
Citation: Nedzhibov, G. An

Improved Approach for

Implementing Dynamic Mode

Decomposition with Control.

Computation 2023, 11, 201.

https://doi.org/10.3390/

computation11100201

Academic Editors: Carlos Balsa,

Teresa Guarda, Ronan Guivarch,

Sílvio Gama and Demos T. Tsahalis

Received: 6 July 2023

Revised: 27 September 2023

Accepted: 2 October 2023

Published: 8 October 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

An Improved Approach for Implementing Dynamic Mode
Decomposition with Control
Gyurhan Nedzhibov

Faculty of Mathematics and Informatics, Shumen University, 9700 Shumen, Bulgaria; g.nedzhibov@shu.bg

Abstract: Dynamic Mode Decomposition with Control is a powerful technique for analyzing and
modeling complex dynamical systems under the influence of external control inputs. In this paper,
we propose a novel approach to implement this technique that offers computational advantages
over the existing method. The proposed scheme uses singular value decomposition of a lower order
matrix and requires fewer matrix multiplications when determining corresponding approximation
matrices. Moreover, the matrix of dynamic modes also has a simpler structure than the corresponding
matrix in the standard approach. To demonstrate the efficacy of the proposed implementation, we
applied it to a diverse set of numerical examples. The algorithm’s flexibility is demonstrated in tests:
accurate modeling of ecological systems like Lotka-Volterra, successful control of chaotic behavior
in the Lorenz system and efficient handling of large-scale stable linear systems. This showcased its
versatility and efficacy across different dynamical systems.

Keywords: dynamic mode decomposition with control; DMDc method; DMD method; Koopman
operator; equation-free

1. Introduction

Dynamic Mode Decomposition with Control (DMDc) is a powerful data analysis
and modeling technique that has gained significant attention in various scientific and
engineering disciplines. The method was introduced by Proctor et al. [1] and it provides
valuable insights into the behavior of complex dynamical systems under the influence
of external control inputs or actuation signals. The ability to understand and predict the
behavior of such systems is of paramount importance in diverse applications, including
biology [1], fluid dynamics and structural mechanics [2], aerodynamic forces [3], aerospace
structures [4], aircraft parameter estimation [5] and wind farm flow control [6]. There are a
number of connections between DMDc and other popular system identification methods
such as the Eigensystem Realization Algorithm (ERA), the Observer Kalman Identification
Method (OKID) and the Koopman operator with control, see [7–9]. For some more recent
results and applications, we refer the reader to [10–14].

Many real-world systems are subject to external control forces or inputs. The men-
tioned publications address practical and relevant problems and the application of the
DMDc method to solve them. Although they demonstrate the capabilities of the DMDc
method for the study of controlled systems in these different areas, many open questions
remain. Like traditional DMD, DMD with control relies heavily on high-quality, high-
dimensional data. Gathering such data can be expensive and time-consuming and the
method’s effectiveness may be limited by the availability and quality of data. A number
of questions are of great importance, including assumptions made during the modeling
process, data collection methods, potential sources of error, or the impact of data quality
on the model’s predictions. The discussion of issues such as dealing with noise in mea-
surements, choosing appropriate control inputs and addressing the issue of dimensionality
when working with high-dimensional data is relatively rare. All these questions open new
avenues for future analysis and research.

Computation 2023, 11, 201. https://doi.org/10.3390/computation11100201 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11100201
https://doi.org/10.3390/computation11100201
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-0474-1987
https://doi.org/10.3390/computation11100201
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11100201?type=check_update&version=2

Computation 2023, 11, 201 2 of 14

The DMDc method is an extension of the Dynamic Mode Decomposition (DMD
method) [15], which has been established as a method for analyzing data from numerical
simulations and laboratory experiments in the fluid dynamics field. The method consti-
tutes a mathematical technique for identifying spatiotemporal coherent structures from
high-dimensional data. Since its introduction, the method has been used in a variety of
fields, including video processing [16], epidemiology [17], robotics [18], neuroscience [19],
financial trading [20–22], cavity flows [23,24], and various jets [25,26]. For a review of the
DMD literature, we refer the reader to [2,8,27,28]. The modeling of a high-dimensional,
complex, dynamical system often requires external input or control. The standard DMD
does not take this control into account and will not always predict the system correctly.
On the other hand, DMDc utilizes both the measurements of the system and the applied
external control to extract the underlying dynamics.

In this paper, we present a novel and efficient algorithm for implementing DMDc,
addressing a key challenge in the field of computational analysis. Our approach aims to
significantly improve the computational efficiency of DMDc without compromising its
predictive accuracy, making it an attractive tool for real-time applications and large-scale
systems. The contribution of our work lies in the development of a streamlined algorithm
that seamlessly integrates control inputs into the dynamic mode decomposition process.
By leveraging singular value decomposition of lower order matrices and a simpler struc-
ture of the approximation matrices, our approach significantly reduces the computational
overhead associated with the traditional DMDc method. This advancement is crucial, as
computational efficiency is often a critical concern in practical applications, where real-time
analysis and control are required. This efficiency breakthrough opens up new possibili-
ties for studying complex systems with control in real-time scenarios, providing valuable
insights for researchers and engineers alike. In summary, our work contributes to the
growing body of research on dynamic mode decomposition with control, offering a novel
and efficient computational framework that advances the field’s capabilities. The combina-
tion of computational efficiency and predictive accuracy demonstrated through numerical
experiments makes our approach a promising tool for a wide range of scientific and en-
gineering applications. We believe that our work will inspire further investigations and
applications in the exciting and interdisciplinary realm of DMDc, pushing the boundaries
of understanding and controlling complex dynamical systems.

