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Abstract: Process Variability (PV) is a significant water quality time-series measurement. It is a
critical element in detecting abnormality. Typically, the quality control system should raise an alert if
the PV exceeds its normal value after a proper delay time (DT). The literature does not address the
relation between the extended process variability and the time delay for a warning. The current paper
shows a graphical method for calibrating a Water Quality Model based on these two parameters.
The amount of variability is calculated based on the Euclidean distance between records in a dataset.
Typically, each multivariable process has some relation between the variability and the time delay. In
the case of a short period (a few minutes), the PV may be high. However, as the relevant DT is longer,
it is expected to see the PV converge to some steady state. The current paper examines a method
for estimating the relationship between the two measurements (PV and DT) as a detection tool for
abnormality. Given the user’s classification of the actual event for true and false events, the method
shows how to build a graphical map that helps the user select the best thresholds for the model. The
last section of the paper offers an implementation of the method using real-world data.

Keywords: water quality model; graphical tool; tuning

1. Introduction

The Water Quality Model (WQM) is a term used to describe a mathematical method
that enables predicting, controlling, and ensuring drinking water quality in a water dis-
tribution system. Such a method includes input water quality measurements, such as the
pH, turbidity, TOC, redox, free chlorine, and others. As output, the process generates a
decision indicating whether the water is safe for drinking. An algorithm or some computa-
tional method calculates the transition between inputs and output. One may perform the
calculation manually or fully automated.

The ISO standard 24522 [1] (Water and wastewater quality event detection) defines
several options for this type of model. Generally, all processes, including water quality
measurement, have some PV (process variability).Regarding the DT (delay time), the PV
may be high in the case of a short period (a few minutes). However, as the relevant DT
is longer, it is expected to see the PV converge to some steady state. The current paper
examines the relationship between the two measurements (PV and DT) as a detection tool
for abnormality.

The literature includes many examples of identification methods for detecting water
quality abnormality. The current section reviews the most common forms. Dempster [2] lists
real-time ways of using machine learning to identify water quality abnormality. Dempster
introduced the concept of multivalued mapping, which associates each element of a space
of possibilities with a set of possible outcomes. The above method allows for a more
flexible representation of uncertainty than traditional probability theory, where each factor
is associated with a single result. Perelman et al. [3] used an artificial neural network to
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predict water quality using time series data and compared the expected value to the actual
one to detect water quality disruptions.

The proposed process involves using a combination of multiple sensors and data
fusion algorithms to obtain more accurate and reliable measurements of water quality
parameters. The innovation is related to a new statistical method for identifying abnor-
mal events in the water quality data, such as changes in the concentration of different
contaminants, based on the correlation structure of the data. Dibo et al. [4] implemented
an extended Dempster–Shafer method. They used the comprehensive Dempster–Shafer
method, a mathematical framework for reasoning under uncertainty, to integrate the data
from different sensors and determine the likelihood of contamination events. The au-
thors combined data from multiple sensors, including temperature, pH, and dissolved
oxygen, to comprehensively view the water quality in real-time. Liu et al. [5] improved
the Dempster–Shafer method. Their main achievements are higher accuracy, cost-effective,
and comprehensive monitoring.

Hagar et al. [6] used CANAY, a free software tool that uses a multivariable regression
to predict water quality parameters and compare the expected value with the actual value
measured. An event is declared when this difference is large enough for a significant
period. [7] Demonstrated the usage of PCA (Principal Component Analysis) analysis
applied to UV absorption as a tool for identifying possible water quality events, the authors
used a UV-Vis absorption spectroscopy sensor to measure the absorbance spectrum of
water samples at different wavelengths and then applied PPCA (Probabilistic Principal
Component Analysis) to analyze the data and detect anomalies by calculating the likelihood
of an example in the PPCA plan.

Since water distribution systems are chlorinated, the level of residual chlorine should
be in some steady state. Deviation from this steady state signals abnormality. Nejjari
et al. [8] showed a solution for this issue. They based their model on residual chlorine
levels using the EPANET modeling tool.

