed in [8–11].

Due to many applications in physics, mechanics, biology, finance, etc., a large number
of results for inverse problems was obtained in recent decades [12–21]. As examples
of inverse problem applications, we can mention the reconstruction of thermal sources,
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intensity estimation in the heat transfer, as well as the initial condition estimation based
on final time temperature measurements. The backward problem of determination of the
initial condition of the direct (forward) problem from a known final time value of the
parabolic problem solution is often referred to as a retrospective inverse problem (RIP).

Implementing an inverse source problem for a parabolic transmission problem by
using a single measurement on a part of a time interval was considered in [22]. In [23], the
authors constructed and analyzed a numerical method for simultaneously determining
the initial value and source in a parabolic transmission problem. In [24,25], an inverse
boundary value problem for the heat equation in a two-layered medium with unknown
inclusions is solved numerically.

In our previous works, we constructed numerical algorithms for solving the parabolic
transmission problem in disjoint domains. The inverse problem for reconstruction of a
time-dependent source in classical and time-fractional problems from point or integral
observations was solved in [26,27], respectively. The inverse problem for identification
of external boundary conditions from point measurements was developed and analyzed
in [28]. In all these papers, using implicit-explicit time stepping for each time level, the full
inverse problem was decoupled into two Dirichlet inverse problems. Then, a decomposition
technique or loaded equation method was applied.

The retrospective inverse problem for parabolic equation consists of reconstruction of
the unknown initial condition from a given final time observation. It is not well posed, as a
small perturbation of the input data can produce large perturbations in the solution (see,
for example, [29–35]). The main difficulty in the construction of a numerical approximation
of the solution comes from the strong ill-posedness of the differential problem and the poor
conditioning of the corresponding algebraic equations.

To the best of our knowledge, [36] is the first work that studied an RIP numerically.
The RIP for heat conduction was solved as an optimal control problem of an object with
distributed parameters in [29]. In [31,33,34], the authors constructed an iterative numerical
method for the solution of an RIP for one- and multi-dimensional parabolic equations. An
efficient numerical method for solving the RIP for a time-fractional parabolic equation was
developed in [32]. The authors applied a conjugate gradient-type regularization method
to solve the discrete ill-posed linear system. In [37,38], the existence and uniqueness of a
quasi-solution to backward time-fractional and space-time-fractional diffusion equations
were studied. The Levenberg–Marquardt regularization method was applied to solve the
ill-posed problem. A regularization approach for solving the retrospective diffusion problem
was also proposed in [30]. In [35], the variation method was utilized for solution of the RIP
for a nonlinear, heterogeneous Burgers’ equation. Another important method, at least in
terms of theoretical aspects, is the method of regularization of a parabolic equation backward
in time through nonlocal initial boundary value problems (see [16] (Section 3.3)) [39]. A
disdvantage of this method is the nonlocal initial conditions which arise that require specific
numerical techniques.

However, there are no results for the inverse retrospective problem of our type in the
case where the governing equations are situated in disconnected domains.

In this paper, we unfold the finite-difference method proposed in [31,33,34] and solve
numerically the nonstandard RIP for recovering the initial condition in a parabolic equation
in disjoint domains.

The remaining part of this paper is organized as follows. In the next section, we
introduce the physical model problem. Section 3 is devoted to the well-posedness of
the direct problem in specific weighted Sobolev spaces. In Section 4, we describe the
semidiscretization of the direct problem. In Section 5, we describe the iterative method for
solving the inverse problem in Equations (1)–(5) and (7)–(9). The stability of the numerical
approach is discussed in Section 6. In the next section, we propose our computational
results. This paper is finalized in the Conclusions section.
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2. Model Problem

In this section, we briefly describe the direct and inverse problems for our
physical model.