The outline of the paper is as follows: in Section 2, we briefly describe the DMDc
algorithm; in Section 3, we propose and discuss the new approache for DMDc computation;
and in Section 4, we present numerical results, while the conclusion is in Section 5.

2. Problem Statement

DMDc is a recent extension of the DMD method developed to analyze complex systems
that also have inputs and disturbances [1]. The method uses both system measurements
and applied external control inputs to extract the underlying dynamics and the impact of
the inputs. We assume that there is no noise or uncertainties in the observations.

Consider a sequential set of data arranged in a n×m + 1 matrix

Z = [x0, . . . , xm] (1)

where n is the number of state variables and m + 1 is the number of observations (snapshots).
The data xi could be from measurements, experiments, or simulations collected at the time
ti from a given dynamical system, assuming that the data are equispaced in time with a
time step4t. To proceed, we use an arrangement of the dataset into two large data matrices

X = [x0, . . . , xm−1] and Y = [x1, . . . , xm]. (2)

The time-varying inputs to the system are collected to form another data matrix

Γ = [u0, . . . , um−1], (3)

Computation 2023, 11, 201 3 of 14

where ui ∈ Rq and q denotes the number of input variables.
The ranks of matrices X, Y and Γ are subject to certain conditions in DMDc. It is typical

for the rank of matrix Y to be the same as the rank of matrix X because both are constructed
from the same snapshots of data. It depends on the dimensionality and complexity of the
dynamic system being analyzed. The rank of the control input data matrix Γ depends on
the nature of the control inputs and the specific dataset. In practice, we can analyse the
structure of X and Γ and determine their effective rank by using techniques such as SVD or
other dimensionality reduction methods.

The goal of DMDc is to find a relationship between the future state xk+1, the current
state xk and the external control inputs uk, given by the following relation

xk+1 = Axk + Buk, (4)

where A ∈ Rn×n is called the DMD operator and B ∈ Rn×q is called the input matrix. The
relation (4) can be rewritten in terms of the snapshot matrices

Y = AX + BΓ. (5)

We assume that both operators A and B are unknown and that the goal is to obtain
estimates of matrices A and B.

3. Dynamic Mode Decomposition with Control (DMDc)

The system description (5) can therefore be rewritten in an augmented form as

Y =
[

A B
][X

Γ

]
= GΩ, (6)

where

G = [A B] ∈ Rn×(n+q) and Ω =

[
X
Γ

]
∈ R(n+q)×m. (7)

The Dynamic Mode Decomposition with control of the measurement trio (Y, X, Γ) is
the eigendecomposition of the operator A.

We seek a best-fit solution for the operator G. The matrix of known terms Ω can be
approximated via the singular value decomposition (SVD): Ω = UΣV∗. This expression
may be truncated to the form

Ω ≈ ŨΣ̃Ṽ∗, (8)

where Ũ ∈ R(n+q)×p, Σ̃ ∈ Rp×p and Ṽ ∈ Rm×p, which gives the approximation

G ≈ YṼΣ̃−1Ũ∗. (9)

We can represent the matrix Ũ as follows

Ũ =

[
Ũ1
Ũ2

]
, (10)

where Ũ1 ∈ Rn×p, Ũ2 ∈ Rq×p. Then, we can approximate the matrices A and B in the
following manner

A ≈ Ā = YṼΣ̃−1Ũ1
∗ and B ≈ B̄ = YṼΣ̃−1Ũ2

∗. (11)

In the next stage, we obtain reduced representations of the dynamics A and the input
matrix B. For this purpose, we project the state onto a subspace on which it evolves using a
basis transformation. In DMDc, in contrast with DMD, the matrix of truncated left singular

Computation 2023, 11, 201 4 of 14

vectors Ũ cannot be used to define this transformation. In order to find the appropriate
linear transformation, we utilize a reduced-order SVD of Y

Y ≈ ÛΣ̂V̂∗, (12)

where Û ∈ Rn×r, Σ̂ ∈ Rr×r and V̂ ∈ Rm×r, and r denotes the dimension of the subspace. In
general, the dimension p of the reduced SVD for Ω is greater than the dimension r. Using
the transformation Û, a low-dimensional representation of the matrices A and B can be
computed as follows:

Ã = Û∗ ĀÛ = Û∗YṼΣ̃−1Ũ1
∗Û,

B̃ = Û∗ B̄ = Û∗YṼΣ̃−1Ũ2
∗,

(13)

where Ã ∈ Rr×r and B̃ ∈ Rr×q.
We should note that in order to obtain the necessary basis transformation, we can

equivalently use the singular value decomposition of matrix X. The corresponding linear
transformation will be unique depending on the choice of X or Y.