In recent work, Mao et al. [9] implemented a spatial-temporal-based event detection
approach with multivariate time-series data for water quality monitoring (M-STED). The
third part of their method established a spatial model with Bayesian networks to estimate
the state of the backbones in the next timestamp and trace any “outlier” node to its neigh-
borhoods to detect a contamination event. The authors of [10] applied three models for
comparing the actual versus the predicted value of the quality parameters. First was the
Holt–Winters model, which uses a time series forecasting method that considers three com-
ponents: level, trend, and seasonality. The model uses exponential smoothing to forecast
past time series values. Second was the McKenna model, a mathematical model used for
predicting the behavior of chemical reactions in liquid media. The model uses the mass
balance equations that describe the conservation of the different species involved in the
response. Third was an artificial neural network (ANN). This method uses the input of
measurements to detect the gap between the actual and predicted values of the dependent
output. They inspected events by observing unexpected changes in quality measurements
compared to the predicted values. The authors of [11] extended the above approach by
applying several additional models to water quality data. After preprocessing and feature
selection, they used k-nearest neighbors (k-NN), support vector machines (SVM), decision
trees, random forests, and ANNs to classify the water quality data as either standard or
anomalous.

They used logistic regression, linear discriminant analysis, SVM, an ANN, deep neural
network (DNN), recurrent neural network (RNN), and long short-term memory (LSTM).
The results showed that the random forest algorithm outperformed the other models
regarding the accuracy, sensitivity, and specificity in detecting anomalies in the water
quality data.

Each of the above WQMs included tuning parameters. These parameters are the knobs
used to make the model valuable and accurate. Accuracy refers to four situations: true
positive, false positive, true negative, and false negative. The aggregation of these four
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measurements is translated into a statistical quality index, such as Kappa, indicating the
model’s reliability.

A more recent survey by Liu et al. [12] provided a comprehensive review article that
delved into the methodologies and strategies employed in pinpointing unfavorable events
within potable water systems. The paper analyzed the current techniques, highlighting their
strengths and limitations. The review is a pivotal resource for researchers and policymakers
keen on improving water safety standards and management practices.

The above models did not address one central question: the time delay issue. The
time delay parameter defines how long the model should wait before it triggers an alarm.
Setting the delay time shorter than optimal will generate excessive false positives. Selecting
a delay longer than optimal will generate extreme false negatives. It may also cause true
positive alarms to be triggered with a delay, causing a loss of significant time, which is
critical regarding water networks.

What is also not addressed explicitly by the above methods is the issue of true negative
events (TNE). The literature uses the phrase true negative to refer to a situation in which
the model did not trigger an alarm, and this action is correct. However, most records do not
generate a warning in a typical dataset. This causes the calculation of Kappa statistics to be
useless. This paper suggests that a TNE is a situation in which an event detected by the
algorithm ended before it matured sufficiently to generate a trigger; i.e., it finished before
the end of the delay period. For such a case, the TNE is correct. Hence, the TNE is essential
to the model’s efficiency calculation.

The tuning process of a WQM is considered a time-consuming process that can be
performed most of the time by experts only. If performed poorly, the result may be either
false positives or negatives. In other cases, it will lead to frustration and aborting the
method. In both cases, the model turns out to be useless. Asking the end user, i.e., the
water quality engineer, to allocate a substantial amount of time to calibrate their models
seems impossible. Thus, one of the significant subjects addressed by the current paper is
creating a simple tuning method.

Hence, the present paper addresses three issues:

• A method for selecting the correct time delay.
• Addressing the TNE.
• Describing a graphical calibration method enables the end user to calibrate the

model easily.

The paper starts by describing a multiparameter method for water quality measure-
ment. It follows what is described by Brill [13] and Brill and Brill [14]. Unlike [15] which
used KMean based on three parameters, and thus assumed normal distribution of the
quality measurements, the presented methodology is a more general one and uses two
tuning parameters: DT – Delay time and PV. Given the above scenario, this paper then
presents how each event type (TP – True Positive, FP – False Positive, TN – True Negative,
FN – False Negative) is defined. Lastly, a graphical calibration method for tuning the
algorithm parameters is presented. The second part of the paper implements the technique
over a dataset from a monitoring station. The algorithm assigns a number to each of
the events in the dataset. Then, the algorithm examines each event in a two-phase plane
of DT and PV parameters. Given its location in this plane, a decision about whether to
notify is made. In parallel, human experts classify the events as True or False events. By
combining information from these two sources (Notify/Not Notify and True/False), a
simple graphical demonstration of the data enables the user to select the thresholds for the
model. Thresholds are the minimum level of DT (henceforth, DTmin) and the minimum
level of PV (henceforth, PVmin). An illustrative example supports the implementation of
the method.