We focus on the following transmission problem in a disconnected domain [6,9]:

∂uj

∂t
+ Lj(u) = f j(x, t), (x, t) ∈ Qj = Ωj × (0, T], j = 1, 2,

Lj(u) = −
∂

∂x

(
pj(x, t)

∂uj

∂x

)
+ qj(x, t)uj, (1)

Ωj = (aj, bj), −∞ < a1 < b1 < a2 < b2 < +∞,

with the interface conditions

p1(b1, t)
∂u1

∂x
(b1, t) + α1u1(b1, t) = β1u2(a2, t) + γ1(t), t ∈ (0, T), (2)

− p2(a2, t)
∂u2

∂x
(a2, t) + α2u2(a2, t) = β2u1(b1, t) + γ2(t), t ∈ (0, T), (3)

as well as the external boundary conditions

u1(a1, t) = ϕ1(t), t ∈ (0, T), (4)

u2(b2, t) = ϕ2(t), t ∈ (0, T), (5)

and the initial conditions

uj(x, 0) = u◦j (x), x ∈ Ωj = [aj, bj]. (6)

Furthermore, with a small modification, concerning the time dependence of the diffu-
sion and reaction coefficients, we follow the results in [6,9], assuming that

pj ∈ H2+ε,1+ε/2(Qj), qj ∈ H1+ε,(1+ε)/2(Qj), γj(t) ∈ H1/2(0, T),

f j(x, t) ∈ L1,1/2(Qj), pj(x, t) ≥ pj0 > 0, qj(x, t) ≥ 0, j = 1, 2,
(7)

β j > 0, αj > 0, j = 1, 2, β1β2 < α1α2, (8)

where Hµ,ν are traditional Sobolev spaces (see, for example, [40–42]).
When all coefficients and right-hand sides in Equation (1) are known, and the boundary

conditions in Equations (2)–(5) and the initial conditions in Equation (6) are given, this
problem is called a direct or forward problem.

The retrospective inverse problem for the system in Equations (1)–(6) consists of the
recovery of an a priory unknown initial state (Equation (6)) and the solution u(x, t) =
{u1(x, t), u2(x, t)}, 0 ≤ t ≤ T with the known observations at the final time:

uj(x, T) = φj(x), j = 1, 2. (9)

The sense of the simple model, described by the system in Equations (1)–(9), is heat
conduction into interacted one-dimensional rods of lengths bj − aj (j = 1, 2) whose tem-
perature at point x and time t is modeled by the functions uj(x, t) (j = 1, 2), which solves
Equation (1). The left end of the first rod and the right end of the second rod are isolated
if ϕ1(t) = ϕ2(t) = 0 in Equatons (4) and (5) and retain the temperature otherwise. Next,
there is a heat exchange between the rods described by the conditions in Equations (2)
and (3). The initial temperature (Equation (6)) of the rods is unknown. It is required to
reconstruct the functions u◦j (j = 1, 2) from the measured temperatures φj(x) (j = 1, 2) at
t = T.

There are several papers on similar parabolic problems with nonlocal interface condi-
tions and their physical approximations (see, for example, [2–5]).
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3. Well-Posedness of the Direct Problem

In this section, we present the results for the existence and uniqueness of a strong
solution to the problem in Equations (1)–(6) as obtained in [8]. However, by assuming
more smoothness (Equation (7)), in comparison with [8], we obtain a smooth solution
u = {u1, u2} to the differential problem in Equations (1)–(6). Our main concern is the
coerciveness of the bilinear form A. This property will be used in the construction of the
iterative algorithm.

We consider the product space

L = L2(Ω1)× L2(Ω2) = {v = (v1, v2)|vj ∈ L2(Ωj)},

equipped with the inner product and norm

(u, v)L = β2(v1, v1)L2(Ω1)
+ β1(v2, v2)L2(Ω2)

, ‖v‖ = (v, v)1/2
L ,

where
(uj, vj)L2(Ωj)

=
∫

Ωj

ujvjdx, j = 1, 2.

In addition, we introduce the space

Hk = {v = (v1, v2)|vj ∈ Hk(Ωj)}, k = 1, 2, . . .

equipped with the following inner product and norm:

(u, v)Hk = β2(v1, v1)Hk(Ω1)
+ β1(v2, v2)Hk(Ω2)

, ‖v‖Hk = (v, v)1/2
Hk ,

where

(uj, vj)Hk(Ωj)
=

k

∑
s=0

(dsuj

dxj ,
dsvj

dxj

)
L2(Ωs)

, j = 1, 2, k = 1, 2, . . .

Specifically, we assign

H2
0 = {v = (v1, v2) ∈ H2|v1(a1) = ϕ1(t), v2(b2) = ϕ2(t)}, k = 1, 2, . . .