In a similar way to the DMD approach, we can obtain the dynamic modes of A by the
eigendecomposition

ÃW = WΛ. (14)

The eigenvectors of A are related to the eigenvectors of Ã via the following transfor-
mation

Φ = YṼΣ̃−1Ũ1
∗ÛW, (15)

where the columns of the matrix Φ are the DMD modes.
The Algorithm 1 detailing the application of the DMDc method is presented below.

Algorithm 1: DMDc algorithm [1]

1. Collect and construct the snapshot matrices: X, Y and Γ

as defined in (2) and (3). Construct the matrix Ω as in (7).

2. Compute the truncated SVD of Ω

Ω = ŨΣ̃Ṽ∗,

with truncation value p.

3. Compute the truncated SVD of Y

Y = ÛΣ̂V̂∗,

with truncation value r.

4. Compute the reduced approximations of A and B :

Ã = Û∗ ĀÛ = Û∗YṼΣ̃−1Ũ1
∗Û,

B̃ = Û∗ B̄ = Û∗YṼΣ̃−1Ũ2
∗,

5. Perform the eigenvalue decomposition of Ã

ÃW = WΛ.

6. Compute the DMD modes of A

Φ = YṼΣ̃−1Ũ1
∗ÛW.

4. Alternative and Improved DMDc Algorithms

This subsection introduces a novel approach to the DMDc method, which enhances
efficiency over the standard approach. It was partly introduced in our recent conference
report [29]. For completeness of the exposition, we will describe this novel methodology
below. It is an additional approach that may be of interest to readers seeking a broader
understanding of the problem domain.

Computation 2023, 11, 201 5 of 14

4.1. An Alternative to the DMDc Algorithm

As in (2) and (3), let us define the snapshot matrices X, Y and Γ. We define the matrix
Ω as in (7). The best-fit linear operator G, in (7), is approximated by

G = YΩ†, (16)

where Ω† is the Moore–Penrose pseudoinverse of Ω. We can use different approaches to
calculate Ω†. For example, in the case where Ω has linearly independent rows, Ω† can be
computed as Ω∗(ΩΩ∗)−1. Let us represent the matrix Ω† as follows

Ω† =
[

Ω1 Ω2
]
, (17)

where Ω1 ∈ Rm×n and Ω2 ∈ Rm×q. Then, we can approximate the matrices A and B in the
following manner

A ≈ Ǎ = YΩ1 and B ≈ B̌ = YΩ2. (18)

If we use a truncated SVD of Ω as in (8), then matrices Ǎ and B̌ coincide with Ā and B̄
in (11), respectively. In order to obtain a reduced representation of the dynamics A and the
input matrix B, we utilize a reduced-order SVD of Ω1 instead of Y. Let us write

Ω1 ≈ ǓΣ̌V̌∗, (19)

where Ǔ ∈ Rm×r, Σ̆ ∈ Rr×r and V̆ ∈ Rn×r and r denotes the dimension of the subspace.
Using the transformation matrix V̌, a low-dimensional representation of the matrices A
and B can be computed as follows:

Ã = V̌∗ ǍV̌ = V̌∗YǓΣ̌,

B̃ = V̌∗ B̌ = V̌∗YΩ2,
(20)

where Ã ∈ Rr×r and B̃ ∈ Rr×q. Note that Ã and B̃ in (20) differ from the corresponding
matrices in (13). We can obtain the dynamic modes of A by the eigendecomposition of Ã

ÃW = WΛ. (21)

The eigenvectors of A are related to the eigenvectors of Ã via the transformation

Φ = YǓΣ̌W, (22)

where the columns of the matrix Φ are the DMD modes.
Next, we resume the results from above in the following Algorithm 2.

4.2. Improved DMDc Algorithms

In this subsection, we will introduce a new and improved alternative to the DMDc
algorithm. We aim to minimize the computational overhead associated with Algorithm 2.

Let the snapshot matrices X, Y and Γ be defined as in (2) and (3), respectively, and let
the augmented matrix Ω be defined as in (7).

Recall (8), the truncated singular value decomposition of Ω

Ω ≈ ŨΣ̃Ṽ∗,

where Ũ ∈ R(n+q)×p, Σ̃ ∈ Rp×p and Ṽ ∈ Rm×p. Then, for the matrix representation Ω†,
from (17), we obtain

Ω† =
[

Ω1 Ω2
]
=
[

ṼΣ̃−1Ũ1
∗ ṼΣ̃−1Ũ2

∗], (23)

where Ω1 ∈ Rm×n, Ω2 ∈ Rm×q and matrices Ũ1, Ũ2 are defined by (10).

Computation 2023, 11, 201 6 of 14

Algorithm 2: Alternative DMDc algorithm

1. Collect and construct the snapshot matrices: X, Y and Γ

as defined in (2) and (3). Construct the matrix: Ω as in (7).

2. Compute the pseudoinverse of Ω

Ω† =
[

Ω1 Ω2
]
.

3. Compute the truncated SVD of Ω1

Ω1 = ǓΣ̌V̌∗,

with truncation value r.