2. Description and Calibration of the Proposed Model

This section describes the calibration of the WQM. Assume there is an online system
in which online sensors measure the water quality. The online system records every fixed
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interval (e.g., every minute or two). Each data record contains a timestamp and a vector of
K measurements. The full dataset includes a K × M table in which each of the K columns
contains all the data measurements of a single sensor, and each row of the M rows contains
K measurements for a specific timestamp.

Step 1:
The first step of the algorithm is to normalize the values in the dataset. Normalization

refers to a process in which a data value will replace each value in the dataset from
0 to 1. This normalized data will allow determining the Euclidean distance (or any other
metric distance method) over the complete set of variables without referring to the original
physical units of each variable. Since the control system produces a new record every
new time interval, we assume the dataset contains M rows at a certain point. Suppose
that each row has an index m (1 to M). The algorithm calculates the normalized value of
measurement k in row m by Equation (1):

v̂k
m =

Xk
m − Xk

min

Xk
max − Xk

min
(1)

The terms in Equation (1) are as follows:

• v̂k
m—normalized value at row m and column k.

• Xk
m—value at row m and column k.

• Xk
max—maximum value in column k

• Xk
min—minimum value in column k.

Hence, the values are normalized based on the range between each measurement’s
minimum and maximum value and not based on the standard deviation, as in Cheng
et al. [16]. Please note that the algorithm also uses a filter mechanism by trimming excep-
tional records from both ends of each parameter axis, i.e., eliminating upper and lower
single percentages from each column’s data before calculating the max and min values.

The pros and cons of normalizing values using the above method are beyond the scope
of this paper. However, it is worth noting that an alternative normalized method based on
the standard deviation may produce some bias in central measurements such as average,
standard deviation, and others in the case when the distribution is highly non-symmetric,
while the range-based method as implemented in this case is more immune to random bias
in data.

Step 2:
The second step of the algorithm is to track the movement of the location of a Virtual

Center Point (VCP) in an M-dimensional hyperspace. Figure 1 shows the traveling path
of such a virtual point in a two-dimensional space. The normalized values are the VCP
coordination at each timestamp (as calculated in step 1).
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The VCP traveled from timestamp t0 to its location t5 within five timestamps. The
term “total traveling distance” refers to the distance the VCP traveled from point t0 to
point t1 until it arrived at t5. The green arrow shows the actual traveling distance (ATD).
Equation (2) shows the ATD between two records in the dataset with a time lag (LAG) of s
timestamps, calculated using a standard Euclidean distance and given by Equation (2):

Ss =

√
∑K

k=1

(
v̂t

k − v̂t−s
k
)2. (2)

The two v terms in Equation (2) (inside the parentheses) refer to the normalized
vectors. The first is for the last record, and the second is for the first location (located s steps
back). In Figure 1, this means the data record at t0 and the data record at t5. The algorithm
calculates the term Ss for each record in the dataset. The number of data points recorded
between the first and last in each calculation is called the LAG.

Step 3:
Figure 2a,b explain step 3 of the algorithm. The horizontal axis in each figure depicts

the period: each tick in the axis is a different record (row) in the dataset. The vertical axis in
each figure represents the distance traveled during a period that ends at this timestamp
and has started s timestamps previously. This period refers to the LAG selected for the
calculations, in this example, five steps. The green line in each figure is the corresponding
curve for the distance traveled during the time stamp, ending in each time stamp. The
difference between Figure 2a,b is the LAG size (in terms of records) used to calculate the
actual traveling distance. The number of steps in Figure 2a is smaller than in Figure 2b.
Hence, on average, the distance traveled by the virtual point under the Figure 2a regime is
smaller than that traveled under the Figure 2b regime.
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Figure 2. Relation between the Distance and Delay Time.

The red line in each of the figures is a different threshold. The term D1 shows the level
of the red line in Figure 2a. The T1 value summarizes the cumulative time the green line
value is above the red.

Figure 2b illustrates the exact mechanism. The higher D2 is, the smaller T2 is, and
vice versa. Also, in Figure 2b, a negative relationship is obtained between D2 and T2.