We introduce the bilinear form corresponding to the problem in Equations (1)–(6):

A(u, v) = β2

∫
Ω1

p1
du1

dx1

dv1

dx1
dx + β1

∫
Ω2

p2
du2

dx2

dv2

dx2
dx (10)

+β2α1v1(b1)w1(b1) + β1α2v2(a2)w2(a2)− β1β2
[
v1(b1)w2(a2) + v2(a2)w1(b1)

]
.

On the base of the results in [8,9], we establish the following statements:

Lemma 1. Under the conditions in Equations(7) and (8), the bilinear form A, defined by Equa-
tion (10), is symmetric and bounded on H2 × H2. Moreover, this form is also coercive on H2

0 (i.e.,
there exists a constant c0 > 0 such that A(v, v) ≥ c0‖‖2

H2 for all v ∈ H2
0 ).

Let u(t) be a function mapping Ω ∈ Rn into a Hilbert space H. Furthermore, we
define [40] the Sobolev space Hk(Ω, H) with an inner product

(u, v)Hk(Ω,H) =
∫
Ω

∑
α≤k

(Dαu(t), Dαv(t)),

where k in a non-integer. For k = 0, we set L2(Ω, H) = H0(Ω, H).
Next, we introduce the space Hk,k/2 = L2

(
(0, T), Hk

)
∩ Hk/2((0, T), L).
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Theorem 1. Let the assumptions in Equations (7) and (8) hold and u0 = (u10, u20) ∈ H1
0 . Then,

the initial boundary value problem in Equations (1)–(6) has a unique strong solution u = (u1, u2) ∈
H2,1, and the following a priory estimate holds true

‖u‖2
H2,1 ≤ C

2

∑
j=1

β3−j

(
‖uj0‖2

H1(Ωj)
+ ‖ f j‖2

H1,1/2(Qj)
+ ‖γj‖2

H1/2(0,T)

)
.

Let us note that the increase in the smoothness of the input data leads to the increase
in the solution’s smoothness. Furthermore, using this fact, we assume that the sufficient
smoothness of the differential problem’s solution requires the construction of corresponding
difference schemes.

4. Semidiscrerization of the Direct Problem

First, we a construct finite difference scheme for the direct problem in Equations (1)–(6).
We introduce a uniform partition of the intervals Ωj through meshes ωhj

(j = 1, 2):

ωhj
= {xj,ij : xj,ij = aj + ijhj, ij = 0, 1, . . . , Nj, hj = (bj − aj)/Nj}, j = 1, 2

We also denote the mesh function yj(x, t) at node (xj,ij , t) by yi,ji (t) = yi,ji . Next, we
also introduce the notations

yj,xij
=

yj,ij+1 − yj,ij

hj
, yj,xij

=
yj,ij − yj,ij−1

hj
, aj,ij = pj,ij−1/2 = pj(xj,ij − hj/2, t),

〈yj, wj〉 =
Nj

∑
ij=0

hjyj,ij wj,ij , ‖y‖ =
√
〈yj, yj〉.

By applying the finite-volume method and eliminating the external boundary grid
nodes x1,0 = a1, x2,N2 = b2, we obtain the spatial semidiscretization of Equations (1)–(6):

duj,ij

dt
+ Lj(uj,ij) = gj,ij , j = 1, 2, i1 = 1, . . . , N1, i2 = 0, . . . , N2 − 1, (11)

or ij = 2− j, 3− j, . . . , Nj − j + 1,

where

Lj
(
uj,ij(t)

)
= Lj

(
uj,ij

)
= qj,ij uj,ij

− 1
hj



aj,ij+1uj,xij
− aj,ij uj,xij

, ij = 3− j, 4− j, . . . , Nj − j,

a1,2u1,x1 − a1,1
u1,1

h1
, j = 1, i1 = 1,

−α1u1,N1 + β1u2,0 − a1,N1 u1,xN1
, j = 1, i1 = N1,

a2,1u2,x0 − α2u2,0 + β2u1,N1 , j = 2, i2 = 0,

−a2,N2

u2,N2−1

h2
− a2,N2−1u2,xN2−1 , j = 2, i2 = N2 − 1,

gj,ij =



f j,ij(t), ij = 2, 3, . . . , Nj − 2,

f1,1(t) + a1,1
ϕ1(t)

h2
1

, j = 1, i1 = 1,

1
2

f1,N1(t) +
γ1(t)

h1
, j = 1, i1 = N1,

1
2

f2,0(t) +
γ2(t)

h2
, j = 2, i2 = 0.