4. Compute the reduced approximations of A and B :

Ã = V̌∗ ǍV̌ = V̌∗YǓΣ̌,

B̃ = V̌∗ B̌ = V̌∗YΩ2,

5. Perform the eigenvalue decomposition of Ã

ÃW = WΛ.

6. Compute the DMD modes of A

Φ = YǓΣ̌W.

For the sake of convenience, let us denote

Ω1 = ṼH̃, (24)

where H̃ = Σ̃−1Ũ1
∗ is the p× n matrix. We utilize the reduced-order SVD of H̃

H̃ ≈ ŪΣ̌V̌∗, (25)

where Ū ∈ Rp×r, Σ̆ ∈ Rr×r and V̆ ∈ Rm×r and r denotes the dimension of the subspace
(r ≤ p). Substituting (25) into (24), we obtain

Ω1 = ṼŪΣ̌V̌∗ = ǓΣ̌V̌∗, (26)

where Ǔ = ṼŪ. It can easily be shown that

Ǔ∗Ǔ = I,

which implies that (26) is the truncated SVD of Ω1, matching (19).
To be thorough, we will prove that matrix

Φ = YǓΣ̌W

corresponds to the exact DMD modes of A.

Theorem 1. Let (λ, w), with λ 6= 0, be an eigenpair of Ã defined by (20). Then the corresponding
eigenpair of A is (λ, φ), where

φ = YǓΣ̌w. (27)

Proof. Let us express Aφ by using (18), (19) and (27)

Aφ = YΩ1φ = YǓΣ̌V̌∗φ = YǓΣ̌V̌∗YǓΣ̌w,

which implies, by using (20), that

Aφ = YǓΣ̌Ãw.

Computation 2023, 11, 201 7 of 14

Now, suppose that Ãw = λw for λ 6= 0. Then

Aφ = λYǓΣ̌w = λφ.

In addition, φ 6= 0, since if YǓΣ̌w = 0, then V̌∗YǓΣ̌w = Ãw = 0, which implies λ = 0.
Hence, φ is an eigenvector of A with eigenvalue λ.

Using (24), (25) and (26), we can modify Algorithm 2 as follows (Algorithm 3):

Algorithm 3: Improved DMDc algorithm

1. Collect and construct the snapshot matrices: X, Y and Γ

as defined in (2) and (3). Construct the matrix: Ω as in (7).

2. Compute the pseudoinverse of Ω by truncated SVD Ω ≈ ŨΣ̃Ṽ∗

with truncation value p :

Ω† =
[

Ω1 Ω2
]
=
[

ṼΣ̃−1Ũ1
∗ ṼΣ̃−1Ũ2

∗],
where Ũ1 and Ũ2 are defined by (10).

3. Compute the truncated SVD of matrix H̃ = Σ̃−1Ũ1
∗

H̃ = ŪΣ̌V̌∗,

with truncation value r. Substitite H̃ into (24) to obtain

Ω1 = ṼŪΣ̌V̌∗ = ǓΣ̌V̌∗,

which is the truncated SVD of Ω1.

4. Compute the reduced approximations of A and B :

Ã = V̌∗ ǍV̌ = V̌∗YǓΣ̌,

B̃ = V̌∗ B̌ = V̌∗YΩ2,

5. Perform the eigenvalue decomposition of Ã

ÃW = WΛ.

6. Compute the DMD modes of A

Φ = YǓΣ̌W.

It can be shown that Algorithm 3 identifies all of the nonzero eigenvalues of A.
Suppose Aφ = λφ, for λ 6= 0, and let w = V̌∗φ. Then

Ãw = V̌∗YǓΣ̌w = V̌∗YǓΣ̌V̌∗φ = V̌∗Aφ = λV̌∗φ = λw.

Furthermore, w 6= 0, since if V̌∗φ = 0, then YǓΣ̌V̌∗φ = Aφ = 0 and λ = 0. Thus, w
is an eigenvector of Ã with eigenvalue λ, and is identified by Algorithm 3 (and Algorithm 2).

4.3. Computational Complexity

It is worth pointing out that Algorithms 3 and Algorithms 2 are very similar. The main
difference is that at Step 3, instead of the SVD of matrix Ω1 (in Algorithm 2), the SVD of
matrix H̃, defined by (24), is used, plus one matrix multiplication. This leads to an improve-
ment in the computational efficiency of Algorithm 3 over Algorithm 2. In Algorithm 2,
we apply the SVD of a matrix with dimension m× n, while in Algorithm 3, we use the
SVD of a p× n matrix, where p < m. Next, we compare the computational complexity of
the standard algorithm for the DMDc method (Algorithm 1) and the improved algorithm
(Algorithm 3). The two algorithms contain the same number of steps and the computational
complexities of the first two steps and the fifth step are comparable. The main difference is
in calculating the SVD at Step 3 (in the two algorithms), see Table 1.

Computation 2023, 11, 201 8 of 14

Table 1. Performed SVD at Step 3 in Algorithm 1 and Algorithm 3.

Algorithm 1 Algorithm 3

SVD of matrix Y of size m× n H̃ of size p× n

The complexities of the corresponding matrices in steps 4 and 6 show the main
difference; see Table 2.

Table 2. Reduced matrices and DMD modes.