Each portion of an area between the red and green lines has a base. Figure 3 shows
this base. Its units are minutes. Therefore, for each level of the red line represented by the
Distance axis, it is possible to calculate the total time spent above the line by summing all
the bases.
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The discussion refers to Figure 3, which transforms the discussion into the
control arena.

Speaking control-wise, it is assumed that when a process is characterized by high
variability, it is recommended to wait only a short delay time before the alarm is declared.
The lower the process variability, the higher the delay time before triggering an alarm.
Process variability is expressed in this case as the ATD of the VCP as shown in Figure 1.
Two different examples of the relations between the variability and the delay time are
shown in Figure 3 as curves S1 and S2. Each of these curves is a set of combinations of the
Variability and Delay time for different LAG.

It is important to note that the S1 and S2 curves in Figure 3 are unknown. The process
of discovering these curves (or at least one) is explained in what follows.

It is notable that the time scale of Figure 2 (the vertical axis) is not shown in Figure 3.
The Vertical axis of Figure 3 depicts the PV. On the other hand, the delay time shown in
Figure 2 on the vertical axis is shown in Figure 3 on the horizontal axis and is named DT.
The points DT1 and PV1 in Figure 3, located on curve S1,, express a single combination of
the delay time (expressed as the red line in Figure 2a) and variability as expressed by the
green line in Figure 2a. Similarly, the point DT2 and PV2 in Figure 3, located on the curve
S2 , expresses a single combination of delay time (expressed as the red line in Figure 2b)
and variability, as expressed by the green line in Figure 2b.

Step 4
The stage is ready for introducing the tuning process based on the information pre-

sented thus far. The following discussion pertains to Figure 4, which illustrates a singular
Delay (DT0) to Process Variability (PV0) curve.

We assume a specific S curve is selected (by choosing the lag time k). A point on the
selected S curve is selected (denoted by the green dot). This point corresponds to DT0
and PV0, the delay time and the corresponding variability. Hence, any event in which the
delay time is greater than DT0 and the distance traveled is more extended than PV0 will
generate an alarm. Examples of such events are shown in points 1 and 3 in Figure 4. Any
circumstance not fulfilling these two conditions will not create an alarm event. Examples
of such a point are 2 and 4.

Additionally, suppose a human expert has classified all events as True (marked with a
square) or False (marked with a triangle) based on process knowledge.
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Considering the information above, by merging the expert classification and algorithm
classifications, each event can be categorized as one of the following:

• TRUE Positive events: Marked by filled squares. See point 1 as an example.
• FALSE Positive events: Marked by filled triangles. See point 4 as an example.
• TRUE Negative events: Marked by non-filled triangles. See point 2 as an example.
• FALSE Negative events: Marked by non-filled squares. See point 3 as an example.

The classification should refer to two facts: the event’s location in the Variability to
Time Delay space relative to the green point and the expert’s subjective estimate concerning
whether the specific event should or should not have generated an alarm. For example,
point 1 in Figure 4 depicts an event that caused an alarm and was classified as True by the
user. Hence, it will be classified as True Positive. Point 2 in Figure 4 mistakenly did not
generate an alarm and was classified as a False Negative. Point 3 in Figure 4 mistakenly
caused an alarm and is classified as a False Positive. Moreover, finally, point 4 in Figure 4,
which depicts an event that did not create an alarm correctly, is classified as a True Negative.

Once a set of events is classified, as shown in Figure 4, a Kappa statistic can be
evaluated for these points.

Step 5:
The calibration process has now reached its final stage—the estimation of parameters

for the S curve. Assuming that the S curve has the functional form

PV = C + αTDβ, (3)

the task is to find a set of values for C, a, b including the green point and to generate the
optimal Kappa.

Hence, the corresponding parameters are estimated using the least squares method
for a given set of DT and PV points as measured for a given LAG S.
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3. A Numerical Example

This section presents a numerical example that implements the above framework
based on real-world data. Data from a water monitoring station comprise 5741 records.
Each record contains the following information: Timestamp (one-minute interval between
data records), Chlorine, Turbidity, pH, Conductivity, and Temperature. Figures 5–9 show
charts of these five water quality variables.
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Table 1. Main attributes of the quality variables.