f2,N2−1(t) + a2,N2

ϕ2(t)
h2

2
, j = 2, i2 = N2 − 1.
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Furthermore, for convenience, we rearrange the indexes, representing the unknown
solution and corresponding functions in the form Ui = (u1,i1 , u2,i2), Gi = (g1,i1 , g2,i2),
i1 = 1, 2, . . . , N1, i2 = 0, 1, . . . , N2 − 1, i = 1, 2, . . . , N, N = N1 + N2. With these notations,
the full discrete scheme in Equation (11) is rewritten as follows:

dUi
dt

+ Li(Ui) = Gi, i = 1, . . . , N, (12)

where

L =

[
A1 O1,
O2 A1

]
,

and

A1 =
1
h2

1


a1,1 + a1,2 −a1,2 0 0 . . . 0 0
−a1,2 a1,2 + a1,3 −a1,3 0 . . . 0 0

0 −a1,3 a1,3 + a1,4 −a1,4 . . . 0 0
. . . . . . . . .

0 0 0 0 . . . −a1,N1 a1,N1 + α1h1

,

A2 =
1
h2

2


a2,1 + α2h2 −a2,1 0 0 . . . 0 0
−a2,1 a2,1 + a2,2 −a2,2 0 . . . 0 0

0 −a2,3 a2,2 + a2,3 −a2,3 . . . 0 0
. . . . . . . . .

0 0 0 0 . . . −a2,N2−1 a2,N2−1 + a2,N2

,

O1 =
1
h1


0 0 0 . . . 0 0
0 0 0 . . . 0 0

. . . . . . . . .
0 0 0 . . . 0 0
−β1 0 0 . . . 0 0

, O2 =
1
h2


0 0 0 . . . 0 −β2
0 0 0 . . . 0 0

. . . . . . . . .
0 0 0 . . . 0 0
0 0 0 . . . 0 0

.

In this framework, the scalar product and the corresponding norm are defined as
follows:

〈Y, W〉 =
N1

∑
i=1

h1YiWi +
N

∑
i=N1+1

h2YiWi, ‖Y‖ =
√
〈Y, Y〉.

Considering the main goal of the present research, namely the numerical solution
of the retrospective problem in Equations (1)–(5), (7) and (9), the following results are of
basic importance:

Lemma 2. Let u(x, t) = {u1(x, t), u2(x, t)} be C2-smooth in the space solution to the problem in
Equations (1)–(8) and {Ui(t)} be the solution to the discrete problem in Equation (12). Then, the
operator L is positively definite, and the difference scheme is of the second order of approximation.

Proof. The second order of approximation directly follows from the construction of Equa-
tion (11).

Next, we multiply the first N1 number of equations in Equation (12) by β2 and the
remaining N2 number of equations by β1, and in the resulting discrete system, we set

L̃ =

[
β2 0
0 β1

]
L.
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Taking into account that Ui = (u1,i1 , u2,i2), i1 = 1, 2, . . . , N1, i2 = 0, 1, . . . , N2 − 1,
i = 1, 2, . . . , N, we consider

〈U, L̃(U)〉 = (U,L(U))L =
β2

h1

(
a1,1u2

1,1 +
N1−1

∑
i=1

a1,i+1(u1,i+1 − u1,i)
2

)

+
β1

h2

(
a2,N2+1u2

2,N2
+

N2−1

∑
i=0

a2,i+1(u2,i+1 − u2,i)
2

)
+α1β2u2

1,N1
− 2β1β2u1,N1 u2,0 + α2β1u2

2,0

≥ C‖U‖2 + α1β2

((
u1,N1 −

β1

α1
u2,0

)2
+

β1

α1

(
α2

β2
− β1

α1

)
u2

2,0

)

Therefore, under the conditions in Equation (8), we obtain

〈U, L̃(U)〉 ≥ C‖U‖2,

where C is a positive constant.