Algorithm 1 Algorithm 3

Reduced matrix Ã = Û∗YṼΣ̃−1Ũ1
∗Û Ã = V̌∗YǓΣ̌

DMD modes Φ = YṼΣ̃−1Ũ1
∗ÛW Φ = YǓΣ̌W

In Algorithm 1, six matrices need to be stored and five matrix multiplications need
to be performed, while in Algorithm 3, it is necessary to store only four matrices and
perform three matrix multiplications for the computation of the reduced matrix Ã. The
same corresponding number of matrices and matrix multiplications are also required to
calculate the DMD matrix Φ for the two algorithms, respectively.

5. Numerical Illustrative Examples

In this section, we will compare the results obtained using the standard DMDc al-
gorithm and the new algorithm (Algorithm 3) introduced in Section 2. All considered
examples are well known in the literature. All numerical experiments and simulations
were performed on Windows 7 with MATLAB release R2013a on an Acer Aspire 571 G
laptop with an Intel(R) Core(TM) i3-2328M CPU at 2.2 GHz and 4 GB of RAM. For the first
two examples, numerical simulation results of the respective models were obtained using
the standard ode45 MATLAB solver for ordinary differential equations (ODEs).

Example 1. A simple population dynamics model.

We consider the Lotka–Volterra system, a two-dimensional, weakly nonlinear dynami-
cal system describing the interaction between two competing populations. These dynamics
may represent two species in biological systems, competition in stock markets [30] and can
be modified to study the spread of infectious diseases [31]. The dynamics of the prey and
predator populations, x1 and x2, respectively, are given by∣∣∣∣ ẋ1 = αx1 − βx1x2

ẋ2 = −γx2 + δx1x2 + u,
(28)

where the parameters α, β, γ and δ represent the growth and death rates, the effect of
predation on the prey population and the growth of predators based on the size of the prey
population. The control input u affects only the second state. The unforced system exhibits

limit cycle behavior, where the predator lags the prey, and a critical point is xeq =
(

γ
δ , α

β

)T
,

where the population sizes of both species are in balance. The control objective is to stabilize
this fixed point.

We have used the following parameter values: α = 1
2 , β = 1

40 , γ = 1
2 and δ = 1

200 . The
time-step4t = 0.1 and sinusoidal forcing with u(t) = (2 sin(t) sin(t/10))2 are used. The
initial condition is x0 = (60, 50)T . Collected data consist of n = 501 snapshots, i.e., the data
matrices X and Y are of the dimensions 2× 500, and Γ is of dimensions 1× 500. Figure 1
depicts the dynamics.

Computation 2023, 11, 201 9 of 14

0 20 40 60 80 100
0

20

40

60

80

100

120

Time

P
o

p
u

la
tio

n
 s

iz
e

Prey

Predator

Figure 1. Lotka–Volterra dynamics (28) with α = 1
2 , β = 1

40 , γ = 1
2 and δ = 1

200 , and initial condition
x0 = (60, 50)T .

The low-dimensional representation (13) of the matrices A and B, by Algorithm 1, are

Ã =

(
0.9989 0.0659
0.0049 0.9784

)
and B̃ =

(
−0.0190
0.0989

)
,

while the corresponding representations (20) by Algorithm 3 are

Ã =

(
0.9758 −0.0040
−0.0650 1.0015

)
and B̃ =

(
−0.0995
−0.0152

)
.

Both algorithms, Algorithms 1 and 3, produce the same DMD eigenvalues

ω1 = 0.9680 and ω2 = 1.0094

and the same, up to the sign, corresponding DMD modes

φ1 =

(
0.7178
0.6494

)
and φ2 =

(
0.9996
0.1400

)
.

In order to quantify the average magnitude of the residuals between estimated values
obtained using the introduced DMDc approaches and actual data, we have used Root Mean
Square Error (RMSE):

RMSE(i) =

√
1
n

n

∑
s=1

(xi(s)− x̂i(s))
2, (29)

where x are the actual values and x̂ consists of the estimated values. The results are shown
in Table 3.

Table 3. Root Mean Square Error (RMSE) computed by (29).

Standard DMDc Improved DMDc

RMSE(1) 1.2276 × 104 0.3934 × 103

RMSE(2) 8.2040 × 103 0.4199 × 103

The Relative Error (RE) is another way to measure the quality of approximations:

RE(i, t) =
‖xi(t)− x̂i(t)‖
‖xi(t)‖

(30)

for t = 1, . . . , 500. Figure 2 shows a plot of the relative error variation.

Computation 2023, 11, 201 10 of 14

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time

E
rr

o
r

Algorithm 1

Algorithm 3

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time

E
rr

o
r

Algorithm 1

Algorithm 3

Figure 2. Relative errors: RE(1, t) (left panel) and RE(2, t) (right panel).

Example 2. Chaotic Lorenz system.

Let us consider the Lorenz dynamics given by∣∣∣∣∣∣
ẋ1 = σ(x2 − x1) + u
ẋ2 = x1(ρ− x3)− x2
ẋ3 = x1x2 − βx3

(31)

with system parameters σ = 10, β = 8 = 3, ρ = 28, and control input u affecting only the
first state. A typical trajectory oscillates alternately around the two weakly unstable fixed
points (±

√
72,±

√
72, 27)T .