CL CO pH TU TE

Max 1.29 699 7.92 2.832 31.9
Min 0.18 426 7.31 0.41 28

Median 0.5 552 7.45 0.715 29.9
Average 0.46 551.56 7.54 0.72 29.96

Std 0.12 45.20 0.17 0.21 0.95

By utilizing the information presented in Table 1 and Equations (1) and (2), the
algorithm calculated the VCP’s traveling distance. Figure 10 shows the movement of
the VCP using a lag time of 10 min and a red line of 0.08.
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A Java program (see Supplementary Materials) was used to process the complete data
set, including two events classified as positive events by an expert user. The processing
procedure includes examining combinations of three nested loops.

Loop 1: Lag intervals between 2 and 15 min.
Loop 2: (nested to loop 1): Redline threshold between 0.1 and 3.0 with increment steps
of 0.01.
Loop 3: (next to loop 2): Delay time between 5 and 15 min with intervals of 1 min.

The three nested loops yielded 3903 combinations. The algorithm processed the
complete dataset for each combination and calculated the amount of TP, FP, TN, FN and
the resulting Kappa statistics. The results of the best 20 combinations are listed in Table 2.



Computation 2023, 11, 200 11 of 12

Table 2. Simulation results.

No LAG DC Delay Kappa TN TP FN FP Total

1 13 0.26 7 0.764706 13 2 0 1 16
2 11 0.26 7 0.761905 12 2 0 1 15
3 14 0.25 9 0.761905 12 2 0 1 15
4 14 0.25 10 0.761905 12 2 0 1 15
5 14 0.25 11 0.761905 12 2 0 1 15
6 14 0.26 7 0.761905 12 2 0 1 15
7 14 0.26 8 0.761905 12 2 0 1 15
8 14 0.26 9 0.761905 12 2 0 1 15
9 14 0.26 10 0.761905 12 2 0 1 15

10 14 0.26 11 0.761905 12 2 0 1 15
11 8 0.25 7 0.758621 11 2 0 1 14
12 12 0.25 9 0.758621 11 2 0 1 14
13 13 0.25 9 0.758621 11 2 0 1 14
14 13 0.25 10 0.758621 11 2 0 1 14
15 8 0.26 7 0.754717 10 2 0 1 13
16 5 0.35 5 0.695652 4 2 0 1 7
17 5 0.36 5 0.695652 4 2 0 1 7
18 5 0.37 5 0.695652 4 2 0 1 7
19 5 0.38 5 0.695652 4 2 0 1 7
20 5 0.39 5 0.695652 4 2 0 1 7

Columns 2, 3, and 4 in the above table lists each combination’s Lag time, DC, and delay time. Columns 5–9 lists
the cases (TP, TN, FP, FN) and the corresponding Kappa. The top right column shows the total number of cases.

As seen from Table 2, the best combination is a LAG of 13 records, a delay time of
7 min, and a red threshold of 0.26. This combination is the best since it yields the best
Kappa quickly, a critical issue in water quality detection.

4. Conclusions

The current paper demonstrates a model calibration methodology that aims to detect
abnormalities in water quality systems. This paper presented a graphical method for
calibrating a WQM. According to the methodology proposed, the user may set three
decision parameters: Lag time, Delay time, and Process variability expressed as Euclidean
distance. Once these parameters have been set, a fully automated process (implemented
as a Java program) can calculate the Kappa value. The user may choose the optimal
Kappa based on the values for the LAG, Delay, and Variability. While calibrating, the user
can also determine the probability of events for which they wish to receive notifications.
Additional extensions of the above model could include the variable selection and lag time
between records.

As seen in Figures 5–9 it may not be trivial for a user to set the optimal parameters
based on the raw charts. The suggested method gives a straightforward methodology
implemented in a Java code to solve this problem.
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Glossary

Abbreviation Term Definition

PV Process Variability
The amount of change in water quality for a given
time window.

WQM Water Quality Model
A model that answers the question if the water
is usable.

DT Delay Time
The time between the abnormality occurrence and
alarm declaration

VCP Virtual Center Point The center of gravity of all measurements.
ATD Actual Traveling Distance The distance the VCP actually travels during LAG.
LAG Time LAG The amount of time before declaring an alarm.
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