Let us note that from the definiteness (i.e., the coerciveness of the operator L), the
solution to the energy stability for the ODEs (Equation (11)) and its global existence di-
rectly follow.

5. Iterative Solution to the Inverse Problem

Now, we consider the uniform temporal mesh

ωτ = {tn : tn = nτ, n = 0, 1, . . . , M, τ = T/M},

such that the computational domain QjT
= Ωj × [0, T] is discretized by a rectangular grid

ωhj
×ωτ (j = 1, 2). The mesh function yj(x, t) at node (xj,ij , tn) is denoted by yn

i,ji
. Further-

more, the σ-weighted time stepping (0 < σ ≤ 1) leads to the following full discrete scheme:

un+1
j,ij
− un

j,ij

τ
+ Ln+σ

j
(
σun+1

j,ij
+ (1− σ)un

j,ij

)
= gn+σ

j,ij

u0
j,ij

= u◦j (xj,ij), j = 1, 2, ij = 2− j, 3− j, . . . , Nj − j + 1,
(13)

where Ln+σ
j (y) = Lj

(
y, σtn+1 + (1− σ)tn

)
, gn+σ

j,ij
= gj,ij(tn+1 + (1− σ)tn).

As before, we rearrange the indexes, where the unknown solution and correspond-
ing functions are Un

i = Ui(tn), Gn
i = Gi(tn), an

i = (an
1,i1

, an
2,i2

), qn
i = (qn

1,i1
, qn

2,i2
), f

n
i =

( f n
1,i1

, f n
2,i2

), i = 1, 2, . . . , N, i1 = 1, 2, . . . , N1, i2 = 0, 1, . . . , N2 − 1. With these notations, the
full discrete scheme (Equation (13)) is rewritten as follows:

Un+1
i −Un

i
τ

+ Ln+σ
i

(
σUn+1

i + (1− σ)Un
i
)
= Gn+σ

i ,

U0
i = u◦i , i = 1, 2, . . . , N,

(14)
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where

Ln+σ
i

(
Yi
)
= qn+σ

j,ij

(
Yi
)

− 1
hj



an+σ
i+1 Yxi − an+σ

i Yxi , i = 2, 3, . . . , N1 − 1, N1 + 2, . . . , N − 1,

a2Yx1 −
a1

h1
Y1, i = 1,

−α1YN1 + β1YN1+1 − aN1YxN1
, i = N1,

aN1+2YN1+1 − α2YN1+1 + β2YN1 , i = N1 + 1,

−aN1+N2+1
YN−1

h2
− aNYxN1+N2

, i = N.

Gn+σ
i =



f
n+σ
i , i = 2, 3, . . . , N1 − 1, N1 + 2, . . . , N − 1,

f
n+σ
1 + an+σ

1
ϕn+σ

1
h2

1
, i = 1,

1
2

f
n+σ
N1

+
γn+σ

1
h1

, i = N1,

1
2

f
n+σ
N1+1 +

γn+σ
2
h2

, i = N1 + 1.

f
n+σ
N + aN+1

ϕn+σ
2
h2

2
, i = N,

In order to solve the inverse problem in Equations (1)–(5) and (9) for reconstruction
of the initial conditions (Equation (6)), we consider the discretization in Equation (13) (or
Equation (14)) associated with Equation (9), namely

UM
i = φi, i = 1, 2, . . . , N.

Let E be the unit matrix of a size N × N and introduce the notations

Dn+σ = [E + στLn+σ]−1, Sn+σ = Dn+σ[E + (σ− 1)τLn+σ].

Thus, from Equation (14), for the solution vector Un = [Un
1 , Un

2 , . . . , Un
N ] at a new time

level, we have
Un+1 = Sn+σUn + τDn+σGn+σ. (15)

Consequently, after time integration, from Equation (15), we obtain

Un+1 =
n

∏
k=0

Sk+σU0 + τ
n

∑
k=0

Dk+σBk+σGk+σ, (16)

where

Bk+σ =


n
∏

j=k+1
Sj+σ, k + 1 ≤ n,

E, k + 1 > n.