The chaotic motion of the system implies a strong sensitivity to initial conditions, i.e.,
small uncertainties in the state will grow exponentially with time. The control objective is
to stabilize one of these fixed points. The time-step4t = 0.001 is used and control input is
determined every 10 system timesteps and then held constant, and the actuation input is
limited to u ∈ [−50, 50]. Collected data matrices X and Y are of the dimensions 2× 10, 000,
and Γ is of the dimensions 1× 10, 000. The initial condition is x0 = (−8, 8, 27)T . Figure 3
depicts the dynamics.

We performed Algorithm 1 and Algorithm 3 to obtain DMD eigenvalues and DMD
modes. Two algorithms reproduce the same DMD eigenvalues ω1 = 0.9996 + 0.0055i,
ω2 = 0.9996− 0.0055i and ω3 = 0.9999, see Figure 4.

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

30

40

50

Time

x
1

x
2

x
3

Figure 3. Lorenz dynamics (31) with σ = 10, β = 8 = 3, ρ = 28 and initial value x0 = (−8, 8, 27)T .

Figure 4 shows the DMD modes computed by two algorithms.

Computation 2023, 11, 201 11 of 14

0.9996 0.9996 0.9997 0.9997 0.9998 0.9998 0.9999 0.9999
−6

−4

−2

0

2

4

6
x 10

−3

Re(ω)

Im
(ω

)

Standard DMDc
Alternative DMDc

1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

φ
1

Standard DMDc
Alternative DMDc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

φ
2

Standard DMDc
Alternative DMDc

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

φ
3

Standard DMDc
Alternative DMDc

Figure 4. DMD eigenvalues (top-left panel) and DMD modes computed by Algorithms 1 and 3.

It can be seen from Figure 4 that the two algorithms produce the same DMD eigenval-
ues and DMD modes.

Example 3. Large-scale, stable linear systems.

Here we consider a large-scale dynamical system where the number of measurements
is significantly larger than the dimensionality of the underlying system. The dynamics
under consideration have an underlying low-dimensional attractor. To construct these
large-scale systems, we use MATLAB’s Discrete Random State Space Method. We have
chosen a five-dimensional model with two input variables and 50 measurement variables.
The output is a state space model: A ∈ R5×5 and B ∈ R5×2 (and C ∈ R50×5, D ∈ R50×2).
We generate a matrix of random inputs, Γ, by using MATLAB’s randn command. Using
matrices A, B and Γ, we generate output data for snapshot matrices X and Y, which are of
the dimensions 5× 50, and Γ is of dimensions 2× 50.

The initial condition is x0 = (1, 1, 1, 1, 1)T . Figure 5 depicts the dynamics.

0 5 10 15 20 25 30 35 40 45 50
−25

−20

−15

−10

−5

0

5

10

15

20

Time

x
1

x
2

x
3

x4

x5

Figure 5. Dynamics of Example 3.

The DMD eigenvalues and modes calculated using Algorithms 1 and 2 are shown in
Figure 6.

Computation 2023, 11, 201 12 of 14

0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.05

0

0.05

0.1

λ
i

Standard DMDc

Alternative DMDc

1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

φ
1

Standard DMDc

Alternative DMDc

1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

φ
2

Standard DMDc

Alternative DMDc

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.4

−0.2

0

0.2

0.4

φ
3

Standard DMDc

Alternative DMDc

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.4

−0.2

0

0.2

0.4

φ
4

Standard DMDc

Alternative DMDc

1 1.5 2 2.5 3 3.5 4 4.5 5
0.05

0.1

0.15

0.2

0.25

0.3

φ
5

Standard DMDc

Alternative DMDc

Figure 6. DMD eigenvalues (top-left panel) and DMD modes computed using Algorithms 1 and 2.

Note that there is no distinction between the DMD modes and eigenvalues generated
by Algorithms 1 and 2, which is seen in all the examples considered.

6. Conclusions

In this study, we have presented a novel and efficient algorithm for implementing
Dynamic Mode Decomposition with Control (DMDc), addressing the challenge of compu-
tational efficiency while maintaining predictive accuracy. We prove that each pairs (φ, λ)
generated by Algorithm 3 is an eigenvector/eigenvalue pair of operator A (Theorem 1).
In addition, the new algorithm uses a lower-dimensional SVD (at Step 3) than the cor-
responding SVD in the standard algorithm. The low-dimensional representation of the
matrices A and B, and the matrix Φ of DMDc modes in Algorithm 3 has a simpler form
than the corresponding matrices from Algorithm 1. Consequently, Algorithm 3 requires
less memory and fewer matrix multiplications.

We have demonstrated the performance of the presented algorithms with numerical
examples from different fields of application. From the obtained results, we can conclude
that the introduced approach gives identical results to the standard DMDc method. The
numerical results show that the introduced algorithm is an alternative to the standard
DMDc algorithm and can be used in various fields of application.