Therefore, for n = M− 1, from Equation (16) we obtain

Φ =
M−1

∏
k=0

Sk+σU0 + τ
M−1

∑
k=0

Dk+σBk+σGk+σ, (17)

where Φ = (φ1, φ2) = [φ(x1,1), φ(x1,2), . . . , φ(x1,N1), φ(x2,0), φ(x2,1), . . . , φ(x2,N2−1)].
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Finally, the initial condition is determined by solving the linear equation

M−1

∏
k=0

Sk+σU0 = Φ− τ
M−1

∑
k=0

Dk+σBk+σGk+σ. (18)

Since the operator Sn+σ, n = 0, 1, . . . , M− 1 is self-adjoint, and Sn+σ = (Sn+σ)
∗ and is

positive, it follows from Lemma 2 that its inverse exists and is also self-adjoint and positive.
Consequently, for the solution of the system of linear algebraic Equation (18) with a full
coefficient matrix, it is appropriate to use the conjugate gradient method (CGM). The steps
are described in Algorithm 1.

Algorithm 1 CGM for solving an RIP.

Require: φj(x), j = 1, 2, initial guess V0 for U0, consistent with external boundary condi-
tions, accuracy ε > 0

Ensure: Un, n = 0, 1, . . . , M− 1
k← 0

Calculate UM ← direct problem (Equation (14)) with initial condition U0 = V0
R0 = UM −Φ
P0 ← R0
while ‖Rk‖ > ‖Rk−1‖ or ‖Rk‖ < ε do

k← k + 1

Find Zk =
M−1
∏

k=0
Sk+σPk by solving the problem

(Zk)
n+1
i − (Zk)

n
i

τ
+ Ln+σ

i
(
σ(Zk)

n+1
i + (1− σ)(Zk)

n
i
)
= 0,

(Zk)
0
i = (Pk)i, i = 1, 2, . . . , N1 + N2.

Λk =
〈Rk, Rk〉
〈Pk, Zk〉

Vk+1 = Vk + ΛkPk

Rk+1 = Rk −ΛkZk

Υk =
〈Rk+1, Rk+1〉
〈Rk, Rk〉

Pk+1 = Rk+1 + ΥkPk

end while
u◦ ← Vk+1
Un ← (14), n = 1, 2, . . . , M− 1.

The main advantage of the proposed iterative method for solving an ill-posed discrete
linear system for the inverse problem is that in contrast to the often-used regularization
methods for solving the corresponding minimization problems, the use of uncertainties
such as a regularization parameter or quadratic norm is avoided. Instead, in the conjugate
gradient iterative procedure, the regularization is performed during the iterations, since
the number of iterations serves as a regularization parameter.

Furthermore, the iterations execute quickly, since both the direct problem and the
problem for identifying Zk have the same coefficient matrix.

6. Stability Discussion

Using the standard theory of difference schemes (see, for example, Chapter 7 in [43]),
one can prove easily the following assertion:
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Theorem 2. Let {Un} be the solution to the weighted difference scheme in Equation (13). Then,
there exists a constant C > 0 independent of τ, h1 and h2, and τ0 > 0 such that for all 0 < τ ≤ τ0,
we have

max
0≤n≤M

‖Un‖ ≤ Cτ
M

∑
n=1

(
|ϕ1(tn)|+ |ϕ2(tn)|+ |γ1(tn)|+ |γ2(tn)|

)
+ ‖u◦1‖+ ‖u◦2‖.

Regarding the direct problem in Equations (1)–(6), solved by the difference scheme
in Equation (14), from the above considerations, when taking into account that Ln+σ

i is
self-adjoint, positively defined and bounded, in light of Chapter 7 in [43], we deduce that
the numerical scheme is stable if

σ ≥ 1
2
− 1

τ‖Ln+σ
i ‖

(19)

and the following a priory estimate holds:

‖UM‖ ≤ ‖U0‖+ T max
0≤n≤M−1

‖Gn+σ‖.

Therefore, the solution to the finite difference scheme in Equation (14) is stable for
σ ≥ 1/2 and convergent with the order O(τ2 + h2

1 + h2
2) for σ = 1/2, and it is O(τ + h2

1 + h2
2)

otherwise. For σ < 1/2, the numerical discretization in Equation (14) is stable for a
sufficiently small time step [33].

Now, we consider the RIP.

Corollary 1. The RIP process (Equations (15)–(18)) is convergent with a rate O(τ2 + h2
1 + h2

2)
for σ = 1/2 and O(τ + h2

1 + h2
2) for σ > 1/2 for a sufficiently small τ.

Proof. Since Ln+σ
i is self-adjoint, the transition operator Sn+σ and operator

M−1
∏

k=0
Sk+σ are

self-adjoint as well. If
M−1
∏

k=0
Sk+σ is positive, then Equation (18) is uniquely solvable. This

condition is guaranteed if Ln+σ
i is positive. From Equation (17), if the condition in Equa-

tion (19) is fulfilled, then we derive Ln+σ
i > 0. From the condition in Equation (19),

we obtain
0 < Ln+σ

i =
(
Ln+σ

i )
)∗

< E.

7. Numerical Tests

In this section, some examples will be presented to illustrate the algorithm perfor-
mance. Let

p1 = 2x + 3t + 2, p2 = 3x + t2 + 1, q1 = 2, q2 = x + t,

T = 1, a1 = 1, b1 = 2, a2 = 3, b2 = 5,
(20)

The right-hand sides f j(x, t), γj(t) and initial conditions u◦j (x) (j = 1, 2) are determined

such that u = (u1, u2), u1(x, t) = e−t/2 sin(πx/2), u2(x, t) = e−t/4 cos(πx/2) will be the
exact solution to the direct problem in Equations (1)–(6) and (20). We will refer to this
solution as the true (exact) solution. All computations were performed for N2 = 2N1 (i.e,
h = h1 = h2).
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Example 1. (Direct problem) First, we test the accuracy of the numerical solution un
j,ij

, j = 1, 2,
ij = 0, 1, . . . , Nj, n = 0, 1, . . . , M for the direct problem in Equations (1)–(6), computed by

Equation (13) or (14). In Tables 1 and 2, we give the errors (ENj
j ) and orders of convergence (CRj)

at the final time

Ej = E
Nj
j = ‖u(xj, T)− uT

1 ‖, CRj = log2

E
Nj
j

E
2Nj
j

,

for σ = 1/2 and σ = 1. In the case where σ = 1/2, we fixed the ratio to τ/h = 1, while for σ = 1,
we had τ = h2. The computations show that the accuracy of the numerical solution of the direct
problem computed by Equation (14) was O(τ2 + h2) for σ = 1/2, and it was O(τ + h2) otherwise.

Table 1. Errors and spatial convergence rate of the solution to the direct problem, where σ = 1/2 and
τ = h (Example 1).

N1 E1 CR1 E2 CR2

20 2.8342 × 10−4 5.7966 × 10−4

40 7.0655 × 10−5 2.004 1.3198 × 10−4 2.135
80 1.7592 × 10−5 2.006 3.1387 × 10−5 2.072
160 4.3861 × 10−6 2.004 7.6730 × 10−6 2.032
320 1.0949 × 10−6 2.002 1.9005 × 10−6 2.013

Table 2. Errors and spatial convergence rate of the solution to the direct problem, where (σ = 1 and
τ = h2) (Example 1).

N1 EN1
1 CR1 EN2

2 CR2

20 2.6719 × 10−4 5.2938 × 10−4

40 6.5812 × 10−5 2.022 1.2837 × 10−4 2.044
80 1.6326 × 10−5 2.011 3.1614 × 10−5 2.022
160 4.0655 × 10−6 2.006 7.8450 × 10−6 2.011
320 1.0147 × 10−6 2.002 1.9547 × 10−6 2.005

In Figures 1 and 2, we plotted the exact (true) and numerical solutions to the direct
problem and the corresponding error uj(x, T)− uT

j,ij
at the final time for σ = 1/2 and σ = 1,

N1 = 80 and τ = h.
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Figure 1. Exact solution
(
u1(x, T), u2(x, T)

)
(solid line) and numerical solution

(
uT

1,i1
, uT

2,i2

)
(line

with circles) of the direct problem at the final time (left) and the corresponding error (right), where
σ = 1/2 and τ = h (Example 1).
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Figure 2. Exact solution
(
u1(x, T), u2(x, T)

)
(solid line) and numerical solution to the direct problem(

uT
1,i1

, uT
2,i2

)
(line with circles) at the final time (left) and the corresponding error (right), where σ = 1

and τ = h (Example 1).