The contributions of this work have several important implications for the field of
DMDc and its applications. Firstly, the improved computational efficiency enables real-
time analysis and control of complex systems, allowing for faster decision-making and
response to changing environmental conditions. This aspect is particularly relevant in
engineering applications, where rapid control strategies are crucial for system stability
and performance. Furthermore, the accurate modeling of controlled systems opens up
possibilities for advanced control and optimization techniques. By understanding the
underlying dynamic modes and their responses to control inputs, researchers can design
more effective and robust control strategies tailored to specific system behaviors and
objectives. This has significant implications for engineering systems, ranging from aircraft
and spacecraft control to advanced manufacturing processes and robotics.

While this study has made some progress in the realm of DMDc, there remain several
exciting avenues for future research. One possible direction is integrating uncertainty

Computation 2023, 11, 201 13 of 14

quantification into the DMDc framework. Uncertainties in measurement data and model
parameters are common in practical applications, and accounting for these uncertainties can
lead to more robust and reliable predictions. The development of uncertainty-aware DMDc
methodologies could significantly enhance the algorithm’s versatility and practicality in
real-world scenarios. Additionally, investigating the application of our algorithm to control
chaotic and turbulent systems could yield valuable insights into the predictability and
controllability of such complex behaviors. Understanding how control inputs influence
the long-term behavior of chaotic systems could have profound implications in various
fields, from climate modeling to chaos control in mechanical systems. Finally, explor-
ing the potential synergies between DMDc and other data-driven modeling and control
techniques, such as Koopman operator theory and model predictive control, presents an
exciting research opportunity. Integrating these methodologies could lead to novel hybrid
approaches, combining the strengths of each technique to tackle complex and challenging
control problems in an interdisciplinary manner.

Funding: This research received no external funding.

Data Availability Statement: No publicly archived data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Proctor, J.L.; Brunton, S.L.; Kutz, N. Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Syst. 2016, 15, 142–161.

[CrossRef]
2. Kutz, J.N.; Brunton, S.L.; Brunton, B.W.; Proctor, J. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems.

In Proceedings of the SIAM 2016, Boston, MA, USA, 11–15 July 2016; pp. 1–234, ISBN 978-1-611-97449-2.
3. Dawson, S.T.; Schiavone, N.K.; Rowley, C.W.; Williams, D.R. A data-driven modeling framework for predicting forces and

pressures on a rapidly pitching airfoil. In Proceedings of the 45th AIAA Fluid Dynamics Conference, Dallas, TX, USA, 22–26 June
2015; pp. 1–14.

4. Fonzi, N.; Brunton, S.L.; Fasel, U. Data-driven nonlinear aeroelastic models of morphing wings for control. Proc. R. Soc. A 2020,
476, 20200079. [CrossRef] [PubMed]

5. Swaminathan, B.; Manathara, J.G.; Vinayagam, A.K. Application of dynamic mode decomposition with control (dmdc) for aircraft
parameter estimation. IFAC-PapersOnLine 2022, 55, 789–794. [CrossRef]

6. Liew, J.; Göçmen, T.; Lio, W.H.; Larsen, G.C. Streaming dynamic mode decomposition for short-term forecasting in wind farms.
Wind Energy 2022, 25, 719–734. [CrossRef]

7. Proctor, J.L.; Brunton, S.L.; Kutz, J.N. Generalizing Koopman Theory to Allow for Inputs and Control. SIAM J. Appl. Dyn. Syst.
2018, 17, 909–930. [CrossRef]

8. Bai, Z.; Kaiser, E.; Proctor, J.L.; Kutz, J.N.; Brunton, S.L. Dynamic mode decomposition for compressive system identification.
AIAA J. 2020, 58, 561–574. [CrossRef]

9. Juang, J.N.; Pappa, R.S. An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid.
Control Dyn. 1985, 8, 620–627. [CrossRef]

10. Arbabi, H.; Mezić, I. Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman
operator. SIAM J. Appl. Dyn. Syst. 2017, 16, 2096–2126. [CrossRef]

11. Schmid, P.J. Dynamic mode decomposition and its variants. Annu. Rev. Fluid Mech. 2022, 54, 225–254. [CrossRef]
12. Li, C.Y.; Chen, Z.; Zhang, X.; Tse, T.K.T.; Lin, C. Koopman analysis by the dynamic mode decomposition in wind engineering. J.

Wind Engng Ind. Aerodyn. 2023, 232, 105–295. [CrossRef]
13. Mansouri, A.; Abolmasoumi, A.H.; Ghadimi, A.A. Weather sensitive short term load forecasting using dynamic mode decompo-

sition with control. Electr. Power Syst. Res. 2023, 221, 109387. [CrossRef]
14. Gultekin, M.A.; Zhang, Z.; Bazzi, A. Dynamic Mode Decomposition for Real-Time System Estimation of Induction Motor Drives.

IEEE Trans. Ind. Appl. 2023, 59, 1836–1848. [CrossRef]
15. PSchmid, J.; Sesterhenn, J. Dynamic mode decomposition of numerical and experimental data. In Proceedings of the 61st Annual

Meeting of the APS Division of Fluid Dynamics, San Antonio, TX, USA, 23–25 November 2008; Volume 53, Number 15.
16. Grosek, J.; Kutz, J.N. Dynamic Mode Decomposition for Real-Time Background/Foreground Separation in Video. arXiv 2014,

arXiv:1404.7592.
17. Proctor, J.L.; Eckhoff, P.A. Discovering dynamic patterns from infectious disease data using dynamic mode decomposition. Int.