Example 2. (Inverse problem) We demonstrate the efficiency of Algorithm 1 in recovering the
initial condition

(
u◦1 , u◦2

)
and solution

(
u1, u2

)
. We consider perturbed measurements

φj(xj,ij) = uj(xj,ij , T) + 2ρjuj(xj,ij , T)($j(xj)− 0.5), ij = 1, 2, . . . , Nj − 1, j = 1, 2,

where $j(xj) is a random function uniformly distributed in the interval [0, 1], where ρj is the
amplitude and uj(xj,ij , T) is the true solution.

All runs were performed for τ = h. Let ρ1 = 0.03, ρ2 = 0.05 and N1 = 40.
In Figures 3 and 4, we depict the true function u◦(x) = (u◦1(x), u◦2(x)) and recov-

ered initial function u0
j = (u0

1,i1
, u0

2,i2
) and the corresponding error u◦j (x) − u0

j,ij
for σ =

1/2 and σ = 1, respectively. In Figures 5 and 6, we plot the true solution u(x, T) =
(u1(x, T), u2(x, T)) and recovered solution uM

j = (uM
1,i1

, uM
2,i2

) and the corresponding error

uT − uT
j for σ = 1/2 and σ = 1, respectively.

We observed better precision from Algorithm 1 for σ = 1 in comparison with σ = 1/2,
especially for the solution at the final time. The precision was almost the same as that for
the numerical solution to the direct problem.

In Figures 7 and 8, we plotted the true and recovered initial functions, the solution at
the final time, the corresponding errors for σ = 1/2 and the smoothing of the measurements
φj (j = 1, 2) using polynomial curve fitting of the fifth degree. The accuracy improved
significantly for both the initial function and solution, but the accuracy of the solution for
σ = 1 was still higher.
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Figure 3. True (solid line) and recovered (line with circles) initial functions (left) and the correspond-
ing error (right), where σ = 1/2 and τ = h (Example 2).
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Figure 4. True (solid line) and recovered (line with circles) initial functions (left) and the correspond-
ing error (right), where σ = 1 and τ = h (Example 2).
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Figure 5. True (solid line) and recovered (line with circles) solutions (u1, u2) (left) and the corre-
sponding error (right), where σ = 1/2 and τ = h (Example 2).
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Figure 6. True (solid line) and recovered (line with circles) solutions (u1, u2) (left) and the corre-
sponding error (right), where σ = 1 and τ = h (Example 2).
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Figure 7. True (solid line) and recovered (line with circles) initial functions (left) and the correspond-
ing error (right), where σ = 1 and τ = h with smoothed measurements ( Example 2).
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Figure 8. True (solid line) and recovered (line with circles) solutions (u1, u2) (left) and the corre-
sponding error (right), where σ = 1 and τ = h with smoothed measurements (Example 2).

8. Conclusions

In this paper, we studied a retrospective inverse problem, consisting of reconstruction
of the initial data from the final time observation for a parabolic problem defined on disjoint
intervals. The problem was ill-posed, and for its approximate solution, we suggested and
validated a second-order accurate difference scheme. We proved the positive definiteness
of the basic semidiscrete space difference operator in a Sobolev weighted norm. For solving
the resulting linear difference system of equations, we developed an iterative conjugate
gradient algorithm. Numerical experiments are provided, demonstrating the efficiency
of the proposed approach. Also, the numerical results validate the theoretical statements
and show that for σ = 1, the proposed numerical algorithm achieved better precision in
recovering the initial condition and solution, in contrast to the smaller weights (σ = 1/2).

A natural extension of the present approach would be concerned with two- or mul-
tidimensional parabolic equations with linear or nonlinear interface conditions (see, for
example, [4]).

Let us note that in [37], the quasi-solution to problem for identifying the initial data
from the final time observations was studied. We plan to combine this method with the one
in the present paper for studying the retrospective inverse problem for the time-fractional
diffusion system in [27,28].

Finally, it is important to note that the authors of [44] solved the inverse problem of
recovering the initial condition of a degenerate parabolic equation on the basis of final
time observations by implementing the Landberg iteration method. In future work, we
intend to develop this idea to a retrospective inverse problem for a degenerate atmospheric
model [45,46].
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