Health 2015, 7, 139–145. [CrossRef] [PubMed]
18. Berger, E.; Sastuba, M.; Vogt, D.; Jung, B.; Amor, H.B. Estimation of perturbations in robotic behavior using dynamic mode

decomposition. J. Adv. Robot. 2015, 29, 331–343. [CrossRef]

http://doi.org/10.1137/15M1013857
http://dx.doi.org/10.1098/rspa.2020.0079
http://www.ncbi.nlm.nih.gov/pubmed/32831607
http://dx.doi.org/10.1016/j.ifacol.2022.04.129
http://dx.doi.org/10.1002/we.2694
http://dx.doi.org/10.1137/16M1062296
http://dx.doi.org/10.2514/1.J057870
http://dx.doi.org/10.2514/3.20031
http://dx.doi.org/10.1137/17M1125236
http://dx.doi.org/10.1146/annurev-fluid-030121-015835
http://dx.doi.org/10.1016/j.jweia.2022.105295
http://dx.doi.org/10.1016/j.epsr.2023.109387
http://dx.doi.org/10.1109/TIA.2022.3231843
http://dx.doi.org/10.1093/inthealth/ihv009
http://www.ncbi.nlm.nih.gov/pubmed/25733564
http://dx.doi.org/10.1080/01691864.2014.981292

Computation 2023, 11, 201 14 of 14

19. Brunton, B.W.; Johnson, L.A.; Ojemann, J.G.; Kutz, J.N. Extracting spatial–temporal coherent patterns in large-scale neural
recordings using dynamic mode decomposition. J. Neurosci. Methods 2016, 258, 1–15. [CrossRef] [PubMed]

20. Mann, J.; Kutz, J.N. Dynamic mode decomposition for financial trading strategies. Quant. Financ. 2016, 16, 1643–1655. [CrossRef]
21. Cui, L.-x.; Long, W. Trading strategy based on dynamic mode decomposition: Tested in Chinese stock market. Phys. A Stat. Mech.

Its Appl. 2016, 461, 498–508. [CrossRef]
22. Kuttichira, D.P.; Gopalakrishnan, E.A.; Menon, V.K.; Soman, K.P. Stock price prediction using dynamic mode decomposition.

In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI),
Udupi, India, 13–16 September 2017; pp. 55–60. [CrossRef]

23. Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [CrossRef]
24. Seena, A.; Sung, H.J. Dynamic mode decomposition of turbulent cavity ows for selfsustained oscillations. Int. J. Heat Fluid Flow

2011, 32, 1098–1110. [CrossRef]
25. Rowley, C.W.; Mezić, I.; Bagheri, S.; Schlatter, P.; Henningson, D.S. Spectral analysis of nonlinear flows. J. Fluid Mech. 2009, 641,

115–127. [CrossRef]
26. Schmid, P.J. Application of the dynamic mode decomposition to experimental data. Exp. Fluids 2011, 50, 1123–1130. [CrossRef]
27. Tu, J.H.; Rowley, C.W.; Luchtenburg, D.M.; Brunton, S.L.; Kutz, J.N. On dynamic mode decomposition: Theory and applications.

J. Comput. Dyn. 2014, 1, 391–421. [CrossRef]
28. Mezić, I. Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 2013, 45, 357–378.

[CrossRef]
29. Nedzhibov, G. An alternative approach for Dynamic Mode Decomposition with Control. In Proceedings of the International

Conference “Applied Modeling in Economics, Finance and Social Sciences (AMEFSS 2023)”, Online, 6–9 July 2023.
30. Lee, S.; Lee, D.; Oh, H. Technological forecasting at the Korean stock market: A dynamic competition analysis using Lotka–Volterra

model. Technol. Forecast. Soc. Chang. 2005, 72, 1044–1057. [CrossRef]
31. Venturino, E. The influence of diseases on Lotka-Volterra systems. Rocky Mt. J. Math. 1994, 24, 381–402. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jneumeth.2015.10.010
http://www.ncbi.nlm.nih.gov/pubmed/26529367
http://dx.doi.org/10.1080/14697688.2016.1170194
http://dx.doi.org/10.1016/j.physa.2016.06.046
http://dx.doi.org/10.1109/ICACCI.2017.8125816
http://dx.doi.org/10.1017/S0022112010001217
http://dx.doi.org/10.1016/j.ijheatfluidflow.2011.09.008
http://dx.doi.org/10.1017/S0022112009992059
http://dx.doi.org/10.1007/s00348-010-0911-3
http://dx.doi.org/10.3934/jcd.2014.1.391
http://dx.doi.org/10.1146/annurev-fluid-011212-140652
http://dx.doi.org/10.1016/j.techfore.2002.11.001
http://dx.doi.org/10.1216/rmjm/1181072471

	Introduction
	Problem Statement
	Dynamic Mode Decomposition with Control (DMDc)
	Alternative and Improved DMDc Algorithms
	An Alternative to the DMDc Algorithm
	Improved DMDc Algorithms
	Computational Complexity

	Numerical Illustrative Examples
	Conclusions
	References

